NET Multithreading

INET Multithreading

ALAN L. DENNIS

MANNING

Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-54-5

Printed in the United States of America
12345678910 - VHG - 06 05 04 03 02

For Lara

brief contents

1 Process and thread basics 1

2 .NET from a threading perspective 24

3 Multithreading in NET 36

4 Thread life cycle 49

5 Controlling threads 69

6 Communicating with threads 95

7 Concurrency control 110

8 WaitHandle classes 142

9 Reader/Writer lock 160

10 The ThreadPool class 182

11 ThreadStatic and thread local storage 194
12 Delegates 204

13 Exceptions 222

14 Timers 235

15 Windows Forms and multiple threads 245
16 Unmanaged code and managed threads 267
17 Designing with threads 275

18 Multithreading in J# 301

vii

contents

preface xv

about this book xvi

acknowledgments xviii

about the cover illustration xix

1 Process and thread basics 1

1.1

1.2

1.3

1.4

Background 2

Whatisaprocess? 2 O Whatare threads and why should we care? 2
The cat project 6 O Task Manager 9

Multitasking 10

Cooperative multitasking 10 O Preemptive 15

Preemptive multitasking 16

Time slice, or quantum 16 O Context and context switching 18
Detecting context switching 21

Summary 23

2 .NET from a threading perspective 24

2.1

2.2

2.3
2.4

NET architecture overview 24

Framework runtime 24 0O .NET class libraries 25
ASP NET 26 O Developing custom libraries 26
Managed applications 26

Garbage collection 27
Finalization 31

Security 34
Summary 35

ix

3 Multithreading in NET 36
3.1 Application domain 36

An application domain vs. a process 36
The AppDomain class 37 O CreateDomain 38

3.2 Threads 39
Logical threads 40 O Physical threads 43

3.3 Benefits of .NET to multithreading 44
Advantages of objects 44
Asynchronous execution of delegates 45

3.4 Summary 48

4 Thread life cycle 49

4.1 Creating a thread 50
Defining the thread’s entry point 50
Creating an instance of the ThreadStart delegate 51
Creating an instance of the Thread class 51

4.2 Starting threads 52

4.3 Ending threads 54
Introducing the ThreadAbortException exception 57
The ResetAbort method 59 O The Join method 60

4.4 Determining a thread’s status 63
The IsAlive property 63 O The ThreadState property 64

4.5 Summary 68
5 Controlling threads 69

5.1 Example: web site monitoring 70
5.2 Naming threads 72

5.3 Using Sleep and Interrupt 74
The Sleep method 75 O The Interrupt method 77

5.4 Using background and foreground threads 79

5.5 Using Suspend and Resume 82
The Suspend method 82 O The Resume method 84

5.6 Exploring thread states 85

5.7 Digging deeper into thread control 87
Controlling thread priority 87 O Setting processor affinity 89
Specifying an ideal processor 91

5.8 Summary 94

CONTENTS

6 Communicating with threads 95

6.1 Using data to communicate 96
Public fields 96 O Public properties 99
Queues and threads 102

6.2 When things go badly 105
Race conditions 105 O Deadlock 107

6.3 Summary 109

7 Concurrency control 110
7.1 What does thread-safe mean? 111

Race conditions in collections 111

Making collections thread-safe using Synchronized 116
Thread safety in libraries 118

Understanding and detecting thread boundaries 119

7.2 Atomic operations 120
The Interlocked class 121

7.3 The Lock and SyncLock keywords 125

7.4 The Monitor class 128
The Enter and Exit methods 128 O The TryEnter method 130
Wait and Pulse 133 O The PulseAll method 136

7.5 Digging deeper into concurrency control 137
C#s volatile keyword 137
COM+-based synchronization 139

7.6 Summary 141

8 WaitHandle classes 142

8.1 The WaitHandle class 143

8.2 The AutoResetEvent class 145
Using the Set method 145 O Using the Reset method 146

8.3 WaitHandle 147
WaitOne 147 O WaitAll 149 O WaitAny 151

8.4 ManualResetEvent 154
8.5 Mutex class: WaitOne and ReleaseMutex 156
8.6 Summary 159

CONTENTS

9 Reader/Writer lock 160
9.1 Acquiring a read lock from a ReaderWriterLock 161

Acquiring and releasing a reader lock 162
IsReaderLockHeld 164

9.2 Acquiring a writer lock from a ReaderWriterLock 166
Acquire, release, and IsLockHeld 166
UpgradeToWriterLock 168 O DowngradeFromWriterLock 172
WriterSeqNum and AnyWritersSince 177

9.3 ReleaseLock and RestoreLock 179
9.4 Summary 181

10 The ThreadPool class 182

10.1 ThreadPool class and QueueUserWorkItem 182
10.2 The RegisterWaitForSingleObject method 184

10.3 Informational methods and properties 187
GetMaxThreads and GetAvailableThreads 187
The IsThreadPoolThread property 189

10.4 Two unsafe methods 190
10.5 The use of ThreadPools in NET 192
10.6 Summary 193

11 ThreadStatic and thread local storage 194

11.1 Using ThreadStatic variables 195
11.2 Using unnamed data slots 197
11.3 Using named data slots 199

11.4 Freeing named data slots 201
11.5 Summary 203

12 Delegates 204

12.1 Delegates revisited 204
12.2 The ThreadStart delegate 207

12.3 Callbacks 208
TimerCallback 209 0 WaitCallback 210
WaitOrTimerCallback 212

12.4 Handling thread exceptions in Windows Forms 214

12.5 Asynchronous delegates 216
EndInvoke 217 O AsyncCallback 218

12.6 Creating and invoking dynamic delegates 219
12.7 Summary 221

xii CONTENTS

13 Exceptions 222

14

15

16

CONTENTS

13.1 Exceptions revisited 223
13.2 Thread-related exceptions 224
The ThreadAbortException class 224
The ThreadInterruptedException class 226
The ThreadStateException class 228
The SynchronizationLockException class 230
13.3 The AppDomain UnhandledException event 232
13.4 Summary 234
Timers 235
14.1 Using Windows Forms timers 235
How Windows Forms timers are implemented 235
Controlling Windows Forms timers 237
14.2 System.Timers. Timer 239
Using System.Timers. Timer in Windows Forms 239
System.Timers. Timer in Windows system services 240
14.3 System.Threading. Timer 243
144 Summary 244

Windows Forms and multiple threads 245

15.1

15.2

15.3

15.4

Multithreaded-related issues 245

Introduction to the STAThread attribute 245
Threading-related issues 248 O Race conditions 254
Event-related deadlocks 256

Making Windows Forms thread-safe 258

Using the Graphics object with threads 260

Introduction to the Graphics object 260

Acquiring by overriding the OnPaint method 260

Acquiring by using the FromHwnd method 261

Thread-related application events and properties 264

The ThreadException event 264 O The ThreadExit event 265
The MessageLoop property 265

Summary 266

Unmanaged code and managed threads 267

16.1

16.2

16.3

What is an apartment? 267
Single-threaded apartment model (STA) 268 0O MTA 268

COM interoperability 268
The ApartmentState property 270 O Apartment conflicts 271
Discussion of the example 272

Summary 274

Xiii

17 Designing with threads 275

17.1 Using the asynchronous design pattern 275
A file-sorting example 276 O The Sorter class library 277
Using the Sorter class library 285
Steps to implement the asynchronous design pattern 289
17.2 Message Queue example 290

The message producer 290 O The message consumer 291
17.3 One Class One Thread 294

17.4 Performance issues 299
Multithreading overhead 299 O Increasing concurrency 299
Implications of multiple processors 300

17.5 Summary 300

18 Multithreading in J# 301

18.1 J#’s Thread class 301
Extending the Thread class 301
Comparing the Thread class to System.Threading. Thread 302

18.2 The Runnable interface 314

18.3 Concurrency control in J# 317
Synchronized regions 317 O Synchronized methods 321
The wait, notify, and notifyAll methods 323

18.4 Summary 328

index 329

Xiv CONTENTS

preface

The idea for this book came out of discussions with Scott Christiansen, a leading
developer using Microsoft technologies. While working together at a consulting com-
pany we spent numerous lunches kicking around ideas for a book and agreed that
multithreaded development was an ideal subject. Soon after our discussions, I began a
conversation with Manning Publications; this book is the end result.

Rather than focusing on abstract concepts, this book looks at the motivation behind
each concept, not just the implementation. Readers of this book should know how to
develop in the .NET platform. It is not assumed that you have written multithreaded
applications, or programmed at a low level. All concepts beyond those required to
write a single-threaded application in .NET are covered in great detail.

This book is intended primarily for architects and developers. Other players in an
organization will also benefit from reading this book, but the primary focus is on
designing and implementing multithreaded applications.

Since .NET does not require a single language, all examples in this book are available
from the publisher’s web site in both C# and Visual Basic .NET. Removing syntactical
hurdles allows you to focus on the concepts. The examples alternate between the lan-
guages, showing that the fundamental issues relate to the .NET framework, not a par-
ticular language.

The code examples in the book are intentionally terse. Rather than including all
code relating to an example, only the relevant elements are included. This highlights the
relevant portions of code, allowing you to focus on the concept and not be drawn into
the unrelated detail. All code examples are available in entirety from the publisher’s
web site.

XU

about this book

How the book is organized

We begin with a discussion of operating system concepts in chapter 1. This material
serves as a foundation for concepts discussed in later chapters. It’s difficult, if not
impossible, to write multithreaded applications without understanding what a thread
is. If you've written multithreaded applications or have taken an operating systems
course in college you’ll likely skim this chapter.

After establishing the foundations we move into examining the .NET environment
from a multithreaded viewpoint. Much can be learned by examining things from a
slightly different perspective. That’s the purpose of chapters 2 and 3, to look at things
you've likely seen before, but from a slightly different angle.

Threads go through distinct phases of existence. Chapter 4 examines each of these
in great detail. This allows you to become familiar with how threads behave. Once
we’ve discussed the life cycle of threads we move on to controlling and communicating
with threads.

While there may be a benefit to creating a thread and never interacting with it
again, often multithreaded development involves interacting with, and controlling,
threads. This is what chapters 5 and 6 cover.

The biggest challenge facing multithreaded development is concurrency control,
something that single-threaded development doesn’t need to be concerned with.
Chapters 7, 8, and 9 deal with concurrency control in one form or another.

Thread pools, which provide a simplified means of concurrent execution, are used
for many things in .NET. Chapter 10 discusses how to use them in your applications.
Like most simple things, a thread pool can be used in some situations but not others.

In chapter 11 we discuss thread local storage, a means of associating value with a par-
ticular thread. This is followed by a discussion of delegates and exceptions in chapters 12
and 13. Each multithreaded delegate and exception is explored in detail.

In chapter 14, attention is turned to timers, a common programming construct that
allows for regular execution of methods.

Windows Forms provide for a rich user experience; when combined with multiple
threads highly effective interfaces can be created. Chapter 15 covers using multiple
threads with Windows Forms applications along with potential pitfalls.

xvi

Chapter 16 covers the advanced topic of unmanaged code and multiple threads.
Most organizations have a large number of COM objects in use. Leveraging those objects
in .NET involves controlling interaction with unmanaged code.

Being able to utilize multiple threads is only part of the challenge. It is important that
proper design principles be followed so that threads are used efficiently and correctly.
That’s what chapter 17 covers: designing with multiple threads.

We finish up by discussing multiple threads in J#, the next version of J++. Since many
J++ applications are multithreaded, it’s important to understand how they function,
along with how a similar C# or Visual Basic .NET program might be structured.

Code conventions

All source code appears in fixed font. Within the text, the same Couri er font is
used to denote methods, classes, namespaces, programs and so forth. Annotations
accompany certain segments of code. Certain annotations have further explanations
that follow the code.

Source code downloads

Complete source code for the examples presented in this book is available from
www.manning.com/dennis. All examples in this book are available in both C# and
Visual Basic .NET.

Author Online

Purchase of .INET Multithreading includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and other threading experts. To access the
forum and subscribe to it, point your web browser to www.manning.com/dennis.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary.

The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s web site as long as the book is in print.

The author can also be contacted directly at adennis@manning.com.

ABOUT THIS BOOK Xxvii

acknowledgments

Without the help of many individuals, this book most likely would have never been
written. I would particularly like to thank Scott Christiansen, Naveed Zaheer, Christo-
pher Brumme, Connie Sullian, Sam Spencer, Eric Gunnerson, and Sanjay Bhansali.

The manuscript was reviewed in various stages of development by the following
individuals; their input made the book you are holding a much better one: Chad
Mpyers, Christopher Brumme, Fergal Grimes, Gary Decell, Joel Mueller, Mark Dawkins,
Mitch Denny, Patrick Steele, Rob Niestockel, Santhosh Pillai, and Scott Christiansen.
Special thanks to Sanjay Bhansali for a final technical review of the book, just before
it went into production.

I’d also like to thank everyone at Manning Publications who worked on this book.
In particular I'd like to thank Marjan Bace, my publisher; Susan Capparelle, his assistant;
Ted Kennedy, review editor; as well as Mary Piergies, production editor and the entire
production team: Syd Brown, design editor; Ann Navarro, developmental editor; Elizabeth
Martin, copyeditor; and Denis Dalinnik, typesetter.

Xxviii

about the cover illustration

The figure on the cover of .NET Multithreading is a sheep trader from the moors of
Bordeaux, “Marchand d’Agneaux des Landes de Bordeaux.” The region of Bordeaux in
southwestern France, world-famous for its viniculture, also had a thriving sheep farming
industry in the past. The hand-colored copper engraving of the sheep trader is taken
from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in
1796. Travel for pleasure was a relatively new phenomenon at the time and travel books
such as this one were popular, introducing both the tourist as well as the armchair
traveler to the inhabitants of other regions of France and abroad.

The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel book brings to
life a sense of isolation and distance of that period and of every other historic period
except our own hyperkinetic present. Dress codes have changed since then and the
diversity by region, so rich at the time, has faded away. It is now often hard to tell the
inhabitant of one continent from another. Perhaps, trying to view it optimistically, we
have traded a cultural and visual diversity for a more varied personal life. Or a more
varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centuries
ago brought back to life by the pictures from this travel book.

Xix

CHAPTEHR 1

Process and thread basics

1.1 Background 2

1.2 Multitasking 10

1.3 Preemptive multitasking 16
1.4 Summary 23

There is a great deal of value in revisiting those things we “know” and exploring them
in greater depth. Every developer is familiar with what a program is (we write them,
after all) and what threads and processes are.

Butitis a good exercise to review the basics, those things which are part of everyday
language, before tackling the somewhat daunting topic of multithreaded development.

This chapter, by way of introduction, reviews operating system (OS) concepts, with
a focus on processes and threads, and covers the basics of how threads do their work
and how the processor switches between them.

The examples throughout this book are written in both C# and Visual Basic .NET,
alternating between the two languages. All of the examples are available from the pub-
lisher’s web site at www.manning.com/dennis.

In this chapter, you’ll see code that’s devoted to relatively abstract concepts. The
goal is to present examples that make the abstract concepts clearer and demonstrate
them in a practical way.

1.1

1.1.1

1.1.2

BACKGROUND

A program, as you very well know, is typically defined as a series of instructions that are
related in some way. In .NET terms, a program can be defined as an assembly, or group
of assemblies, that work together to accomplish a task. Assemblies are nothing more
than a way of packaging instructions into maintainable elements. An assembly is gen-
erally housed in a dynamic link library (DLL) or an executable.

Program A .NET program is an assembly, or group of assemblies, that perform a task.
An assembly is nothing more than a packaging mechanism where pieces of
related code are grouped into a common container, typically a file.

Closely related to programs are processes and threads. A program’s execution occurs
on one or more threads contained with a process. Threads allow the OS to exert con-
trol over processes and the threads that execute within.

What is a process?

A process gives a program a place to live, allowing access to memory and resources.
It’s that simple.

A process is an OS object used to associate one or more paths of execution with
required resources, such as memory that stores values manipulated by threads that exist
within the process.

A process provides a level of isolation that keeps different applications from inad-
vertently interacting with each other. Think of it in terms of cans of paint. Imagine you
have several different colors of paint. While each color of paint is in its own can it can-
not mix with other paints. The can is similar to a process in that it keeps things in the
can contained within and things outside of the can out. Every process contains one
or more threads. You can think of a thread as the moving part of the process. Without
a thread interacting with elements within a process, nothing interesting will happen.

What are threads and why should we care?

Threads are paths of execution. The threads perform the operations while the process
provides the isolation. A single-threaded application has only one thread of execution.

Thread A thread is the means by which a series of instructions are executed. A thread
is created and managed by the OS based on instructions within the program.
Every program will have at least one thread.

Let’s take a step back and talk about how a program is loaded into a process. I'm not
discussing Microsoft’s implementation, but the things that need to occur and their
likely order. When an executable is launched, perhaps by typing its name in a com-
mand window, the OS creates a process for the executable to run in. The OS then loads
the executable into the process’s memory and looks for an entry point, a specially
marked place to start carrying out the instructions contained within the executable.
Think of the entry point as the front door to a restaurant. Every restaurant has one,
and front doors are relatively easy to find. Generally speaking, it’s impossible to get

CHAPTER 1 PROCESS AND THREAD BASICS

into a restaurant without going through the front door. Once the entry point is identi-
fied, a thread is created and associated with the process. The thread is started, executing
the code located at the entry point. From that point on the thread follows the series
of instructions. This first thread is referred to as the main thread of the process.
Listing 1.1 contains the listing of a console application that satisfies the obligatory

Hello World example.

Listing 1.1 An example of a single-threaded application (VB.NET)

Mbdul e Modul eHel | oWor 1 d
Sub Mai n()
Console. Wite("Hello")
Console. Wite(" World")
End Sub
End Mbdul e
|

As a console application, all input and output pass through the command-line envi-
ronment. Visual Basic console applications utilize the concept of a module. A module
is a Visual Basic construct that is identical in functionality to a C# class having all
static members. This means that the method can be invoked without an instance of
the class having been created.

I've found it very beneficial, when dealing with .NET, to examine the Microsoft
Intermediate Language (MSIL) the compiler produces. MSIL is an assembly-like lan-
guage produced by compilers targeting the .NET environment. MSIL is translated to
machine instructions by the runtime. MSIL is similar to Java’s bytecode. Listing 1.2
contains the MSIL that corresponds to the Mai n subroutine in listing 1.1.

Listing 1.2 The MSIL produced by the Hello World example (MSIL)

.method public static void Min() cil managed 0
{

.entrypoint @
.custominstance void [nscorlib] System STAThreadAttribute::.ctor() =

(01 00 00 00)
/1 Code size 25 (0x19)
.maxstack 8
I'L_0000: nop

IL_0001: Idstr "Hel | 0"

I L_0006: call void [mscorlib] System Consol e:: Wite(string)
I L_000b: nop

IL_000c: ldstr " World"

IL_0011: call void [mscorlib] System Consol e:: Wite(string)
I'L_0016: nop

IL_0017: nop

1L_0018: ret

} // end of method Modul eHel | oWorl d: : Main

BACKGROUND 3

@ Notice the st at i ¢ keyword. This lets the runtime know that this is a static method.
Since the method is defined within a module, it is implicitly shared/static.
Console applications require a static method be the entry point. A common approach
is to have the console application contain a static Mai n that creates an instance of a
class and invokes a method on that instance.

@ The . entrypoi nt directive indicates that this method is the entry point for the
application. This tells the framework that this method should be invoked after the
assembly is loaded into memory.

This example contains a single thread of execution that starts by entering the Mai n
method and terminates when the r et , return, instruction executes. In this example
the thread does not contain branching or looping. This makes it easy to see the path
the thread will take.

Let’s examine listing 1.1 in detail. Figure 1.1 shows the path the main thread of
the process takes.

[Starts the process |

Module ModuleHelloWorld
Sub Main()
Console.Write("Hello")
Console.Write(" World")

End Sub
End Module
i Figure 1.1 The execution path the main
[Terminates the process thread in the Hello World example follows

The arrows show the path the thread takes during execution of the Hello World program.
We’re covering this in such depth because, when doing multithreaded development, it is
critical to understand the execution path that a thread follows. When there is more than
one path, the complexity increases. Each conditional statement introduces another
possible path through the program. When there are a large number of paths, manage-
ment can become extremely difficult. When the path a thread takes contains branching
and looping, following that path often becomes more difficult. As a review, branching
occurs when a conditional instruction is encountered. Looping is accomplished by
having a branching statement target an instruction that has previously been executed.
Listing 1.3 contains a slightly more complex version of the Hello World example.

usi ng System
namespace Hel | oWor | dAgai n
{
class Cl assHel | oWor | dAgai n
{
[STAThr ead]
static void Main(string[] args)
{

CHAPTER 1 PROCESS AND THREAD BASICS

for (int i=0;i<2;i++)
{
Console. Wite("Hello");
Console. Wite(" World");
}

It’s easier to annotate the execution path by using the MSIL. Figure 1.2 contains the
generated MSIL from listing 1.3 with numbered arrows indicating execution path.

This example demonstrates that code that is relatively simple can produce an execution
path that is somewhat complex. The interesting part of this example is the jump that
occurs at step 4. The reason for this jump is that the f or loop tests to see if the test
condition is true before the loop executes. The important thing to take away from this
is that the main thread will execute steps 1 through 10. Those steps are the path the
thread will take through the code.

[Starts the process |

.method private hidebysig static void Main(stringl[] args) cil managed
{
1 .entrypoint
.custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
// Code size 33 (0x21)
.maxstack 2
locals init ([0] int32 i)
IL_0000: Idc.i4.0
& |L_0001: stloc.0
3—p IL_0002: brs IL_00Tc
IL_0004: Idstr "Hello"
IL_0009: call void [mscorlib]System.Console::Write(string)
IL_000e: Idstr "World"
IL_0013: call void [mscorlib]System.Console::Write(string)
4 1L_0018: Idloc.0
6 IL_0019: Idc.i4.1
8 IL_00Ta: add
9 7 IL_001b: stloc.0
IL_001c: Idloc.0
i IL_001d: Idc.i4.2
——|L_001e: blt.s IL_0004
10— IL_0020: ret
}// end of method ClassHelloWorldAgain::Main

[Terminates the process |

Figure 1.2 An execution path with branching

BACKGROUND 5

113

The cat project

It’s helpful to compare abstract things, like threads and processes, to something familiar.
Imagine a housecat in a typical family residence. The cat spends most of its time sleep-
ing, but occasionally it wakes up and performs some action, such as eating.

The house shares many characteristics with a process. It contains resources available
to beings in it, such as a litter box. These resources are available to things within the
house, but generally not to things outside the house. Things in the house are protected
from things outside of the house. This level of isolation helps protect resources from
misuse. One house can easily be differentiated from another by examining its address.
Most important, houses contain things, such as furniture, litter boxes, and cats.

Cats perform actions. A cat interacts with elements in its environment, like the
house it lives in. A housecat generally has a name. This helps identify it from other
cats that might share the same household. It has access to some or the entire house
depending on its owner’s permission. A thread’s access to elements may also be
restricted based on permissions, in this case, the system’s security settings. Listing 1.4
contains a class that models a cat.

usi ng System
usi ng System Thr eadi ng;
nanespace Cat

{
public class C assCat

{ The DidSomething
public del egate void Di dSonet hi ng(string nmessage); delegate is used when
Di dSonet hi ng notify; Vo an action occurs
int sleepTing;
string naneg;

Random r nd;
string[] actions=
{
"Eat",
"Drink",
"Take a bath",

A list of possible

"Wander around", o
actions is generated

"Use litter box",
"Look out wi ndow',
"Scratch furniture",
"Scratch carpet”,
"Play with toy",

" Meow'
h
public O assCat(string name, DidSomething notify) A name and a
{ DidSomething
sl eepTi ne=1000; delegate is
rnd=new Randon(Envi ronment . Ti ckCount) ; passed in

CHAPTER 1 PROCESS AND THREAD BASICS

t his. nane = nane;
this.notify = notify; AF\Q A name and a

} DidSomething
private string WichAction() @ Arandomaction delegate is
{ is chosen passed in

int which = rnd. Next (actions. Length);
return actions[which];

}
public void DoCatStuff(int howuch) (@ Loop the supplied
{ number of times
for (int i=0;i< howMich;i ++)
{ i f(rnd. Next (100) >= 80)
{ notify(name + ": " + WiichAction()+ " ");
}
el se
{
notify(name + ": Zzz ");
Thr ead. Sl eep(sl eepTi ne) ;
}
}
}

@ Since the cat does things, we need some way of letting the outside world know what
it did. To accomplish this we use a delegate. A delegate is simply a way of accessing a
method through a variable, similar in many ways to function pointers and callbacks.
Function pointers and callbacks come from the C++ world. They provide a means of
storing the information required to execute a function in a variable or parameter. This
allows the function to be invoked indirectly, by accessing the variable or parameter.
Cat owners may be wishing that their cat had a delegate available so that they could
monitor their cat’s activities.

® Carts do many things. I did not include sleep in this list of common feline activities
since it occurs more frequently than the other activities.

© Unlike the normal process through which cats come into the world, our cat is created
when it is allocated using the new statement. The constructor accepts the name of the
newly created cat along with a reference to the delegate to call when it does something,.
The advantage of using a delegate in this way is that the cat class doesn’t need to know
anything about the class that’s utilizing its functionality.

O The actions of a cat have always seemed pseudorandom to me. There may be a more
complex algorithm they use to determine their actions but they aren’t talking.

BACKGROUND 7

@ DoCat St uf f is the main method used to simulate the cat’s actions. It loops the spec-
ified number of times. Each loop has an 80 percent chance of the cat doing nothing
more interesting than sleeping. The remaining 20 percent involves random selection
from the list of actions we discussed earlier.

We’re now ready to do something with our cat class. Listing 1.5 contains the code
from a console application that utilizes Cl assCat .

usi ng System
nanespace Cat

{
class Cl assMain
{
[STAThr ead]
static void Main(string[] args)
{
Cl assCat theCat; Contains a reference
Cl assCat . Di dSonet hi ng notify; to ClassCat
notify = new Cl assCat. D dSonet hi ng(AddLi ne);
theCat = new Cl assCat("Tiger",notify);
t heCat . DoCat St uf f (250) ; Creates an instance
} of ClassCat
static private void AddLine(string nessage) Is invoked when
{ an action occurs
Consol e. Wite(message);
}
}
}

@ Our cat will perform many actions. In order for the O assMai n class to know that the
cat has performed an action, we must supply it with a delegate. The Di dSonet hi ng
delegate that’s passed in to the constructor is invoked by the instance of the cat class
whenever it accomplishes some task. The instance of the Di dSonet hi ng delegate
that’s passed in is associated with the AddLi ne method. This method accepts a
string as its only parameter. It then writes the contents of that string to the console.

@® When we create our cat we pass in the instance of the Di dSorret hi ng delegate along
with the cat’s name. After we've created Tiger we tell it to do 250 iterations. This occurs
on the main thread of the application. Once DoCat St uf f completes, the application
terminates. The following is a sample of the output produced by the program:

"Zzz" "Meow' "Zzz" "“Zzz" "Zzz" "Play with toy" "Wander around" "Zzz" "Zzz"

"Take a bath" "Zzz" "Zzz" "Zzz" "“Zzz" "Zzz" "Zzz" "Zzz" "Zzz" "Play with
toy" "zzz"

We've explored a simple example of how a thread resembles a cat. In the next section
we take a look at processes from the Task Manager perspective.

CHAPTER 1 PROCESS AND THREAD BASICS

1.1.4

2 Windows Task Manager 1ol

File Options Yiew Help

Task Manager

To see examples of processes, you need look no further than the Windows Task Manager,
shown in figure 1.3.

Applications ~Processes |PerFormance I

Image Hame | FID | Lsername | CPL | CPL Time I Mem Lsage | IMern Delta I Base Pri | Handles | Threads | USER Obijects | GDI Ohjects I -
ud_1066573.exe 1612 Administrator a7 11:00:59 5,020 K oK Loy 26 2 1) 4
Snaglk3z.exe 2904 Administrator 27 0:00:01 6,492 K gK Mormal 107 2 62 &1
IEXPLORE.ERE 3048 Administrator o3 0:0o:14 19,370 K oK Marmal 492 15 171 347
wrnplayer.exe 1636 Administrator 03 0145 21,988 K (80K Marmal 390 21 101 321
taskrgr.exe 3204 Administrator oz 0:00:22 2,208 K oK High 154 g 129 138 |
msimn, exe 2454 Administrator 0z moli4z 19,164 K oK Marmnal 995 11 178 331
imonkray . exe 2165 Administrator oz 0:00:35 1,880 K oK Mormal 62 1 9 12
WINWORDEXE 2064 Administrator oz 027 18,700 K oK Marmal 271 S 110 281
DLLHOST.EXE 1972 SYSTEM 0z 00003 5,144 K oK Marmnal 131 El 1) o
sqlservr.exe 868 SYSTEM oz 0:23:05 18,680 K oK Mormal 290 32 a 4
aspnet_wp.exe 2865 ASPMET on 00015 17,304 K Ok Mormal 169 10 a 4
svchost.exe 2496 SYSTEM an 0:00:00 3,028 K ok Mormal 201 12 2 [}
[W/nR=FIS) 2396 Administrator on 00947 2,380 K oK Mormal 158 4 25 a4
sqimangr.exe 2376 Administrator oo 0:00:19 4,452 K oK Mormnal 110 3 =13 147
AcroTray.exe 2356 Administrator on 0:00:00 3,452 K oK Mormal 53 2 5 28
CTRMON,EXE 2352 Administrator oo 0;00:07 3,428 K oK Marmal 252 1 a1 157
MSMsgs. exe 2340 Administrator an 0:00:10 S,448 K ok Marmal 452 19 47 124
wemdmgr exe 2328 Administrator on 0:00:00 4,080 K oK Lo 154 = 1 4
sointar.exe 2264 Administrator oo 0:00;00 1,304 K (114 Mormal 33 1 z 4 LI
[Show processes from all users End Process |

Processes: 62 |CPU Usage: 100% [Mern Usage: 326912K / 1273724K | v

Figure 1.3 Windows Task Manager lists the processes that are currently executing.

Processes are assigned a priority that is used in scheduling its threads. In figure 1.3 the
column Base Pri contains the priority of the process. A process itself does not execute.
Instead the threads contained within a process execute. Their execution is controlled in
part by their priority. The OS combines each thread’s priority with that of the process
containing them to determine the order in which the threads should execute. Three
of the most common values for base prioritcy—High, Normal, and Low—are listed in
figure 1.3.

The columns Mem Usage, Handles, USER Objects, and GDI Objects are examples
of memory and resources that a process uses. These resources include things like file
handles and Graphical Device Interface (GDI) objects. A file handle is used to interact
with a file system file while a GDI object is used to display graphical output, such as
circles and lines, on the screen.

Processes allow the actions of one thread in a process to be isolated from all other
processes. The goal of this isolation is to increase the overall stability of the system. If
a thread in a process encounters an error, the effects of that error should be limited
to that process.

BACKGROUND 9

12

1.2.1

10

MULTITASKING

When computers ran only one program at a time, there was no need to be concerned
with multitasking. Not that long ago a computer executed only one process—a single
task—at a time. In the days of DOS the computer started up to a command prompt.
From that prompt you typed the name of the program to execute. This single tasking
made it very difficult to interact with multiple programs. Typically users were forced to
exit one program, saving their work, and start another. For many it is unimaginable
that a computer could run only a single program at once, such as a word processor or
spreadsheet. Today users routinely execute a relatively large number of processes at the
same time. A typical user may be surfing the Web, chatting using an instant messaging
program, listening to an MP3, and checking email simultaneously.

When an OS supports execution of multiple concurrent processes it is said to be
multitasking. There are two common forms of multitasking: preemptive and cooper-
ative, which we’ll explore next.

Cooperative multitasking

Cooperative multitasking is based on the assumption that all processes in a system
will share the computer fairly. Each process is expected to yield control back to the
system at a frequent interval. Windows 3.x was a cooperative multitasking system.

The problem with cooperative multitasking is that not all software developers fol-
lowed the rules. A program that didn’t return control to the system, or did so infre-
quently, could make the entire system unusable. That’s why Windows 3.x would
occasionally “freeze up,” becoming unresponsive. This occurred because the entire OS
shared a common thread processing messages. When Windows 3.x started a new
application, that application was invoked from the main thread. The OS would pass
control to the application with the understanding it would be returned quickly. If the
application failed to return control to the OS in a timely fashion, all other applications,
as well as the OS, could no longer execute instructions.

Development of applications for Window 3.x was more difficult than newer ver-
sions because of the requirements of cooperative multitasking. The developer was
required to process Windows messages on a frequent basis, requiring that checks to
the message loop be performed regularly. To perform long-running operations, such
as looping 100 times, required performing a small unit of work, and then posting a
message back to yourself indicating what you should do next. This required that all
work be broken up into small units, something that isn’t always feasible.

Let’s review the way that current Windows applications function. The main thread
executes a loop called a message pump. This loop checks a message queue to see if there’s
work to do. If so, it performs the work. The click event, which occurs when a user clicks
a control such as a button, enters work into the message queue indicating which method
should be executed in response to the user’s click. This method is known as an event handler.
While the loop is executing an event handler, it cannot process additional messages.

CHAPTER 1 PROCESS AND THREAD BASICS

Think of the message pump as a person whose job is repairing appliances. Imagine
this person has an answering machine at his place of business. When people need the
technician, they call the answering machine and leave a message. This is essentially what
happens when an event is entered into the message queue. The technician then retrieves
messages from the answering machine, and, hopefully, responds in the order they were
received. Generally, while the technician is on a service call he cannot start working
on additional service calls. He must finish the current job and return to the office to
check for messages.

Suppose a repair is taking a long time to complete. The client might tell the technician,
go back to your office, check your messages, and do one job. Once you've finished it,
come back here and finish this job. This is what the Appl i cati on. DoEvent s
method does. It makes a call back to the message pump to retrieve messages.

Listing 1.6 contains the class that controls the sharing of the processor in a coop-
erative multitasking application.

usi ng System

usi ng System Col | ecti ons;
namespace CooperativeMil titasking
{

public class Sharing

{

public bool tinmeToStop=false;
ArrayList workers; (@ AnArraylistis

int current; used to store
publ i ¢ Sharing() the workers
{
wor ker s=new ArraylList(); (1) An Arraylist is
current=-1; used to store
} the workers
public void Add(WrkerBase worker) An ArrayList is
{ used to store
wor ker s. Add(wor ker) ; the workers
}
public void Run()
{
if (workers. Count ==0)
{
return;
} /0 Each worker is
while (!timeToStop) given a chance
{ to work
current ++;
if (current+1 > workers. Count)
{
current= 0;
} v

MULTITASKING 11

Wor ker Base wor ker ;

wor ker =(Wor ker Base) wor kers[current]; Each worker is
wor ker . DoWr k(t his); given a chance
} to work

}
}

}
|

@ Since multitasking involves multiple elements we need some way of storing them. In
this example we use an Ar r ayLi St to store instances of classes derived from Wor ker -
Base. An ArrayLi st is a dynamic array that manages the memory required to
store its elements. To add an entry to the list you use the Add method. We discuss
Wor ker Base in listing 1.7.

@ The heart of the Shar i ng class is the Run method which executes until the value of
ti meToSt op becomes t rue. On each pass the variable current’s contents are
incremented. This counter is used to choose which worker will be allowed to do a
portion of its work. The worker is extracted from the ArrayLi st and its DoWor k
method is invoked.

Wor ker Base is an abstract base class. All instances of classes that are managed by
the Shar i ng class must be derived from the Wor ker Base class, either directly or
indirectly. Listing 1.7 contains the Wor ker Base class.

Listing 1.7 WorkerBase is the foundation for all classes controlled by the

Sharing class (C#).

namespace CooperativeMil titasking

{
public abstract class WrkerBase
{
public abstract void DoWwrk(Sharing controller);
}
}

Because VWOr ker Base contains an abstract method DoWr k, all classes derived from
it must implement that method. The Shar i ng class calls the DoWbr k method each
time it’s the worker class’s turn. To perform some work we need a class that’s derived
from Wor ker Base that does something. Listing 1.8 contains a class that writes out a
greeting based on a string passed to its constructor.

CHAPTER 1 PROCESS AND THREAD BASICS

Listing 1.8 A cooperative greeter (VB.NET)

Public Cass Hello
I nherits WorkerBase

Private name As String

Public Sub New(ByVal name As String)
Me. name = name
End Sub

Public Overrides Sub DoWrk(ByVal controller As Sharing)
Console. Wite("Hello " + nanme)
End Sub
End C ass
|

Notice that the DoWr k method is overridden to perform a simple action. Each time
an instance of this class has a chance to perform its action, it will simply write out the
greeting “Hello” followed by the name passed into the constructor.

To control termination we introduce a class that limits the number of times it is invoked
(listing 1.9). This keeps our example relatively simple and shows another derived worker.

Listing 1.9 A worker who signals it’s time to stop all processing (C#)

usi ng System
namespace CooperativeMil titasking

{
public class Die : WrkerBase
{
i nt howManyAl | owed;
int workUnits;
public Die(int howvanyAl | owed)
{
wor kUni t s=0;
t hi s. howManyAl | owed= howiManyAl | owed;
}
public override void DoWrk(Sharing controller)
{
wor kUni t s++;
if (workUnits > howvanyAl | owed)
{
controller.timeToSt op=true;
}
}
}
}

The problem with cooperative multitasking is when one of the elements being con-
trolled executes for an excessive amount of time. Listing 1.10 contains an example of
a class that contains an infinite loop in its DOWOr k method.

MULTITASKING 13

14

Listing 1.10 A worker that uses more processing time than he should (VB.NET)

Public O ass Bad
I nherits WorkerBase

Public Overrides Sub DoWrk(ByVal controller As Sharing)

VWi le (True)
End Wi le
End Sub
End d ass

We’re now ready to see all the pieces tied together. The controlling part of this example
is in listing 1.11. Notice that the line adding the badWor ker is commented out.

Listing 1.11 The Sharing example main class (C#)

usi ng System
nanespace CooperativeMiltitasking

{

class ClassMain
{
[STAThr ead]
static void Main(string[] args)
{
Sharing controller;
controller = new Sharing();
Hel I o hi Newton = new Hel |l o(" Newton ");
Hel l o hi Cayle = new Hell o("Cayle ");
Die term nator = new Di e(10);
Bad badWorker = new Bad();
control |l er. Add(hi Newt on);
controller. Add(hi Cayle);
I control | er. Add(badWr ker) ;
control ler. Add(term nator);
controller.Run();

This program produces the following output:

Hello Newton Hello Cayle Hello Newton Hello Cayle Hello Newton Hello Cayle
Hel lo Newton Hello Cayle Hello Newton Hello Cayle Hello Newton Hello Cayle
Hel lo Newton Hello Cayle Hello Newton Hello Cayle Hello Newton Hello Cayle
Hello Newton Hello Cayle Hello Newton Hello Cayle

Notice that the greetings alternate as each worker is given a chance to do his work. When
the badWr ker is present in the collection of workers, the following output is produced:

Hell o Newton Hello Cayle

CHAPTER 1

PROCESS AND THREAD BASICS

Since the badWor ker ’s DoWbr k method never returns, the entire cooperative system
is destabilized. This kind of failure is why Windows 3.x would occasionally freeze,
requiring a reboot of the computer to recover.

We've discussed the challenges of developing applications under cooperative multi-
tasking. The biggest problem is that if one or more applications doesn’t follow the rules,
the entire OS is affected. It’s not surprising that all modern multitasking OSs use pre-
emptive multitasking.

1.2.2 Preemptive
Preemptive multitasking is the more common form of multitasking in use today.
Instead of relying on the programs to return control to the system at regular intervals,
the OS takes it. Listing 1.12 contains an example of a program that uses threads and
relies on preemptive multitasking.

private void buttonl_Cick(object sender, System EventArgs e)
{
System Thr eadi ng. Wi t Cal | back cal | back;
cal I back = new System Threadi ng. Wai t Cal | back(Loop);
Syst em Thr eadi ng. Thr eadPool . QueueUser Wor ki ten(cal | back);) Adds to the

} ThreadPool
private void Loop(object state) (@ Definesthemethod
{ that is invoked in
for (int i=1;i<100;i ++) the ThreadPool
{
for (int k=0;k< 100; k++)
{
doubl e d;
d = (doubl e) k/ (doubl e)i;
Set Label (d. ToString()); (3) Sets the text
} of the label
}
Set Label ("Fi ni shed"); @ Sets the text
} of the label

private del egate void SetLabel Del egate(string s);
private void SetLabel (string s) (@ Setsthe text

{ of the label
if (labell.1nvokeRequired)
{
I abel 1. 1 nvoke(new Set Label Del egat e(Set Label), new object[] {s});
}
el se
{
| abel 1. Text =s;
}

}

MULTITASKING 15

1.3

1.3.1

16

The key element in this example is that the but t on1_C i ck method doesn’t do the
actual looping; instead it creates a work item that’s entered into a thread pool. A thread
pool is an easy way to do multithreading. As with most things, this simplicity results
in a less flexible way of doing things. This execution occurs on a separate thread and is
periodically interrupted by the OS to allow other threads a chance to get work done.

© Thread pools are a great way to perform multithreaded programming. Chapter 10

covers thread pools in detail. Thread pools perform their work using the Wi t -
Cal | back delegate. A method that accepts a single parameter is associated with the
Wi t Cal | back. That method, Loop, is invoked on a thread controlled by the
thread pool.

@ The Loop method performs the actual work. It is very similar to the method in listing 1.6.

The most notable difference is that there is no call to Appl i cati on. DoEvents.
Additionally, some type casting is being performed to make the output more interesting,.

© Instead of accessing the label directly to output the results, we use the Set Label

method. Set Label ensures that the label is accessed on the same thread that created
the form. It does this because Windows Forms are not thread-safe. The potential exists
that something undesirable will occur if one thread—or more—manipulates a control
on a Windows Form.

It’s important to understand that this example would not work on a cooperative
multitasking OS because there is no call to service the message pump or to yield control.
In the next section we discuss how preemptive multitasking is done.

PREEMPTIVE MULTITASKING

When more than one application is executing, there must be some means of determin-
ing whose turn it is to execute. This is generally referred to as scheduling. Scheduling
involves an element in one of two states: currently executing and waiting to execute.
Under modern OSs scheduling is performed on a per-thread basis. This allows a single
thread to be paused and then resumed. Only one thread can be executing at a given
point in time. All other threads are waiting for their turn to execute. This allows the
OS to exert a high degree of control over applications by controlling the execution of
their threads.

Time slice, or quantum

Things are often not what they seem. When we go see a movie in a theater, the images
seem to flow from one to another in a seamless way. In reality, many separate images are
presented on the screen and our brain maps them together to form a continuous image.
OSs do a similar sleight of hand with threads. Multiple threads seem to execute at
the same time. This is accomplished by giving each thread in the system a tiny amount
of time to do its work and then switching to another one. This happens very quickly,
and the user of the system is typically unaware that a switch has occurred. The amount
of time a thread has to do its work is called a time slice, or quantum. The duration of

CHAPTER 1 PROCESS AND THREAD BASICS

the time slice varies based on the OS installed and the speed of the central processor.
Listing 1.13 demonstrates that threads are periodically interrupted.

Modul e Modul eTi neSli ce
Sub Mai n()

Di m what ToQut put As String
Dimi As |nteger
DimlastTick As Long
Di m newTi ckCount As Long Retrieves the
D m opsPerTi ck As Long TickCount before
Di m of f byone As Long the start of the
last Tick = System Environnent. Ti ckCount loop
opsPerTick = 0

of f byone = 0 Loops a large
what ToQut put = "" number of times
For i =1 To 1000000

newTi ckCount = System Envi ronment . Ti ckCount Compares the

If (lastTick = newTi ckCount) Then ;_["‘I:gnt
opsPerTick += 1 ickCount to
the last one

El se

If (lastTick = (newlickCount + 1)) Then Checks to see if
of fbyone += 1 / the last TickCount

opsPerTick += 1 is one tick greater
| ast Ti ck = newTi ckCount than the current
El se tick

Di m out put As String

Di m nunti cks As Long

nunili cks = newTi ckCount — | astTi ck

output = String. Format ("{0} {1}", nunTicks, opsPerTi ck)
what ToQut put += out put + vbCrLf

opsPerTick = 0 Records the number
| ast Ti ck = newTi ckCount of operations
End | f performed
End |f
Next
Consol e. WiteLine("OfByOne = " + of fbyone. ToString())
Consol e. Wi t eLi ne(what ToQut put)
End Sub
End Modul e

@ We start by retrieving the current tick from the OS. The Ti ckCount property returns
the number of milliseconds since the OS was rebooted. We store that value in the
| ast Ti ck variable.

@ To see the breaks in execution, we loop for a large number of times. Too small of a
number here would not demonstrate the breaks in execution, since the task could be
completed quickly.

PREEMPTIVE MULTITASKING 17

1.3.2

18

© The first thing we do on each iteration is retrieve and store the current tick count. The

idea is to capture how many milliseconds have passed since the last time we retrieved
the value. We then check to see if the value has changed. If it hasn’t we increment the
number of operations that have been performed while the values were equal.

If the values have changed we check to see if the new value is one greater than the old
value. This would indicate that we moved from one millisecond to the next greater
one. In my testing this didn’t occur. This is as an indication that the amount of time
the processor gives a thread is smaller than 1 millisecond.

When a break of more than 1 millisecond occurs we determine the number of milli-
seconds that have elapsed and then record the results to a string and reset the
counters. The frequency of this occurrence is a product of the load of the system, the
power of the processor, and the number of iterations in the loop.

Listing 1.13 produces the following output:

OffByOne = 0
16 177655
31 0
16 220041
15 395763

The first column contains how many milliseconds have passed when a break in the
tick count occurred. The second column contains the number of iterations that were
completed without a break occurring. If the thread had a processor dedicated to it there
would be very even breaks, or not at all, in the tick count. As you can see, the breaks
that do occur have a small amount of time between them. The amount of time a thread
gets is based on the priority of the process it is executing in along with the priority
associated with the thread.

A time slice is a very small unit of time. This helps provide the illusion that a thread
has exclusive use of a processor. Each time that a processor switches from one thread to
another is referred to as a context switch. In the next section we discuss context switching.

Context and context switching

There are many threads in existence in a typical system at any given point. A count of
the threads from figure 1.3 yields over a hundred. Fortunately newer versions of Win-
dows are good at dealing with multiple threads. A single processor executes one thread
at a time. The thread has the processor’s attention for one quantum, a time slice. After
each quantum unit passes, the processor checks to see if another thread should have
the processor. When the processor decides that a different thread should be executed,
it saves the information the current thread requires to continue and switches to a dif-
ferent thread. This is called a context switch.

CHAPTER 1 PROCESS AND THREAD BASICS

A high level of context switching is an indication of system load. A system that is
switching excessively is said to be thrashing. The implication is that the processor is
spending a great deal of time switching between threads and not performing as much
work as if it were switching less frequently. High levels of context switching are gen-
erally associated with a shared resource being overutilized. When a resource isn’t avail-
able, the OS pauses the thread that’s requesting it. This allows other threads, which
most likely aren’t waiting for a resource, to execute.

One way that a context switch occurs is when a thread indicates that it has finished
processing and that some other thread should be given the remainder of its time. This
is accomplished using the Sl eep method of the Thr ead class.

We'll discuss this in greater detail in section 5.3, but for now think of Sl eep as a
way for a thread to let the OS know that it would like to be idle for some period of time.
The idea is that the thread detects that it should pause for a small amount of time to allow
other things to happen. For example, if a thread is tasked with keeping a queue empty,
it might pause periodically to allow multiple entries to be entered into the queue.

Sl eep accepts several different types of parameters. One version of S| eep accepts
an | nt eger indicating how many milliseconds the thread would like to be idle. If
zero is passed in, it indicates that the thread wishes to yield the remainder of its time
slice and continue executing on the next available time slice. This causes a context
switch to occur. Listing 1.14 contains a class that uses a thread pool to execute a
method on a different thread. The method continues to execute until changing the
value of a Boolean flag stops it. The method calls SI eep with zero, which forces the
thread to release the remainder of the current time slice to the operating system, forc-
ing a context switch.

usi ng System
usi ng System Thr eadi ng;
namespace Context Swit ching

{
public class Switching
{
private bool itsTineToStop ;
public bool TinmeToStop itsTimeToStop
{ controls the
get {return itsTi meToStop; } Loop method
set {itsTineToStop=val ue; }
}
public Switching() itsTimeToStop
{ j controls the
i tsTi neToSt op=f al se; Loop method
Wi t Cal | back cal | back; W itCallback is
cal | back = new Wi t Cal | back(Loop); V used with thread
Thr eadPool . QueueUser Wor ki t en(cal | back) ; pools
}

PREEMPTIVE MULTITASKING 19

20

private void Loop(object state)
{
Thread. Sl eep(500); The Loop method
while (!itsTi meToSt op) executes until
{ itsTimeToStop is
Thread. Sl eep(0); true
}
}

@ An important element of any thread is being able to control its termination. We use the

i tsTi meToSt op flag to control the termination of the thread. Initially i t sTi nme-
ToSt op is set to f al se, indicating that the Loop method should continue executing.
To avoid interacting with the variable directly we use a property to manipulate its value.
This is a good practice in general, and very important when dealing with multi-
threaded development. This allows for a higher degree of control.

To create a separate thread of execution we use a thread pool. These are the same steps
we used in listing 1.12.

The Loop method contains a Sl eep statement that pauses execution for half of a
second and then enters a loop where the current thread continually yields its time
slice to the processor. To test the effects of this class on a system, we use a simple console
application. Listing 1.15 contains the code of the console application that creates
instances of the Swi t chi ng class.

usi ng System
nanespace Context Switching

{

class O assl

{
[STAThr ead]

static void Main(string[] args)

{
RunTest (10); The Runest method
RunTest (5): e RunTest metho
! (5): is called with different
RunTest (3) arameters
RunTest (1) ; P
RunTest (0);
}
static void RunTest(int number Ot Wrkers) @ Anarrayof
{ Switching class
string howvany; is created
howMany= nunber Of Wor kers. ToStri ng();

long i;
Swi tching[] switcher;

CHAPTER 1 PROCESS AND THREAD BASICS

switcher = new Swi t chi ng[number OF Wor ker s] ;

for (i = 0;i <switcher.Length ;i++)
{

switcher[i] = new Swi tching();
}

Consol e. WiteLine("Created " + howMany + " workers");

Syst em Thr eadi ng. Thr ead. Sl eep(5000) ;

for (i = 0;i <switcher.Length ;i++)

{
}

switcher[i].TimeToStop = true;

Consol e. WitelLi ne("Stopped " + howvany + " workers");
Syst em Thr eadi ng. Thr ead. Sl eep(5000) ;

@ We call the RunTest method with a different parameter to create a different number
of workers. This demonstrates a varying level of context switching.

® The RunTest method creates an array of Swi t chi ng objects, from listing 1.14.
We then pause the main thread for five seconds. This gives time for the other threads
to execute. After five seconds we set the Ti meToSt op property to f al se for each
Swi t chi ng object.

This program writes the following output to the console:

Cr eat ed
St opped
Creat ed
St opped
Creat ed
St opped
Creat ed
St opped
Creat ed
St opped

10 workers
10 wor kers
5 workers
5 workers
3 workers
3 workers
1 workers
1 workers
0 workers
0 workers

We've reviewed what a context switch is; now let’s examine how we can measure them.

1.3.3 Detecting context switching

The Performance Monitoring program (perfmon.exe) is useful in determining how

many context switches are occurring per second. In Windows 2000 the Performance

Monitoring program is located in the Administrative Tools group under Programs in

the Start menu. Figure 1.4 shows the impact of executing the program in listing 1.9.
The four “bumps” in the graph occurred during the time between when Created

x Workers was written to the console and when Stopped x Workers was written to the

console. Not surprisingly, the execution of zero workers did not produce a bump.

PREEMPTIVE MULTITASKING 21

22

=[01x]
B oreole wircow bep 0@ W@ |8

|J Artion View Eavorites |J - = | | WE |

Tree | Favortes | ol oll+slEag +xlel mels o sl

1 Console Root 100
3] System Maonitor

a8 Performance Logs and ale an

G0

40

20

u]

Last 1466.605 Average 149726,158
Idlinimurm 1331654 Maximum 448810,234
Duration 1:40

Color | Scale | Counter | Instance | Parent | Object | Compu...

| | B

Figure 1.4 Performance Monitor during listing 1.9. The “bumps” correspond to
the time between Created and Stopped.

Add Counters 2 x|

" Use lozal computer counters Add

' Select counters from computer: Close |
|MDELL B3|

Explain |
Performance object:

ISystem LI
Al courters 1 Allitstances
& Select courters from list 1% Select instatizes from list

P
File Control Bytes/sec
File Control Operations/sec

File D ata Operations/sec
Eilg Pasd Putas fran

. Figure 1.5
_>|_I The Add Counter dialog box used
to add Context Switches / sec to a
Performance Monitor graph

Measuring the number of context switches that occur per second is a good way of
troubleshooting an application. Figure 1.5 shows how to add the measure to Perfor-
mance Monitor.

The OS determines when a context switch occurs. A thread can give the scheduler a
hint that it has finished performing its operations, but it’s up to the scheduler to deter-
mine if it will perform the context switch.

For more information on context switches, time slices, and thread scheduling, consult
any book that covers the Windows platform.

CHAPTER 1 PROCESS AND THREAD BASICS

1.4

SUMMARY

SUMMARY

This chapter serves as a review of the basic operating system concepts that relate to
multithreaded development. It is by no means an exhaustive discussion but does serve
to introduce the concepts. Understanding the underlying processes and threads is
very important when you’re doing multithreaded development. By being aware of
how the OS interacts with threads you can develop programs that work with the OS
rather than against it. By understanding what causes excessive context switching, you
can develop programs that avoid that performance bottleneck.

In the next chapter we discuss the .NET framework from a multithreaded perspective.

23

2.1

2.1.1

CHAPTEHR 2

NET from a
threading perspective

2.1 .NET architecture overview 24
2.2 Garbage collection 27

2.3 Security 34

2.4 Summary 35

The Microsoft .NET framework was built with the knowledge that many of the appli-
cations written for it would contain multiple threads. Unlike with some platforms,
where threading was an afterthought, the designers of .NET not only considered multi-
threaded development needs, but also utilized multiple threads in the framework.

.NET ARCHITECTURE OVERVIEW

Throughout this book we’ll examine the architecture of the .NET framework from a
multithreaded perspective. Figure 2.1 shows the relationship between .NET and other
elements of the OS, including Microsoft Internet Information Server (IIS).

We'll examine each of these, starting closest to the OS and working up.

Framework runtime
The .NET framework, which all managed applications utilize, executes on top of the
OS. The runtime provides managed applications numerous services such as garbage
collection, a common type system, and multithreaded support.

NET differentiates between physical threads and logical threads because it is designed
to support multiple platforms. Traditional multithreaded development on the Windows

24

2.1.2

Managed
c Managed Web
5 Application Application
§ Custom
cé Libraries
> NET ASP
3 Class NET
& Libraries ’
=
g NET
o Framework
Runtime
Internet
Operating Information Figure 2.1
System Server The .NET framework’s
and relationship to OS, IIS,
Hardware and unmanaged code

platform deals with physical threads. These physical threads are managed by the OS and
created when the appropriate function of the Win32 application program interface
(AP]) is called. The terms physical thread and OS thread can be used interchangeably.
They both refer to the thread that’s created and managed by the OS.

The .NET framework introduces the concept of a logical thread, created by the frame-
work rather than by the OS. The framework manages logical threads. All interaction with
logical threads occurs via the framework. Under the current implementation, the frame-
work uses one physical thread for each logical thread. This could change in the future.

We revisit the services the runtime provides in later sections of this chapter.

.NET class libraries

The .NET class libraries provide a hierarchy of objects that encapsulate commonly
needed programmatic constructs. While it is possible to write a .NET application with-
out using the class libraries, it is unlikely, and would not be cost effective, which is why
.NET applications are not presented as accessing the framework directly.

Object-oriented development relies heavily on class libraries. The majority of the
learning curve associated with .NET revolves around learning the features that the class
libraries provide. .NET provides support for custom multithreaded development by
using the Syst em Thr eadi ng namespace. Recall that a namespace is used in .NET
to organize classes. Similar classes are grouped in the same namespace. We use namespaces
to prevent collision of classes with the same name.

The majority of the focus of this book will be on the classes contained within the
Syst em Thr eadi ng namespace. One of the most frequently used classes in the
Thr eadi ng namespace is Thr ead, which allows an object to be associated with a logical
thread. Just as a file object relates to an OS file, the Thr ead class relates to a thread of
execution. This level of abstraction allows for easy creation and management of threads.

Many of the classes in the class library utilize multithreading in one form or another.
As an example, the WebCl i ent class in the Syst em Net namespace uses threads

.INET ARCHITECTURE OVERVIEW 25

213

214

2.1.5

26

when methods such as Downl oadDat a are invoked. Rather than putting the multi-
threading burden on the caller of the method, the class internalizes the use of threads,
providing an easy-to-use interface.

ASP .NET

ASP .NET is an important aspect of web development because it provides a high-
performance solution to developing web applications. I've included it in the .NET class
libraries section since it is essentially a subset of the library. This in no way diminishes the
importance of this development environment; I view ASP .NET as the ideal web devel-
opment tool. A thorough discussion of ASP .NET is outside the scope of this book.
One area where ASP.NET relates to multithreaded development is when a client
application accesses an XML Web Service. XML Web Services are created using ASP
NET. Calling a method of an XML Web Service takes much longer to complete than
a call to a local object. Rather than forcing the client to wait for the call to return, we
can use multiple threads to continue processing other tasks. This creates a richer expe-
rience for the user of the application, as well as allowing for error recovery. XML Web
Services are increasingly being used as a data access mechanism. This trend will most
likely continue, increasing the need for clients that interact with them in a robust way.

Developing custom libraries

Custom library development is a key aspect of .NET. This is true in general, but espe-
cially so with respect to multithreaded development. By encapsulating multithreaded
classes in reusable assemblies, you can achieve a high level of code reuse. Additionally,
developers who are not versed in how to write multithreaded programs can use classes
that utilize threads.

When developing custom libraries, it is important to consider threading implica-
tions. If the class can safely be accessed from multiple threads concurrently, the library
is said to be thread-safe. Thread safety of a library should be documented. It is as
important to state a library is thread-safe as it is to convey it is not. Knowing the thread
safety allows developers using the library to know exactly how the classes in the library
will react when manipulated by multiple threads.

Managed applications
Development of managed applications, that is, applications that utilize the NET frame-
work, is one of the most exciting ways to use multiple threads. Operations can be per-
formed in the background while the user continues to work within the application.
This is exactly what Microsoft Word does when Check Spelling As You Type is selected.
As the user types, Word is checking the recently typed words against a dictionary. When
the spell checker determines a word is misspelled, it places a red line under it, indicating
it found something the user should examine. All of this is happening while the user
continues to type.

Network operations are another area where threads are beneficial. Network operations,
such as opening a file, can take a relatively long time to complete. If a single-threaded

CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

22

application accesses a file, all operations must pause until that operation completes. By
using multiple threads, a managed application can access a remote file without sus-
pending other operations.

There are many areas where multiple threads can be used; the key is using the new
tool in an appropriate way.

GARBAGE COLLECTION

Garbage collection allows developers to focus on solving problems rather than manag-
ing memory. This section reviews garbage collection and then examines the role threads
play in it. We start by discussing the need for memory management and explore the
problems with traditional approaches.

Visual Basic and J++ developers take garbage collection for granted. They rightly
assume that when they have finished with memory it will be disposed of correctly. For
developers coming from C++ this isn’t the case. Listing 2.1 is an example of a C++ pro-
gram that does not free memory correctly.

Listing 2.1 Leaking program (C++)

#i ncl ude "stdaf x. h"
int main (int argc, char* argv[])

{
for(int i=0;i< 10000000; i ++)
{
char * ¢ = new char[200];
}
return O;
}

When this program executes, the memory usage grows rapidly, indicating that memory
is not being freed. Figure 2.2 shows the increase in the private bytes of the process.

ol Qv ol @aal +xlel =@ o s

100

80

€0

40

20

0

Last 99344384 Average 65273737
Minimum 167936.000 Maximum 99344384
Duration 1:40

Figure 2.2
Private bytes used by
the leaking program

Color | Scale | Counter | Instance | Parent | Object | Co

GARBAGE COLLECTION 27

28

It’s easy to fix the leak in listing 2.1. Listing 2.2 contains the del et e that should
accompany the New statement.

Listing 2.2 Including the delete statement removes the leak (C++).

#i ncl ude "stdafx. h"
int main(int argc, char* argv[])
{
for (int i=0;i< 10000000;i ++)
{
char * ¢ = new char[200];
if (c!'=0)
{

}
}

return O;

}

delete[] c;

Figure 2.3 demonstrates that the program no longer leaks. Notice the flat memory usage.
NET takes care of memory management for managed applications. Listing 2.3 is
the C# equivalent of listing 2.1. Notice that the memory is not released explicitly.

Listing 2.3 C# version of listing 2.1

private void buttonl_Cick(object sender, System EventArgs e)
{
for(int i=0;i< 10000000;i ++)
{
char [] ¢ = new char[200];
}
}

ol QlFr ol Bad +x el nelE o a2

Last | 0.000 Average| 188416.000
Minimum 188416.000 Maximum 188416.000
Duration 1:40

Figure 2.3
Memory usage of a program
that does not leak

CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

80
60
40
20
e
0
Last 0.000 Average 4827970
Minirmurm 1949696 Maximum 5296128
Duration 1:40

Color | Scale | Counter | Instance | Parent | Object | Co Figure 2.4
- ‘ 0 Memory usage of a

managed application

Figure 2.4 shows the memory usage when the code in listing 2.3 executes. Notice that
the memory used does not grow in an uncontrolled way.

Visual Basic is not immune to memory leaks; they just take a different form. Where
Visual Basic has trouble is in the handling of circular references. A circular reference
occurs whenever an instance of one class references an instance of another class that
in turn references the original instance. Listing 2.4 is an example of a Visual Basic 6
circular reference leak.

Listing 2.4 Circular reference in Visual Basic 6

Private Function CreateCircul ar()
Di m oA As New O assA
DimoB As New Cl assB
Set 0A. oC assB = oB
Set o0B. oC assA = 0A
Set oA = Not hi ng
Set oB = Not hi ng

End Function

' Cass A
Public od assB As O assB

Private Sub Class_lnitialize()
Debug. Print "Init A"
End Sub

Private Sub C ass_Termi nate()
Debug. Print "Term A"
End Sub

' Class B

Public od assA As d assA

Private Sub Class_lnitialize()
Debug. Print "Init B"

End Sub

GARBAGE COLLECTION 29

30

Private Sub Class_Termi nate()
Debug. Print "Term B"

End Sub
||

You can determine that the program is leaking by noticing the absence of the " Ter m B"
and " Ter mA" statements in the immediate window. This is one of the reasons that
the designers of .NET chose to go with garbage collection instead of reference count-
ing as the means of managing memory. Recall that reference counting is a means of
keeping track of how many objects are referencing an item. Each time an object gains
a reference, it increments the reference count. When an object is finished with an item,
it decrements the reference count of that item. When the reference count of an item
reaches zero, it is removed from memory as part of the decrementing call.

The negative impact of garbage collection is that it introduces nondeterministic
finalization. All that means is that you don’t know exactly when, or even if, the
Fi nal i ze method will execute.

To see that NET really has fixed the circular reference problem, consider listing 2.5.

Public O ass Fornl
I nherits System W ndows. For ns. Form

Private Sub ButtonTestCircul ar_Click(ByVal sender As System Object, ByVal e
As System Event Args) Handl es ButtonTestCircular.dick
MakeCi rcul ar ()
GC. Col | ect ()
End Sub
Private Function MakeCircular()
Di m oA As New Cl assA()
Di m oB As New Cl assB()
0A. 0oCl assB = 0B
0oB. 0Cl assA = 0A
End Function
End d ass

Public dass O assA
Public oC assB As O assB
Public Sub New()
System Di agnosti cs. Debug. Wi teLi ne("New A")
End Sub

Protected Overrides Sub Finalize()
MyBase. Fi nal i ze()
System Di agnosti cs. Debug. WiteLine("Finalize A")
End Sub
End d ass

Public Cass C assB
Public oC assA As C assA

CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

2.2.1

Public Sub New()
System Di agnosti cs. Debug. Wi teLi ne("New B")
End Sub

Protected Overrides Sub Finalize()
MyBase. Fi nal i ze()
System Di agnosti cs. Debug. WitelLine("Finalize B")
End Sub
End O ass
|

One thing you will notice is the addition of the GC. Col | ect to the testing method.
CC. Col | ect tells the garbage collector to recover any unused memory. Typically
there’s no reason to call Col | ect . A better practice is to allow the framework to deter-
mine when garbage collection should be performed. The output from this program is
as follows:

New A

New B

Finalize B

Finalize A

If you run it a few times you’ll see that sometimes Fi nal i ze B is displayed before
Fi nal i ze A. Other times it will reverse itself. This is an indication of the nonde-
terministic finalization we discussed earlier. The important thing to notice is that
both Fi nal i ze methods execute.

Finalization

Finalization is another area where threads play an important role. If a class contains a
Fi nal i ze method, it is invoked on a thread dedicated to that purpose. For this reason
the Fi nal i ze method should not rely on thread local values. Listing 2.6 contains
an example of a class with a Fi nal i ze method.

usi ng System

usi ng System Thr eadi ng;
usi ng System Col | ecti ons;
namespace Denni s

{
public class
Dat a
{ Creates and starts
static public void MakeData() @ the thread
{

Thread t= new Thread(new ThreadSt art (ThreadMet hod)) ;
. Name="Data Thread";

.Priority = ThreadPriority. Bel owNor mal ;

. I sBackgr ound=t r ue;

t
t
t
t.Start();

GARBAGE COLLECTION 31

32

static |l ong instancel dCount er=0;
I ong instancel d;
Arrayli st nyDat a;

public Data() (7] Defines the class
{ constructor
instanceld = Interlocked. Increnment(ref instanceldCounter);

myData =new ArrayList();
Random rnd = new Randomn(Syst em Envi ronnment . Ti ckCount) ;
String s;
s= new String('c', rnd. Next (5000, 60000));
nmyDat a. Add(s) ;
}

~Data() @ Method invoked when
the class is destroyed
Thread final Thread;
final Thread = Thread. Current Thr ead;
string nessage;
message=stri ng. For mat (
"Finalize: 1d={0} Name={1} Priority={2}",
i nstancel d, fi nal Thr ead. Nane,
final Thread. Priority);
Consol e. Wit eLi ne(message) ;

}
static private void ThreadMet hod() 0 Method the new
{ thread executes

string nessage; initially
nmessage=stri ng. For mat (
"{0} Enter Thread Method",
Thr ead. Current Thread. Nane) ;
Consol e. Wi teLi ne(message) ;
for (int i=0;i<10;i++)
{
Data tnpData = new Data();
}
nmessage=st ri ng. For mat (
"{0} Exit Thread Method",
Thr ead. Current Thread. Nane) ;
Consol e. Wi teLi ne(message) ;

It’s not important to understand all of the things that are happening in listing 2.6.
What is important is to understand that the method named ~Dat a is the Fi nal i ze
method. It will be invoked when the garbage collector frees the class it is associated
with. We'll briefly go over each of the methods of the Dat a class.

CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

@ The static MakeDat a method makes it easy to test the Dat a class. It creates an

instance of the Thr ead class and associates it with the Thr eadMet hod. It then starts
the new thread. The following is an example of how MakeDat a is called:

Syst em Thr eadi ng. Thr ead. Current Thr ead. Nane=" Mai n";

Dat a. MakeDat a() ;

Console. WiteLine("Ht Enter to Exit");
Consol e. ReadLi ne();

Notice that an instance of the Dat a class is not required to call the method. That’s
because the method is static.

@® The Dat a constructor increments a static counter. This allows each instance of the

Dat a class to be assigned an instance ID. Since the instance ID is monotonically
increasing, we know that an instance with a higher value was created after one with a
smaller value. This helps demonstrate that the order of invocation of the finalization
methods is not the same as the order of creation. The | nt er | ocked class allows for
operations that are guaranteed to complete safely in a multithreaded environment.

© The Fi nal i ze method is invoked when the memory the class uses is reclaimed.

Notice that C# uses the ~{class name} approach to identify the Fi nal i ze method.
In Visual Basic .NET overrides the Fi nal i ze method. The following is the Visual
Basic .NET version of the Fi nal i ze method:

Protected Overrides Sub Finalize()
MyBase. Fi nal i ze()
Di mfinal Thread As Thread
final Thread = Thread. Current Thread
Di m message As String
message = String. Format(_
"Finalize: 1d={0} Name={1} Priority={2}",
i nstancel d, final Thread. Name, final Thread.Priority)
Consol e. Wi telLi ne(message)
End Sub

O The Thr eadMet hod is associated with the thread that is created by the static Make-

Dat a method. It creates ten instances of the Dat a class and then exits. When this
program is executed, it produces results similar to the following:

Hit Enter to Exit

Data Thread Enter Thread Method

Data Thread Exit Thread Method
Finalize: 1d=4 Nanme= Priority=H ghest
Finalize: 1d=2 Nane= Priority=Hi ghest
Finalize: 1d=1 Name= Priority=H ghest
Finalize: 1d=3 Name= Priority=H ghest

Finalize: 1d=10 Name= Priority=Hi ghest
Finalize: 1d=9 Nane= Priority=Hi ghest
Finalize: 1d=8 Name= Priority=H ghest
Finalize: 1d=7 Name= Priority=H ghest

GARBAGE COLLECTION 33

2.3

34

Finalize: 1d=6 Name= Priority=H ghest
Finalize: 1d=5 Nanme= Priority=H ghest

Each time the program executes, the results will likely vary:

Hit Enter to Exit

Data Thread Enter Thread Method

Data Thread Exit Thread Method

Finalize: 1d=5 Nanme= Priority=H ghest

Finalize: 1d=4 Nane= Priority=Hi ghest

Finalize: 1d=3 Name= Priority=H ghest

Finalize: 1d=2 Name= Priority=H ghest

Finalize: 1d=1 Nanme= Priority=H ghest

Finalize: 1d=10 Name= Priority=Hi ghest

Finalize: 1d=9 Name= Priority=H ghest

Finalize: 1d=8 Name= Priority=H ghest

Finalize: 1d=6 Nanme= Priority=H ghest

Finalize: 1d=7 Nane= Priority=Hi ghest

Notice that the thread name is empty. The thread name property lets us assign a name
to a thread that makes it easier to identify a thread during debugging. The main thread
is named “Main” and the thread that creates the data is named “Data Thread,” so where
does this unnamed thread come from? The thread is created by the runtime and is
dedicated to calling the Fi nal i ze method of objects that are freed. Notice that the
priority of the thread is set to Hi ghest . The Fi nal i ze thread is intended to execute
Fi nal i ze methods. Those methods should be designed to execute very quickly. A
Fi nal i ze method should only be used to free resources that are not managed. Final-
ization should only be used when needed. It adds a considerable amount of overhead
to the cleanup of elements that are no longer needed.

SECURITY

One area in which .NET has made considerable improvements is security. Under .NET
not only are users restricted based on their access rights, but code is only allowed to
access resources based upon a set of rules called a security policy. A policy takes into
consideration evidence that is gathered about code. This evidence includes things such
as where the code came from, if it is signed or not, and so on, which is then evaluated
against security policies. Evidence-based security allows the runtime to exert a high
degree of control over threads accessing resources.

The level of trust associated with an assembly is dependent upon the location it is
loaded from. Recall that an assembly is nothing more than a way of packaging up pieces
of code, generally into a DLL. If you think about it, you generally trust programs that
are on your computer more than you do things that are on a web server of a different
company. Additionally, you trust programs that are in certain directories more than you
do others. For example, if a program is installed in “Program Files” you generally feel
more secure about it than you do a program installed in a Temp or Download directory.

CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

When a thread is created, it is bound by the same restrictions as the thread that cre-
ates it. This ensures that malicious code does not circumvent the security policy of a
machine and gain access to restricted resources, such as a hard disk drive.

Often more than one assembly is included in a program. Suppose you had one
assembly that processed credit cards. The assembly itself is very well trusted. Suppose
you also had an assembly that was trusted very little. If that untrusted assembly called
a method in the credit card assembly, the trust level would be based on the untrusted
assembly. Otherwise malicious code could manipulate trusted code and gain access to
resources that were restricted by the security policy. When a function in an assembly
calls one in another assembly, the security of the called function will be based on the
trust level and security of the calling assembly. This level of trust will be the minimum
of the two levels.

Security is a complex topic, and complete coverage of it is beyond the scope of this book.

2.4 SUMMARY

We’ve seen how .NET is built from the ground up with support for multithreading.
This makes writing multithreaded applications easier than was previously possible. The
runtime itself uses multiple threads to perform concurrent actions. One area where
multiple threads are used is in the garbage collection system.

Garbage collection frees developers from managing memory within an application.
This allows them to focus on solving problems rather than allocating and freeing memory.
Traditionally, the majority of software defects occur as a result of memory management
issues. .NET eliminates memory-related defects by utilizing garbage collection, resulting
in high-quality code.

Security in applications is becoming increasingly important. .NET has robust secu-
rity features that help developers produce applications that protect their users from
malicious code. One way this is accomplished is through the use of evidence-based
security. We briefly discussed the types of evidence and saw how they are combined
with a security policy to determine what resources are available during execution.

In the next chapter we discuss multithreading in .NET in greater detail.

SUMMARY 35

3.1

3.1.1

CHAPTEHR 3

Multithreading in .INET

3.1 Application domain 36

3.2 Threads 39

3.3 Benefits of NET to multithreading 44
3.4 Summary 48

Microsoft’s .NET framework is an exciting new platform for software development, with
extensive support for multithreaded development. But, as we said in chapter 1, before
we launch into a new area, we should examine the basics. In this case, we’ll begin by
examining the concept of an application domain and how it relates to a process. Once
we have that under our belts, we'll look at the two classes of threads—logical and
physical—and then examine the use of delegates to perform asynchronous execution.

APPLICATION DOMAIN

In .NET every application executes within an application domain. Application domains
are similar to Win32 processes in many ways but differ in several important areas.
The next section compares application domains to Win32 processes.

An application domain vs. a process

Historically a process has been used to isolate one application from another. As we dis-
cussed in chapter 1 a process is a collection of physical threads of execution manipulat-
ing resources. When one process terminates it generally does not affect another process.
Just as .NET extended the concept of a physical thread to a logical thread, it takes the
concept of a process and extends it to an application domain. One or more applica-
tion domains are housed within a single Win32 process. One or more logical threads

36

Win32 Process

Application Domain

Thread

Thread
Local

Stack Storage

Figure 3.1
| A Win32 process contains one
or more application domains.

execute within the application domain, just as one or more physical threads execute
within a process. Figure 3.1 shows the relationship of an application domain to a process.
The AppDomai n class is used to access application domains in .NET.

3.1.2 The AppDomain class

The AppDomai n class allows for manipulation of the current application domain as
well as creation of additional application domains. There are times that the current
application domain needs to be retrieved, such as when a value is being stored at an
application level using Get Dat a and Set Dat a. These functions give all assemblies
contained within an application domain the ability to retrieve and set global values. One
situation where this would be extremely beneficial is when an application should behave
differently when in a development environment versus a production environment.
There are two ways of retrieving the current domain. Syst em AppDormai n. Cur -
r ent Domai n and Syst em Thr eadi ng. Thr ead. Get Domai n both allow access
to the domain in which the statements are executed. The following example demon-
strates that the Cur r ent Donai n property is equal to the domain returned by the
Get Domai n method:
AppDomai n appDonai n1 = AppDonai n. Cur r ent Domai n;

AppDorai n appDomai n2 = Syst em Thr eadi ng. Thr ead. Get Donai n() ;
i f (AppDomai n. Ref er enceEqual s(appDonai nl, appDomai n2))

{
Debug. Wi teLine("The sane");

}

Once we've retrieved a domain we can utilize some of its more commonly used methods
and properties:

APPLICATION DOMAIN 37

3.1.3

38

BaseDi r ect or y—Contains the starting location at which .NET will look for
assemblies

Dynani cDi r ect or y—Specifies where .NET should look for dynamically
created assemblies

Fri endl yName—Equates to the filename of the assembly

Rel at i veSear chPat h—Specifies a path where .NET should look for pri-
vate assemblies

ShadowCopyFi | es—Controls if dependent assemblies are copied to the

domain’s cache

Set upl nf or mat i on—Contains a reference to an AppDomai nSet up object
that contains information about the installation of the application

Evi dence—Contains a reference to an instance of the Evi dence class that is
used by the security policy

Cr eat eDomai n—Cireates an application domain within the current Win32 process
Set Dat a—Associates a value with a specified name

Cet Dat a—Retrieves a value based on a supplied name

CreateDomain

A Win32 process can contain more than one application domain. Cr eat eDonai n
is a static method of the AppDonai n object that creates a domain within the Win32
process. It’s important to note that this does not create a new thread within the pro-
cess but instead only creates a domain where a thread can execute. Listing 3.1 uses
Cr eat eDomai n and also creates a logical thread to execute in the new domain.

usi ng System

usi ng System Thr eadi ng;

using System Security. Policy;
nanmespace AppDonmi nTest 1

{

cl ass O assAppDomai nTest

{

[STAThr ead]

static void Main(strin ar gs
{ (. o) Static entry point

Consol e. WitelLine("Enter Main"); to the program
C assAppDonmai nTest ¢ = new C assAppDomai nTest () ;

c.Main();
}
voi d Main()
{

AppDomei n current;
current = AppDonai n. Current Donai n;

CHAPTER 3 MULTITHREADING IN .NET

3.2

THREADS

Thread. Current Thread. Priority = ThreadPriority. Bel owNor nal ;
object o= current.GetData("autostart");
if (o ==null)
{
Thread ot her Thr ead;
ot her Thread = new Thread(new ThreadSt art (NewThr ead)) ;
ot her Thread. Start();
current. Set Data("autostart", fal se);
current. Execut eAssenbl y(" AppDonmai nTest 1. exe");
}
Thr ead. Sl eep(1000) ;
string nessage;
message=string. Format (" {0}", current. Fri endl yNane);
Consol e. Wi teLi ne(message) ;
}
voi d NewThr ead()
{
AppDonei n ot her Domai n;
ot her Domai n = AppDonai n. Or eat eDonai n(" ot her Dorai n"); @ Method that
ot her Donmi n. Set Dat a("autostart"”, fal se); creates a domain
ot her Domai n. Execut eAssenbl y(" AppDonai nTest 1. exe");

This program produces the following output:

Enter Main

Enter Main

Enter Main

AppDorei nTest 1. exe
ot her Domai n
AppDorei nTest 1. exe

The first Ent er Mai n statement occurs when the program is initially loaded. The first
thing the main thread does is create an instance of the class containing the static Mai n
method and invokes the instance’s Mai N method. This is a common way of overcom-
ing the need for a static entry point into a console-based program.

The Cr eat eDonai n method that creates a domain and names it the specified name.
In this case the new domain inherits its security and evidence from the current domain.

THREADS

A thread is a path of execution. Every program contains at least one thread. .NET dif-
ferentiates between logical and physical threads. As we discussed in chapter 2, a physical
thread is an OS thread. Just as the OS manages other resources it manages physical
threads. .NET introduces the concept of a logical thread. A logical thread is managed
by the .NET framework and provides additional functionality beyond a physical thread.

39

3.2.1

40

Logical threads

Under the Win32 implementation of .NET there is a one-for-one mapping between
physical threads and logical threads. When additional platforms are supported by .NET it is
very possible that there may be more than one logical thread associated with each physical
thread. For example, if an OS didn’t provide support for multple physical threads in a
process, the NET runtime might supply that functionality using logical threads. Logical
threads in .NET are accessed using the Syst em Thr eadi ng namespace.

Threading namespace

The Thr eadi ng namespace contains the classes associated with creating threads

under managed code.

Table 3.1 contains the most important classes in the Thr eadi ng namespace.

Table 3.1 Commonly used classes in the Threading namespace

Class Description St_actlon/Chapter
Discussed

AutoResetEvent A synchronization mechanism that resets itself 8.2
from the signaled state.

Interlocked A class that provides access to simple atomic 72
operations.

ManualResetEvent A synchronization mechanism that stays in the 8.4
signaled state until it is explicitly reset.

Monitor One of the most commonly used synchroniza- 7.4
tion mechanisms. It allows for restriction of
access to an object.

Mutex A class that allows for the creation of mutually 8.5
exclusive blocks of code.

ReaderWriterLock A class that allows for multiple readers and a 9
single writer. This allows for high-performance
solutions when the majority of the access to a
data element is to read a value.

SynchronizationLockException An exception that's raised when an attempt is 13.2.4
made to access a Monitor class method
that requires synchronization while not in a
synchronized block of code.

Thread A class that contains methods for creating and 4
manipulating logical threads.

ThreadAbortException An exception that's raised when a thread is termi- 13.2.1
nated using the Abort method of the Thread class.

ThreadExceptionEventArgs A class that contains data used when a 12.4
ThreadException occurs.

ThreadInterruptedException An exception that's raised when a thread is 13.2.2

interrupted using the Interrupt method of the
Thread class.

continued on next page

CHAPTER 3 MULTITHREADING IN .NET

Table 3.1 Commonly used classes in the Threading namespace (continued)
Class Description St_ectlon/Chapter
Discussed

ThreadPool A class that provides an easy way of performing 10
multithreaded operations by reusing multiple
threads.

ThreadStateException An exception that's raised when the thread is in 13.2.3
a state that is invalid for a particular method.

Timeout A class that contains a static public field used 5.3.1
to represent an infinite wait.

Timer A means of executing a method at a regular 14.3
interval.

WaitHandle A base class that provides a means of restrict- 8.1
ing access to a resource by having one or more
threads wait for it to become available.

LockCookie A structure used to store lock information when 9.2.3
a lock is converted from a reader lock to a writer
lock.

ThreadStart A delegate used to represent a method thatis 3.2.1
the entry point for a new thread.

TimerCallback A delegate used with the Timer class to define 12.3.1
the method that's executed when the Timer's
timeout occurs.

WaitCallback A class that is used with a ThreadPool classto 12.3.2
enter a work item into the queue.

WaitOrTimerCallback A class that is used with a WaitHandle derived 12.3.3
class. It is invoked when the WaitHandle class
becomes signaled or a timeout occurs.

ApartmentState An enumeration that indicates the threading 16.2.1
state of an apartment.

ThreadPriority An enumeration that contains the priorities a 5.71
thread can be assigned.

ThreadState An enumeration that contains the valid statesa 4.4

thread can be in.

This is an overview of the classes in the Thr eadi ng namespace. The Thr ead class and
the Thr eadSt ar t delegate are critical to managed threading. Without them it would
be impossible to create multithreaded managed programs in the .NET framework.

Thread class

The Thr ead class represents a managed thread. The Cur r ent Thr ead property is
used to retrieve a reference to the currently executing managed thread. This is similar
to the AppDomai n. Get Donai n method we discussed earlier. The following is an
example of using the Cur r ent Thr ead property:

THREADS 41

42

Di mthi sThread As System Thr eadi ng. Thr ead
thi sThread = System Threadi ng. Thread. Current Thr ead

Table 3.2 contains the frequently used properties and methods of the Thr ead class
and where they are described in this book.

Table 3.2 The Thread class’s properties and methods

Property/Method Description [s)?::::;e d

ApartmentState Controls how a thread interacts with COM objects 16.2.1

CurrentThread Retrieves the instance of the Thread class that is associ- 3.2.1
ated with the currently executing logical thread

IsAlive Indicates if a thread is in an active state 4.4.1

IsBackground Used to determine if a thread executing will cause its 5.4
application domain to continue to exist

IsThreadPoolThread A Boolean that indicates if a thread is managed by a 10.3.2
thread pool

Name Used to help identify a thread 5.2

Priority Used to control the scheduling of a thread 5.7.1

ThreadState Returns a value indicating the state of a thread 4.4.2

Abort Signals a thread that it should terminate 4.3

AllocateDataSlot

AllocateNamedDataSlot

FreeNamedDataSlot

GetData

GetDomain

GetNamedDataSlot

Interrupt

Join

ResetAbort
Resume
SetData
Sleep

Start
Suspend

Used to allocate thread local storage that is not associ- 11.2
ated with a name

Used to allocate thread local storage that is associated 11.3
with a name

Used to free thread local storage that is associated with 11.3
a name
Retrieves a value from thread local storage 11.2

Retrieves the application domain the thread is contained 3.1.2
within
Allows access to a named thread local storage location 11.3

Signals a thread that is in the Sleep state that it should 5.3.2
become active

Causes the calling thread to wait until a timeout occurs 4.3.3
or the requested thread terminates

Cancels a call for a thread to Abort 432
Allows a thread that has been suspended to resume 5.5.2
Used to store values in thread local storage 1.2

Causes the current thread to pause its execution for a 5.3.1
period of time

Invokes the thread delegate creating an new logical thread 4.2

Signals a thread to pause its execution 5.5.1

CHAPTER 3 MULTITHREADING IN .NET

3.2.2

THREADS

ThreadStart delegate

The ThreadSt art delegate is used to associate a method with a newly created thread.
As we discussed in chapter 1, a delegate is a way to associate a thread with a method
that is to be executed on that thread. Delegates are a powerful construct in .NET.

Physical threads

Managed threads provide a high degree of flexibility and control. There are times that
access to the physical thread is required. In those cases we use Syst em Di agnos-
tics. Process and Syst em Di agnosti cs. ProcessThr ead.

System.Diagnostics.Process

The Pr ocess class represents a Win32 process. To retrieve an instance of the Pr ocess
class that’s associated with the currently executing Win32 process, we use the static
method Get Current Process. The following is an example of using the Cet -
Current Process method:

Process thi sProcess= Process. Get Current Process();

Once we have an instance of the current process, we can examine it. For our purposes
the most important property of the Process object is the Thr eads property. The
Thr eads property is a ProcessThr eadCol | ecti on. The ProcessThr ead-
Col | ecti on supports the Get Enurrer at or method. This means it can be used
with C#’s For Each operator. The following displays the IDs of each thread to the
debug window:

Process thi sProcess= Process. Get Current Process();
foreach (ProcessThread aPhysical Thread in thisProcess. Threads)

{
Debug. Wi telLi ne(aPhysical Thread. Id. ToString());

}

Notice there are a considerable number of threads, the majority of which were created
to display the threads in the process. When using the Di agnost i ¢s namespace,
remember that inspecting a portion of the system may change the behavior of that
part of the system.

System.Diagnostics.ProcessThread

A physical thread is represented using the Pr ocessThr ead object. Table 3.3 contains
selected Pr ocessThr ead properties and methods.

43

3.3

3.3.1

44

Table 3.3 The ProcessThread Class’s Properties and Methods

. Section
Property/Method Description Discussed
BasePriority Used to calculate the CurrentPriority of a thread. 5.7.1
CurrentPriority The priority that the thread is currently operating 5.7.1
at based on any priority boosts and the priority of
the containing process.
Id Each thread has an operating system assigned 5.73
unique identifier. The Id property exposes
that value.
PriorityBoostEnabled Determines if a thread is eligible for a temporary 5.7.1
boost in priority.
PriorityLevel Used to set a thread to a predefined range 5.71
of priority levels contained within the
ThreadPriorityLevel enumeration.
ThreadState An indication of the thread’s state. 5.6
|deal Processor Used to give the operating system scheduler a 5.73
hint as to which processor the thread should be
executed on.
Processor Affinity Used to restrict a thread to a particular processor 5.7.2
Or processors.
ResetldealProcessor Clears any previously assigned ideal processors. 5.73

The ProcessThr ead class allows for relatively low-level manipulation of threads.
It should be used with care since misusing it may result in poor performance, or even
system instability.

BENEFITS OF .NET TO MULTITHREADING

There are many benefits to doing multithreaded development in the .NET environ-
ment. Since a thread is a managed element, the amount of effort required to create
and manage threads is greatly reduced. As with all managed resources, the framework
ensures threads are disposed of properly. Additionally, any resources utilized by a
thread are also managed by the runtime.

Advantages of objects

Knowing exactly when a thread comes into existence and when it terminates is a very
important aspect of multithreaded development. For example, suppose you were tasked
with developing a server that processes requests. One or more threads will be tasked
with processing those requests. It is important that the thread-processing requests be
created before those requests arrive, or soon after, to ensure the entries are handled in
a timely fashion.

CHAPTER 3 MULTITHREADING IN .NET

In traditional Win32 software development, a thread was created using a Win32
API call. A handle was returned from the call that was used to interact with the control.
In .NET we use the Thr ead class to create a new thread. The Thr ead class contains
all methods and properties required to manage a thread. This provides a single point
for finding all Thr ead-related methods.

A fundamental object-oriented concept is that an object should contain the methods
that are related to it. That’s what the Thr ead class does. It contains those methods
required to interact with a logical thread. By having an object that represents a logical
thread, it becomes very easy to write multithreaded applications.

3.3.2 Asynchronous execution of delegates

There are several ways of executing methods on a different thread. One way is to use
asynchronous execution of a delegate. This has the benefits of the method executing on
a different thread while requiring one of the lower levels of effort. In the next chapter
we discuss the more flexible way of utilizing multiple threads. Listing 3.2 contains an
updated version of the Cat object we discussed in chapter 1.

Listing 3.2 A modified ClassCat that utilizes a delegate’s Begininvoke method

(VB.NET)

I nports System Threadi ng

Public COass O assCat
Private Del egate Sub DoStuff(ByVal howMich As |nteger)
Private async As DoSt uff
Publ i c Del egate Sub Di dSonet hi ng(ByVal nessage As String)
Private notify As Di dSonet hi ng
Private sl eepTinme As |nteger
Private nane As String
Private rnd As Random

Defines a delegate
that is used to perform
asynchronous execution

Private actions() As String = {"Eat", "Drink", "Take a bath",
"\Wander around", "Use litter box", "Look out w ndow', _
"Scratch furniture", "Scratch carpet”, "Play with toy", "Meow'}

Private call back As AsyncCal | back
Public Sub New(ByVal nane As String, ByVal notify As Di dSonet hi ng)
sl eepTime = 1000
rnd = New Randon{ Envi ronnent . Ti ckCount)
Me. nane = nane
Me.notify = notify
End Sub

Private Function \WichAction() As String
Di m whi ch As | nteger
whi ch = rnd. Next (actions. Lengt h)
Return acti ons(which)

End Function

Publ i c Sub DoCat St uf f (ByVal howMWuch As | nteger
Dimi As I|Integer
For i = 0 To howMuch - 1

BENEFITS OF .NET TO MULTITHREADING 45

46

If (rnd. Next(100) > 80) Then

notify(name + ": """ + WhichAction() + """ ")
El se
noti fy(name + ": ""Zzz"" ")
Thr ead. Sl eep(sl eepTi ne)
End | f
Next
End Sub
Private Sub Finished(ByVal ar As |AsyncResult)
noti fy(nanme + ": Finished")
End Sub
Public Sub Go(ByVal howMuch As I nteger)
Dim state As Object Creates an
cal | back = New AsyncCal | back(AddressO Fi ni shed) instance of
async = New DoSt uf f (AddressOf DoCat St uf f) the DoStuff
async. Begi nl nvoke(howMuch, cal | back, state) delegate and
End Sub then calls
End d ass BeginInvoke

To take advantage of asynchronous delegate execution, we need a delegate to associate
with the method we wish to execute. The DoSt uf f delegate is private to the O ass-
Cat class. We need an instance of the DoSt uf f delegate to utilize. The async private
data member is used to store the reference to the instance.

The public method Go is used to create an instance of the DoSt uf f delegate. Part of
the creation process is to associate the delegate with a method to execute. Visual Basic
uses the Addr essOf keyword to differentiate between a method and a reference to
that method. Once the async variable contains a reference to a new DoSt uf f dele-
gate, we can use the Begi nl nvoke method to start the asynchronous execution of
the DoCat St uf f method.

Listing 3.3 contains code of the main module that utilizes the O assCat class.

Modul e Modul el
Sub Mai n()
Dimnotify As C assCat. Di dSomnet hi ng
notify = New Cl assCat. Di dSonet hi ng(AddressO Qut put Li ne)

Di m oTi ger As O assCat One instance

oTiger = New Cl assCat("Tiger", notify) of CIassC.at
. named Tiger
oTi ger. Go(10)
DimoGarfield As C assCat
oGarfield = New ClassCat("Garfield", notify)
oGarfield. Go(10) Another named
Garfield

Consol e. WiteLine("Press enter to exit")
Consol e. ReadLi ne()
End Sub

CHAPTER 3 MULTITHREADING IN .NET

Sub Cut put Li ne(ByVal message As String)
Consol e. Wi telLi ne(message)
End Sub

End Modul e
||

@ This example is very similar to that in chapter 1. One major difference is that the execu-
tion of the DoCat St uf f method occurs on a different thread. The oTi ger variable is
a reference to an instance of the Cl assCat . When the Go method of the oTi ger
method is invoked, an instance of the DoSt uf f delegate is created and Begi nl nvoke
is called on it. The Go method returns as soon as it has invoked the Begi nl nvoke
method. This will be before the DoCat St uf f method has completed.

@® To see that the execution occurs on different timelines it helps to have two instances
of Cl assCat . The second instance has a different name but shares the same Di d-
Sorret hi ng delegate.

The program produces the following output:

Press enter to exit

Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"

Garfield: "Drink"
Garfield: "zzz"

Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"

Garfield: "Zzzz"
Tiger: "Take a bath"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Meow'
Tiger: "Zzz"
Garfield: "Zzz"

Ti ger: Finished
Garfield: "zzz"
Garfield: Finished

Notice that the two “cats™ output is commingled. If the execution were occurring on
the same thread, the Tiger output would be separate from the Garfield output.
Asynchronous delegates are an easy way to execute methods on different threads.
There are limitations on how this should be used. The source of these limitations is
related to asynchronous delegates using a thread pool to do their asynchronous execu-
tion. Thread pools are limited in size. Because the number of threads that can exist in
a thread pool is restricted, methods invoked in thread pools should be short-lived. This

BENEFITS OF .NET TO MULTITHREADING 47

3.4

48

restriction is often too severe for many problems. Because not every problem can be
solved using asynchronous delegates, it's important to understand how to do multi-
threading using the Thr ead class in the Thr eadi ng namespace. That’s where we
pick up in the next chapter.

SUMMARY

This chapter has introduced some fundamental elements of multithreading in the NET
framework. Application domains provide the framework with a way of determining
the boundaries of an application. Application domains are very similar to the Win32
process within which they live. Each application domain contains one or more logical
threads that execute a series of instructions.

Logical threads are represented in the .NET framework using the Syst em Thr ead-
i ng. Thr ead class. This class is used to create, control, and manage logical threads.
There are times that it is necessary to manipulate physical threads; to do so the NET
framework includes the Syst em Di agnosti cs. Process and Syst em Di ag-
nosti cs. ProcessThr ead classes. These classes allow access to all physical threads
on a system, not just those related to the .NET framework.

.NET provides many benefits to developers. This is especially true with regards to
multithreaded development. Since the .NET framework is object-oriented, all methods
needed to manipulate a logical thread are contained in the Syst em Thr eadi ng. Thr ead
class. This grouping makes it very easy to find the methods to manipulate a thread.

The Syst em Thr eadi ng. Thr ead class is not the only way to execute a method
on a different thread. We discussed the asynchronous execution of delegates. While this
approach is simpler to implement than using the Syst em Thr eadi ng. Thr ead
class, it lacks flexibility.

In the next chapter we dig into the means of creating, destroying, and interacting
with logical threads.

CHAPTER 3 MULTITHREADING IN .NET

CHAPTEHR 4

Thread life cycle

4.1 Creating a thread 50

4.2 Starting threads 52

4.3 Ending threads 54

4.4 Determining a thread’s status 63
4.5 Summary 68

So far we have talked about multithreading concepts and how they relate to .NET. We
are now going to explore how threads are created, why they go away, and how we can
make them go away. At the end of the chapter we will look at how we can determine
what a thread is doing. All examples, available in both VB.NET and C#, are available
from the publisher’s web site.

We will alternate between C# and VB.NET, showing how close the languages are
to each other with regard to the use of threads. Also, we will examine the differences
that exist. To demonstrate, we will use an implementation of a bubble sort to sort an
array of randomly generated numbers. The bubble sort algorithm is easily understood
and inefficient, which is good. Because it is inefficient it allows us time to examine it
during execution.

In this chapter all examples will be console applications, allowing us to focus on the
concepts rather than be distracted by unrelated implementation issues. Each example
includes at least two classes per section. One will contain the main entry point asso-
ciated with console applications. The other will contain the code relating to the array
of values and the creation of the threads that operate on those values.

In general, threads should be associated with the data elements they operate on, sup-
porting the object-oriented concepts of data protection and abstraction. The user of
the class need not be concerned with the creation of the thread. Instead the user calls

49

4.1

4.1.1

50

methods on the class and allows the class to keep track of the threading information.
Including threads as elements of a class is a powerful concept, which is why we intro-
duce it this early in the discussion.

CREATING A THREAD

The process of launching a new thread can be broken down into three steps:

1 Define the method that will serve as the entry point for the thread.

2 Declare and create an instance of a thread start delegate that is used to associate
the entry point with the thread.

3 Create an instance of the Thr ead class, passing in the thread start delegate to
the constructor.

Defining the thread’s entry point

Suppose that you wanted to sort an array of numbers from smallest to largest. For
demonstration purposes we will use a simple bubble sort since it is an algorithm most
developers are familiar with. The process starts by creating a method that will be the
entry point for the new thread, in this case Sor t Ascendi ng. This means that the
method will be invoked, much as if it had been called directly; however, the method
will execute on a different thread than its caller. We will discuss this in greater detail
in the next section. The method can either be static or an instance method associated
with an instance of a class (listing 4.1).

public class C assThreadExanpl e_1

{

long[] NunbersToSort; Declares an

Coe)) array of longs
private void SortAscending() Defines a method associated
{ with the new thread
for (int i=0;i < NunbersToSort.Length ;i ++)
{
for (int j=0;j<i;j++)
{
if (NunbersToSort[i] < NunbersToSort[j])
{
Swap(ref NumbersToSort[i],ref NumbersToSort[j]);
}
}
}
}
private void Swap(ref long First,ref |ong Second)
{
/1l Swap the values in First and Second
I ong TempNunber = First;

CHAPTER 4 THREAD LIFE CYCLE

4.1.2

4.1.3

First = Second;
Second = TenpNunber;
}

In listing 4.1 it is an instance method. This means that the thread will have access to
all instance and static/shared variables contained within a particular instance of
Gl assThr eadExanpl e_1.

Creating an instance of the ThreadStart delegate

The way that the method is associated with a thread is through the use of the
ThreadSt art delegate that is located in the Syst em Thr eadi ng namespace.
Chapter 12 discusses delegates in detail. For now, assume that the Thr eadSt ar t del-
egate is the way that a method is associated with a thread. When the delegate is cre-
ated, the name of the method to execute is passed in to the constructor. Before we can
create an instance of the delegate, we should declare a variable to allow us to reference
the new delegate.

ThreadStart ThreadSt art Del egat e;

We’re now ready to create an instance of the Thr eadSt art delegate and associate it
with a method to execute:

ThreadSt art Del egate = new ThreadStart (Sort Ascendi ng);

The name of the method is not included in quotes. Thr eadSt ar t expects a method
name, not a string, as the parameter to its constructor. The method cannot have
parameters nor can it have a return value. This is the type of method that the
ThreadSt art delegate is expecting. Chapter 6 discusses communication between
threads. Since the method associated with the thread cannot accept a parameter, it is
not possible to pass any information to the new thread during its construction.
Instead, if the thread is associated with an instance method, it will have access to all
instance variables contained within the instance of the class it is contained within.

ThreadStart ThreadSt art isa delegate that is used to associate a method with a Thr ead.
An instance of the delegate is passed in to the thread constructor so that the
thread knows what delegate to invoke.

In the body of the thread method it is acceptable, and desirable, to call other methods.
This generally makes the code more readable and reusable. Remember that these
methods will execute on the thread from which they are called.

Creating an instance of the Thread class

Now we need to create an instance of the Thr ead class. Before we can do that we need
to have a declaration of a variable to associate with that new instance. This will allow
us to interact with the class after it is created. The following declares an instance of
the Thr ead class:

CREATING A THREAD 51

4.2

52

Thread Exanpl eThr ead;

We’re now ready to create an instance of the Thr ead class. The constructor of the
class expects that a Thr eadSt art will be passed in. When we create an instance of
the Thr ead class, we supply the newly instantiated Thr eadSt art delegate:

Exanpl eThread = new Thread(ThreadSt art Del egat e) ;

This tells the Thr ead object what delegate it should invoke when we tell the thread
to start executing. Note that so far we have not created an OS thread. What we have
created is an instance of the Thr ead class that will allow us to create the OS thread in
the next section.

We can simplify the thread object creation code in C# by doing the following:

Thread Exanpl eThread = new Thread(new ThreadSt art (Sort Ascendi ng));

VB.NET does this automatically, so all you need to pass in to the Thr ead constructor
is the address of the method you wish to associate with the new thread. Unless there is
a reason to assign the instance of the Thr eadSt art delegate to a variable, the creation
can be done inline.

TIP Under most circumstances the Thr eadSt ar t delegate is not needed once
itis passed in to the Thr ead constructor. Instead of you assigning a variable
its value, it can be passed to the Thr ead constructor inline.

As an example, you might need to assign the delegates to variables when a different
delegate may be assigned depending on a runtime condition. For instance, if the num-
ber of elements is less than 10,000, sort them in ascending order; otherwise sort them
in descending order:
if (HowMany < 10000)

ThreadSt art Del egat e = new ThreadSt art (Sort Ascendi ng) ;

el se
ThreadSt art Del egat e = new ThreadSt art (Sort Descendi ng) ;

Until we start the thread, neither Sort Ascendi ng nor Sort Descendi ng will
execute. All we have done is create an instance of the Thr ead class and associated it
with a delegate that is in turn associated with the method. We are now ready to start

the threads.

STARTING THREADS

Since we are dealing with the .NET framework instead of language constructs, the
VB.NET example is very similar to the C# example from the previous section. The
most obvious difference is how the ThreadStart delegate is created. In the
VB.NET example the ThreadSt art delegate seems to be missing. In its place the
Addr essOf operator precedes the name of the method that will be the entry point
for the new thread. The reason: the Addr essCOf operator creates a delegate that
accesses the Sor t Ascendi ng method.

CHAPTER 4 THREAD LIFE CYCLE

AddressOf The Addr essCOf operator is the mechanism that VB.NET uses to create a
delegate for a method.

Since the VB.NET compiler can determine which of the possible delegates it should
produce, it uses the results of the Addr essOF operator in place of the delegate. In C#
the name of the method resolves to the address of the method and the Thr eadSt ar t
delegate is required to convert this address into a delegate. Unless there are other consid-
erations, such as assigning the Thr eadSt art delegate to a variable based on runtime
conditions, VB.NET developers should use the Addr essOf operator in the Thr ead
constructor. C# developers should use an inline Thr eadSt ar t delegate as discussed
in the previous section.

Start Start isa method of the Thr ead class that signals a managed thread to
begin execution. This generally creates an OS thread.

Now that we have created our instance of the Thr ead class, we are ready to launch
the thread. Starting a thread is much like calling a method, except the calling thread
continues execution. The following example includes the addition of the call to the
St art method:

Sub Creat eThr eadExanpl e(ByVal HowMany As | nteger)

Di m Exanpl eThread As System Thr eadi ng. Thr ead
Exanpl eThread = New System Thr eadi ng. Thr ead(AddressOf Sor t Ascendi ng)
Exanpl eThread. Start ()

End Sub

In the example, St ar t Thr eadExanpl e will probably exit before Sor t Ascendi ng
has finished executing. If the line containing the St art method was replaced with

Sort Ascendi ng()

execution would continue on the same thread. This means that St art Thr ead-
Exanpl e would pause until the Sort Ascendi ng method completed its calcula-
tions. Once those calculations are complete the Sort Ascendi ng method exits,
then the St ar t Thr eadExanpl e method exits.

This is a new concept to many developers, and a key one, so we will spend some time
exploring it. Figure 4.1 displays a visual representation of how this works. At the point
Exanpl eThread. Start () executes, a thread is created and the Sor t Ascendi ng
method begins to execute on that thread. This increases the number of threads associated
with the process by one. In our example the thread will continue until Sor t Ascendi ng
completes execution and returns. In the next section we will cover another way that
threads can end. The important concept is that when the method associated with the
ThreadSt art delegate terminates, the thread associated with it also terminates.
Remember that even though we did not declare a ThreadSt art delegate in the
VB.NET example, one was created for us.

STARTING THREADS 53

4.3

54

Start
e
©
Q
o =
b
©
©
9
=
=]
£
©
>
-
Application
Domain

Figure 4.1
Creation of a thread

The first thread created in a process is called the main thread. It is a foreground
thread and it is possible to have multiple foreground threads in the same process. So
far all of our examples have contained only foreground threads. In the next chapter
we will explore all forms of thread control, one of which is setting a thread to be a
background thread.

Debugging multithreaded applications is a little different than debugging tradi-
tional applications. In our example, stepping through the code does not step into the
Sor t Ascendi ng method. Instead control goes from the invocation of the St ar t
method and returns to the calling method. The way to see what happens on the new
thread is to use a breakpoint in the Sort Ascendi ng method. When debugging a
multithreaded application, you should focus on one thread at a time because it is often
difficult, if not impossible, to determine the exact order of execution of multiple
threads. This is one of the challenges associated with multithreaded development.

ENDING THREADS

Suppose that you wanted a thread to end. One way to do that is to have the method
the thread is executing end. For some applications this is sufficient. One way of telling
a thread it is time to end is through the use of instance variables associated with the
class the thread method is a member of. The thread method generally has a loop of
some sort and a test for a change in the value of the variable. When the variable changes,
it is an indication that the method should exit. In listing 4.2, if Ti meToSt op is true
the method exits and the thread terminates.

CHAPTER 4 THREAD LIFE CYCLE

public class C assThread_End_1

{
long[] NunbersToSort;
public bool TinmeToStop = fal se; Controls the
o termination of
public void CreateDataAndStart Thread(int Howvany) the thread
{
Exanpl eThread = new Thread(new ThreadStart(Sort));
Ti neToStop = fal se;
Exanpl eThread. Start () ;
}
public void StopThread()
{
Ti meToSt op =true;
}
voi d Sort Ascendi ng()
{
for (int i= 0;i < NumbersToSort.Length ;i++)
{
if (TimeToStop) return; Determines if the
for (int j=0;j<i;j++) thread method
{ should return
if (NunmbersToSort[i] < NunbersToSort[j])
{
Swap(ref NunmbersToSort[i],ref NunmbersToSort[j]);
}
}
}
}

A different thread changes the value of Ti meToSt op by calling its method, signaling
that it is time to terminate execution. This demonstrates one of the problems with this
approach: the inner loop must complete before the test is performed. This also relies on
the thread method checking this value, and being in a state that it can check the value.

TIP One way of ending threads is to have the thread check a variable that signals
when the thread should stop.

While this approach works for many situations, there are times that a more direct
method must be used. Fortunately we have a means of signaling the thread that it is
time to end. The Abort method signals a thread that it should terminate. When an
abort is signaled a Thr eadAbor t Except i on is raised on the thread.

ENDING THREADS 55

56

Abort Abor t is a method on the Thr ead class that raises a Thr eadAbor t Excep-
ti on on the related thread. Abor t is used to stop a thread from processing.

The Thr ead class also contains a method, S| eep, that will suspend execution of a
thread for a set period of time. It accepts a parameter that indicates how long the thread
should be idle, in milliseconds. This allows a thread to pause itself for a period of time.

Sleep Sl eep is a method on the Thr ead class that causes the current thread to
pause execution for a period of time.

We will discuss the S| eep method in more detail in the next chapter. In the Mai n
method of our example, we have the following:

voi d Main()
{
Cl assThread_Exceptions_1 Exanple = new Cl assThread_Exceptions_1();
Exanpl e. Cr eat eDat aAndSt art Thr ead(10000) ;
Syst em Thr eadi ng. Thr ead. Sl eep(1000) ;
Exanpl e. St opThread();
Syst em Thr eadi ng. Thr ead. Sl eep(4000) ;

}

We create an instance of the class associated with this example called Exanpl e. We
then call the Cr eat eDat aAndSt ar t Thr ead method, passing in HowVany ele-
ments we want in our array. This creates and populates the array with random values
and starts the Exanpl eThr ead.

public void CreateDataAndStart Thread(int Howivany)
{

Exanpl eThread = new Thread(new ThreadStart(Sort));
Exanpl eThread. Start () ;
}

We then pause the main thread using the S| eep method, indicating that we wish to
sleep for 1,000 milliseconds, or one second. After the main thread has slept for one
second it calls the St opThr ead method, which calls Abort () on the Exanpl e-
Thr ead, raising an exception on the Exanpl eThr ead.

public void StopThread()

{
Exanpl eThr ead. Abort () ;

}

We then sleep for an additional four seconds and then exit the Mai n method. Anytime
an unhandled exception occurs on a thread, that thread will terminate. To achieve the
desired results, you must understand thread-related exceptions.

CHAPTER 4 THREAD LIFE CYCLE

4.3.1

Introducing the ThreadAbortException exception

Exceptions are likely a new concept for VB developers. They are a means of handling
runtime conditions that if not dealt with become runtime errors. In chapter 13 we will
discuss thread-related exceptions in greater detail.

Exceptions Exceptions are a type of error handling that allows for dealing with unex-
pected runtime conditions.

As we saw in the previous section, when Abor t () is called on a thread a Thr ead-
Abor t Excepti on is raised. The thread may not be terminated immediately. The
runtime waits until the thread reaches a safe point before terminating it. Safe points
are locations in code where the .NET runtime can take control of a thread and per-
form needed actions. Terminating a thread is one of those actions.

The way that exceptions are generally handled involves try, catch, and
finally clauses. Thet ry block contains a series of instructions that are to be exe-
cuted and that might raise an exception. cat ch handles the exceptions that have not
been handled by a more specific clause. When an exception is handled by a cat ch
clause, execution generally continues. The Thr eadAbor t Except i on is unlike most
exceptions because execution does not continue after the cat ch clause. final l'y
clauses are always executed, regardless of whether or not an exception is raised. At ry
block must be followed by fi nal | y, cat ch, or both.

ThreadAbort- The Thr eadAbor t Except i on generally does not allow execution to
Exception .o ntinue after the exception has been handled.

Listing 4.3 shows how a method can be written to handle exceptions.

Private Sub Sort ()

Dimi, j As Integer
Try
For i = 0 To Nunber O El enents
For j =0 To i

I f NumbersToSort (i) < NumbersToSort(j) Then
Swap(Nunber sToSort (i), NunmbersToSort(j))
End | f
Next
Next
Catch ex As Threadi ng. Thr eadAbort Excepti on
Consol e. Wi telLi ne("Caught ThreadAbort Exception:" + ex.Message)
End Try

End Sub
||

When Abort is called on the Exanpl eThr ead, the following line is written out to
the console:

Caught ThreadAbort Excepti on: Thread was bei ng aborted.

ENDING THREADS 57

58

Suppose that you wanted to determine why the thread was being aborted. This would
allow the cleanup code to perform different operations depending on the message sent.
A version of the Abor t method accepts a single parameter called a st at el nf 0. This
allows an object to be passed to the thread via the Thr eadAbor t Excepti on. The
object that is passed to the Abor t method will be available by accessing the Except i on-

St at e property. So if we change our St opThr ead method to pass a string, that string
will be passed on to the cat ch clause that catches the Thr eadAbor t Except i on.

Sub St opThread()
Dim Statelnfo As String

Statelnfo = "It's tine to stop executing."
Exanpl eThr ead. Abort (St at el nf 0)
End Sub

If we change our cat ch clause to the following:

Catch ex As Threadi ng. Thr eadAbort Excepti on
Consol e. Wi teLi ne("Caught ThreadAbort Exception:")
Consol e. Wite("Mssage=")
Consol e. Wi telLi ne(ex. Message)
If Not ex.ExceptionState Is Nothing Then
Consol e. Wite("ExceptionState=")
Consol e. Wi telLi ne(ex. Excepti onSt at e)
End | f

the following output will be generated on the console:

Caught Thr eadAbort Excepti on:
Message=Thread was bei ng aborted.
ExceptionState=lt's tinme to stop executing.

Notice the test to see if Except i onSt at e is Not hi ng. If state information is not
passed into the Abor t method, then Except i onSt at e will be Not hi ng.

The final 'y clause will always execute, whether or not an exception occurs. It
allows for a series of statements that should be executed regardless of outcome, such
as closing any open ports or files, and releasing any resources. If we add

Finally
Consol e. WiteLine("The Sort has ended")

to our exception-handling code, then the output of the execution would be:

Caught Thr eadAbort Excepti on:

Message=Thread was bei ng aborted.
ExceptionState=It's tine to stop executing.
The Sort has ended

If the Abor t did not occur, the results would be:

The Sort has ended

CHAPTER 4 THREAD LIFE CYCLE

4.3.2

The ResetAbort method

It seems a shame to blindly stop sorting the elements of our array when an Abor t occurs.
Suppose that we are 99 percent finished and received an Abor t . Wouldn't it be nice if we
could choose to ignore it? That is exactly what the Reset Abort method lets you do.

cat ch(Thr eadAbor t Excepti on ex)

{
Consol e. Wi teLi ne("Caught ThreadAbort Exception: "+ ex.Message);
if (ex.ExceptionState !'= null && (bool)ex. ExceptionState)
{
if (i > Nunber O El ement s/ 2)
{
Consol e. WiteLine("lgnoring the abort");
Thr ead. Reset Abort () ;
}
}
}
finally
{
Consol e. WiteLine("finally");
}

In the example if more than half of the elements are in order, we let the sort complete:

voi d Sort ()

{
int i =0;
bool Conti nueProcessing = true;
whi | e (Conti nueProcessi ng)

{
try

This requires reworking the Sor t method so that an Except i on can be handled and
processing can continue. Without this modification we would call Reset Abort . We
would then be able to stay in the thread’s method. Next we would exit the cat ch
clause, and execute the f i nal | y clause. Next we would exit the t r y block, exit the
method, and end the thread. We would have ignored the Abort but the thread
would have ended anyway. We use the st at el nf 0 parameter of the Abor t method
to pass in a Boolean indicating if it is permissible for the Abort to be ignored. This
allows the caller of the Abort to permit the thread to ignore the abort.

The first thing we need to do is change the outer loop from af or loop toawhi | e
loop and change where the counter was initialized. Additionally we added a whi | e
loop to allow us to resume our sorting:

while (i < Nunmber OfEl ements)

By initializing the outer loop index before the whi | e loop, we ensure that the index value
will be preserved when an exception occurs. We also need to have a way of indicating

ENDING THREADS 59

4.3.3

60

that we have finished with the sorting. When the outer loop finishes, we execute the
following line:

Cont i nueProcessing = fal se;

This indicates that we have finished sorting the data and the thread can exit. We also
change the way we call Abort to pass in a Boolean that indicates if the thread can
choose to ignore the abort:

public void StopThread()

{
bool CanReset Abort = true;

Exanpl eThr ead. Abort (CanReset Abort);
}

This approach allows for robust handling of different states. It also adds complexity
to the solution. The idea that a thread can determine how it should behave is both
powerful and dangerous. Threads should respond as expected, unless they are given
permission to do otherwise. This gives the designer of the solution the ability to make
things more complex. Keep in mind that if the thread is a foreground thread and it
ignores an Abort, it may cause the thread to keep executing after the main thread
has completed its execution. While this might be desired under some circumstances,
generally it is not a good idea. If the thread is not a foreground thread, the runtime
terminates the thread without considering if the Reset Abort method is invoked.
The next chapter discusses foreground and background threads in depth.

Notice that the finally clause executes more than once. It is important to
remember that the fi nal | y clause indicates exit from atry, catch, finally
block. As we’ve seen in this example, it is possible to exit and reenter a t ry/cat ch/
final | y block numerous times.

An important concept here involves signaling an Abort and assuming that it
occurred. Before you signal a thread to abort, you need to know its state. Second, if you
need to know that the thread actually ended, you should wait for it to end. We will
cover these two topics in the following two sections of this chapter.

The Join method

So far we've created, started, and requested a thread to stop executing. Until now we’ve
had no way of knowing that the thread actually stopped executing. The Thr ead class
provides the Joi n method that lets us wait until the specified thread stops executing.
We call Joi n on the instance of the Thr ead class we wish to wait on. Figure 4.2 is a
graphical representation of how Joi n works. A key element is that the main thread
will wait until the new thread terminates before continuing.

The next example is similar to those we’ve done before. We create an instance of the
class that contains the instance of the Thr ead class. We create an array of 10,000 ele-
ments and assign random values. We then start the thread. The main thread sleeps for
one second and then signals that the thread should stop. Next, instead of sleeping for
an arbitrary amount of time, we wait, indefinitely, for the thread to terminate.

CHAPTER 4 THREAD LIFE CYCLE

Start
el
©
o
0 £
- :
4
®
@ (Join
=
C
©
< - E
Application
Domain
Figure 4.2
Graphical representation
— of the Joi n method
Sub Mai n()

Di m Exampl e As New Joi nThread()
Exanpl e. Cr eat eDat aAndSt art Thr ead(10000)
Syst em Thr eadi ng. Thr ead. Sl eep(1000)
Exanpl e. St opThr ead()
Exanpl e. Wai t For Thr ead()

End Sub

Sub Wi t For Thr ead()
Exanpl eThr ead. Joi n()
End Sub

At the point Exanpl eThr ead terminates, the Joi n method returns and the
Wi t For Thr ead method continues executing. JOi n is termed a blocking method,
meaning it does not return until it has finished waiting for some event to occur,
thereby blocking the thread it is executed on.

Join Joi nisa method of the Thr ead class that causes the current thread to pause
until the thread associated with the instance of the Thr ead class terminates
or a timeout occurs. If a parameter is supplied to the Joi n method, it indi-
cates how long the runtime should wait before timing out. If no parameter
is supplied, it means to wait indefinitely for the thread to terminate.

One issue with using J0i n as we have here is that it waits indefinitely for Exanpl e-
Thr ead to terminate. If Exanpl eThr ead never terminates, JOi N never returns.
There are cases where that is exactly what you want to do. However, sometimes you
want to wait for the thread to end; if it doesn’t, you do something else. This is often
associated with polling the state of the thread.

ENDING THREADS 61

62

Suppose that you wanted to let the sorting method run for ten seconds, and if the
sort had not completed, call St opThr ead. Recall that St opThr ead may not result
in the thread stopping, since the thread can choose to call Reset Abor t and continue
processing. The Wi t For Thr ead method is now more complex:

Sub Wit For Thread(ByVal HowLongToWait As Integer)
Di m KeepGoi ng As Bool ean
Di m ThreadDi ed As Bool ean
Di m Nunmber O Seconds As | nt eger
Nurber Of Seconds = 0
KeepGoi ng = True
Wi | e (KeepGoi ng)
Thr eadDi ed = Exanpl eThr ead. Joi n(1000)
I f ThreadDi ed Then
Consol e. Wi teLi ne("Dead")
KeepGoi ng = Fal se
El se
Nurber Of Seconds += 1
Consol e. WiteLine("Alive " + Nunber Of Seconds. ToStri ng)
I f Number OF Seconds > HowLongToWait Then
Consol e. WiteLine("Calling StopThread")
St opThr ead()
End | f
End | f
End Wile
End Sub

The version of JOi n we are using here accepts a single integer parameter that indi-
cates a timeout value. The parameter indicates how many milliseconds Joi n should
wait for the thread to end, in this case 1,000, or one second. If Joi n returns true then
the thread terminated in the time allowed by the timeout parameter. If it returns false,
the thread is still alive. The logic of this method is pretty straightforward. While the
thread is executing we keep attempting to J0i n it, waiting one second each time. After
HowLongToWAi t attempts to join, we start requesting that the thread die, which
causes an Abor t to be called on the thread. Depending on how far along the thread is
in its processing, it may either die or continue sorting its elements.
We can modify our main procedure to remove any S| eep calls as follows:

Sub Mai n()

Di m Exanpl e As New Joi nThread2()

Exanpl e. Cr eat eDat aAndSt art Thr ead(20000)

Exanpl e. Wi t For Thr ead(10)
End Sub

Another version of Joi n accepts a Ti meSpan parameter, instead of an integer param-
eter, indicating how long to wait before timing out. The Ti meSpan structure allows
for greater flexibility. The smallest unit of time that can be assigned using a Ti meSpan
object is one hundred nanoseconds, known as a tick. The return value behaves the
same: true if the thread ended, false if not.

CHAPTER 4 THREAD LIFE CYCLE

44

441

DETERMINING A THREAD'S STATUS

Being able to determine the condition of a thread is very useful. There are two prop-
erties that provide insight into the condition of a thread. | SAl i ve returns a Boolean
value indicating if the thread is in a state where it is executing. Thr eadSt at e
returns a bitmasked value that provides more detail into the exact states a thread is in
at any point.

The IsAlive property

So far we know how to tell if a thread is alive only by waiting for it to die. We could
ask to Joi n a thread and specify a very small timeout, such as 1 millisecond. But this
doesn’t express what we are trying to do; we want to know if the thread is alive, not if
it is going to die in the next millisecond. To do this we use the | SAl i ve property of
the Thr ead class. Our next example uses | SAl i ve instead of Joi n.

A key concept here is that | SAl i ve returns immediately with either true or false.
It is intended to check the state of a thread. We will discuss the other states that
threads go through in the next section. | SAl i ve is an easy way to determine if a
thread is executing.

One area where | SAl i ve can be useful is during thread startup. We have seen
that calling Abor t does not terminate the thread immediately; the same thing is true
of calling Start. Start is a request for the runtime to start the thread. Depending
on machine load and performance, the thread may or may not be started by the time
the next instruction executes. If it is critical to know if a thread is started, checking
its state using | SAl i ve is a good idea. It's worth noting that under typical conditions
threads start very quickly, and it is not generally necessary to check to see when a thread
actually started.

Suppose that we needed to know if the Exanpl eThr ead actually started. If it did,
we display the message “Thread is alive”; if not, “Thread is not alive.” If a thread does
not start after a sufficiently long period, an error message should be logged. This will
likely be due to a machine being in an unhealthy state. Attempting to start the thread
again most likely will not help.

public void CreateDataAndStart Thread(int Howvany)
{
Cr eat eDat a(Howivany) ;
Exanpl eThread = new Thread(new ThreadStart(Sort));
Exanpl eThread. Start () ;
int IsAlivePoll Count = 0;
whi l e (! Exanpl eThread. | sAlive)
{
| sAl'i vePol | Count ++;
if (IsAlivePoll Count > 100)
{
/1 Do sonething drastic
t hrow new Exception("Exanpl eThread woul d not start");

}

DETERMINING A THREAD'S STATUS 63

4.4.2

64

Consol e. WiteLine("Thread is not alive");
Thr ead. Sl eep(1000);
}
}

Let’s examine the value of | SAl i ve at each point through the thread creation process:

public void TestlsAlive(int HowVany)

{
Thread Qur Thread;
Cr eat eDat a(Howvany) ;
Qur Thread= new Thread(new ThreadStart(Sort));
Consol e. WiteLine(QurThread.|sAlive); // False
Qur Thread. Start () ;
Thr ead. Sl eep(1000);
Consol e. WitelLi ne(QurThread. I sAlive); [/ True
Thr ead. Sl eep(1000) ;
Consol e. WitelLi ne(QurThread.|sAlive); [/ True
CQur Thr ead. Abort () ;
Consol e. WitelLi ne(QurThread.|IsAlive); [/ True
Qur Thread. Joi n();
Consol e. WitelLine(QurThread. I sAlive); [/ False

}

We start by declaring and assigning an instance of the Thr ead class, associating it
with a method that will serve as the entry point to the thread. | SAl i ve returns false
at this point, since we haven’t started the thread. The next step is to start the thread.
If a small amount of time has passed, | SAl i ve returns true, assuming the runtime
was able to start the thread. If we signal an Abor t, the value of | SAl i ve stays true,
in part because the thread method chooses to ignore the call, but also because Abor t
is a request for an Abort so it is unlikely that it would be processed immediately.
After we Joi n the thread, | SAl i ve returns false.

We've now seen a way to check if a thread is alive. This is somewhat useful but
there is a lot more we can know about the state of the thread.

The ThreadState property

Threads go through several states. A state is a condition that is either true or false. A
thread is either in a state or it is not. One way to see the states a thread goes through
is to create another thread whose sole purpose is to watch the thread we care about.
The following example creates a thread to keep track of the thread we want to watch:

I nports System Threadi ng
Public O ass ThreadSt at eWat cher
Private ThreadToWatch As Thread
Private WatchingThread As Thread
Public Sub WatchThread(ByRef ThreadToWatch As Thread)
Me. ThreadToWat ch = ThreadToWat ch
Wat chi ngThread = New Thr ead(Addr essOf Wat ch)
Wat chi ngThr ead. | sBackground = True
Wat chi ngThread. Start ()
End Sub

CHAPTER 4 THREAD LIFE CYCLE

Private Sub Watch()
Dim Last State As ThreadState
Wil e True
Dim Current State As ThreadState
Current State = ThreadToWat ch. ThreadSt at e
If CurrentState <> LastState Then
LastState = CurrentState
Trace. Wite(ThreadToWatch. | sAlive. ToString)
Trace. Wite(" ")
Trace. WitelLine(CurrentState. ToString())
Thr ead. Sl eep(5)
End |f
End Wile
End Sub

End d ass

Every five milliseconds the thread wakes up and checks if the thread it is watching has
changed state. If it has, it outputs the new state. It also outputs the value for | SAl i ve.
When we create the thread we set the | sBackgr ound property to true. When design-
ing systems it isn’t uncommon to dedicate a single thread to monitoring the activities

of the other threads. It wouldn’t be very efficient to create a monitoring thread for
each thread that needed to be monitored.

ThreadState The Thr eadSt at e property is a bitmasked value that indicates the current
state(s) the thread is in. A thread can be in more than one of the ten states
at the same time. Certain states are mutually exclusive, such as Runni ng

and St opped.

Threads start out as Unst ar t ed. Once started, threads transition from Unst art ed
to Runni ng. If the thread method exits, the thread transitions from the Runni ng state
to St opped. If an Abor t is called on a thread, it transitions to Abor t Request ed.
If the thread then chooses to ignore the Abor t using Reset Abor t , it returns to the
Runni ng state. Otherwise the thread transitions to the Abor t ed state and then to
the St opped state.

Notice in the sample output that Thr eadSt at e can have multiple values at the
same time. For instance it can be Wi t Sl eepJoi n and Abor t Request ed at the
same time. This is accomplished by using bit-masked values. A bitwise AND must be
used to determine if a thread is in a certain state. For example:

If CurrentState And ThreadState. Unstarted Then

Since a thread can be in more than one state at the same time, the values must be
checked individually. In the current implementation, the Runni ng state is associated
with the integer value zero. This means that a test to see if a thread is in the Runni ng
state cannot be accomplished using a simple bitwise comparison. Instead, if the thread
is not in the Unst ar t ed state or is not stopped, then it must be running.

DETERMINING A THREAD'S STATUS 65

66

Publ i ¢ Function MyAl'ive() As Bool ean
Di m Unstart edOr St opped As ThreadState
UnstartedOr St opped = ThreadState. Unstarted Or ThreadSt at e. St opped
Return ThreadToWat ch. ThreadSt ate And UnstartedOr St opped = 0

End Function

The first column contains the value of | SAl i ve, the second the Thr eadSt at e:

Fal se Unstarted

True Runni ng

True Abort Request ed

True Wit Sl eepJoin, AbortRequested
True Abort Request ed

True Wit Sl eepJoin, AbortRequested
True Running

Fal se St opped

Fal se Aborted

Figure 4.3 shows the states and transitions that we’ve covered so far. Don’t be overly
concerned if it seems complex; we will discuss it in more detail in the next chapter.

Unstarted

Stopped

Completes
Execution
Timeout

Start

I

Running

WaitSleepJoin

Abort
ResetAbort

AbortRequested

Figure 4.3 ThreadState transition diagram

Table 4.1 contains the current values for each of the thread states. As we discussed
earlier, Runni ng is associated with zero. Notice that the values are powers of two.
This allows bitwise logic to be applied. We will discuss each of these states in detail in
later chapters.

CHAPTER 4 THREAD LIFE CYCLE

Table 4.1 ThreadState Descriptions and Values

State Description Value

Aborted The thread is in the Stopped state as a result of an 256
Abort request.

AbortRequested An abort has been signaled. 128

Suspended A thread has called Suspend on the thread. It can only 64
leave the suspend state when some other thread calls
Resume.

WaitSleepJoin The thread is idle. It is either waiting for a resource, for 32
another thread to terminate, or for a sleep timeout to
expire.

Stopped The thread is no longer executing. 16

Unstarted The thread object has been created but the OS thread 8

has not been started.

Background The thread is executing in background mode, meaning 4
it will be terminated when all other nonbackground
threads terminate.

SuspendRequested A Suspend request has been signaled. 2
StopRequested A stop has been requested. 1
Running The thread is currently executing. 0

Suppose you had a thread that was a Backgr ound thread in the Wi t SI eepJoi n
state. The value returned by Thr eadSt at e would be 4 plus 32 which would equal
36. One of the interesting properties of combining bitmask values with a bitwise OR
is that it is equivalent to addition. Table 4.2 demonstrates how this is occurring at a
bit level.

Table 4.2 Explanation of Bitwise OR

28 27 26 25 24 23 22 21 20 Decimal Value
0 0 0 0 0 0 1 0 0 4

0 0 0 1 0 0 0 0 0 32

Logical OR

0 0 0 1 0 0 1 0 0 36

To determine if a bit is on, we use a logical AND. In Table 4.2 the resulting row has
both the 2° and 2 bits on. This yields a resulting decimal value of 36. Table 4.3
shows how a logical AND can be used to see if a bit is turned on. The first line contains
the value 36, the same as the result from Table 4.2. When it is compared to the constant
for Wai t Sl eepJoi n, 32, using a logical AND, the result is 32.

DETERMINING A THREAD'S STATUS 67

4.5

68

Table 4.3 Explanation of Bitwise AND

28 2’ 26 25 24 23 22 21 20 Decimal Value
0 0 0 1 0 0 1 0 0 36

0 0 0 1 0 0 0 0 0 32

Logical AND

0 0 0 1 0 0 0 0 0 32

The majority of the time you do not care what the actual value returned by the logical
AND is; you only care if it is greater than zero. This indicates that at least one bit is on.

SUMMARY

After we learned how to create a thread and how it can be started, we saw how this
creates an OS thread. When the method associated with the thread’s Thr eadSt ar t
delegate exits, the thread terminates. Alternatively, we can use the Abort method on
the instance of the Thr ead class associated with the thread to trigger a Thr ead-
Abor t Excepti on that results in the termination of the thread. We can use the
Reset Abort method to cancel an abort.

CHAPTER 4 THREAD LIFE CYCLE

CHAPTEHR 5

Controlling threads

5.1 Example: web site monitoring 70 5.5 Using Suspend and Resume 82

5.2 Naming threads 72 5.6 Exploring thread states 85

5.3 Using Sleep and Interrupt 74 5.7 Digging deeper into thread control 87
5.4 Using background and 5.8 Summary 94

foreground threads 79

As a general rule, anything that is allowed to happen without a certain degree of control
is a bad thing. I'm reminded of a wedding I once attended. A youngster was in an over-
stimulated state. At one point during the festivities the child was running at full speed
directly toward the wedding cake. Fortunately his alert grandmother intercepted him
and got him under a certain degree of control.

Threads that are not controlled can potentially be just as dangerous.

In the last chapter we covered creating threads, determining their state, and stopping
them. While this is a good foundation, you’ll often need to exercise more control over
threads. One of the things we generally want to do with a thread is be able to identify
it from another. If T have a thread that is performing a certain task, say a calculation,
it is more convenient to refer to that thread as the “Calculating Thread” rather than
as thread 2412. The Thr ead class allows us to assign a name to a thread so that we
can more easily identify it during debugging.

Like the child running toward the cake, threads that don’t have a proper amount
of pause during their execution can cause some very bad things to happen. To help slow
them down, we can use the S| eep method. Sometimes we want to interrupt a thread
while it is sleeping, which is exactly what the | nt er r upt method does.

Just as his grandmother caused the child to stop what he previously was doing, run-
ning toward the wedding cake, we sometimes want to stop a thread from doing what

69

70

it is doing. This is what the Suspend method allows us to do. Once a thread has
entered the Suspended state we are likely going to want to have it exit that state. The
Resume method causes a thread that is in the Suspended state to exit it and con-
tinue its execution.

This chapter uses a web site monitoring application for demonstration purposes. A
site monitoring application fits many of the concepts we’ll be covering. When possible
the concepts will be associated with that example. Occasionally a simple example will
be introduced when it can more clearly convey the information.

This chapter also covers advanced topics, such as processor affinity. These advanced
mechanisms generally should not be used when dealing with managed code. It is a good
idea to be familiar with them, but in general the methods in the Syst em Di agnos-
tics. Process class should not be used to tune multithreaded applications. If the
need arises, you will be familiar with the concepts and able to determine when you
need the features they provide.

EXAMPLE: WEB SITE MONITORING

When a web site stops working correctly, the time it is unavailable can often be measured
in dollars. The example we’ll use in this chapter is a web site monitor, a program used
to ensure that a web site is in a state such that it can service user requests in a timely
manner. One approach to web site monitoring is to have a predefined page that
returns an indication of health. The page is retrieved at regular intervals. This page
often exercises various objects or assemblies, perhaps accesses a database, and returns
a reasonable estimation of the health of the web server the page resides on. Listing 5.1
uses the Syst em Net . WebCl i ent object to retrieve a page referenced by a URL.

I mports System Net
I nports System Threadi ng

Public C ass WbSiteMonitor

Private URL As String

Private MonitorThread As Thread
Private SleepTinme As Integer

Private LastRequest HowLong As Ti meSpan

Public Sub New(ByVal URL As String, ByVal SleepTine As |nteger)
Me. URL = URL
Me. Sl eepTi me = Sl eepTi e
Moni t or Thread = New Thr ead(AddressOf Thr eadMet hod)
Moni t or Thr ead. Nane = "WebSi t eMoni tor "
End Sub

Private Sub ThreadMet hod()
Dim Notify As Bool ean

CHAPTER 5 (CONTROLLING THREADS

Wi le True)
Notify = Fal se QJ fll'flfl'alfesl'a simple
Dimclient As New Wb ient () dlient

Dimdata As Byte()
Dim StartTime As DateTi me = System Dat eTi ne. Now .
Retrieve the Page QJ Retrieves
data = client. Downl oadDat a(URL) the page
Di m StopTime As DateTi me = System Dat eTi ne. Now
Last Request HowLong = St opTi ne. Subtract (Start Ti ne)
Dim Results As String
Results = System Text. Encodi ng. ASCl | . Get St ri ng(dat a)
If Results.|ndexOF("OK") < 0 Then
Notify = True
End I f
If Notify Then
Let someone know
End | f
Thr ead. Sl eep(Sl eepTi ne)
End Wile
End Sub

End d ass
||

Processing begins by creating an instance of the WebQ i ent class. The current time is
recorded so that the time required to retrieve the page can be calculated. The Down-
| oadDat a method is used to return the contents of the page as an array of Byt es.
Once the page is downloaded, the time is recorded. In order to easily interact with the
contents page, we must convert it from a Byt e array to a string using the Get St ri ng
method of the Syst em Text . Encodi ng. ASCl | class. If the resulting string does
not contain " OK" the Not i fy flag is set to true, indicating that someone should be
notified that the web site is in an unhealthy state. The idea is that a dynamic page will
return the status of the web site. If the system is in a healthy state, the page will return.
Notification could be through the addition of an entry to the NT Event Log, or some
other means. Figure 5.1 gives a high-level view of how the application logically functions.

When we monitor a web site, we generally pause between each check. If the pause
is too short, we have written a web site stress-testing tool instead of a monitor. If we
pause too long, we may miss something important. We've seen the Sl eep method
in previous chapters. It causes a thread to pause for a period of time. We will examine

—
=]

D Network Polls
L] Ny =

Web Server Monitoring System

Notifies

Figure 5.1 Web site monitoring logical flow

EXAMPLE: WEB SITE MONITORING 71

5.2

72

the Sl eep method in detail in section 5.3.1. At times we wish to check the state of
the site immediately; perhaps someone has reported that the web site is down. In
threading terms, this is accomplished using the | nt er r upt method.

When the connection from the monitoring machine to the Internet goes down, often
the best approach is to stop checking the site until the connection has been reestablished.
This relates to the Suspend and Resume methods that we cover in section 5.5. At
the point it becomes apparent that the connection is down, the thread polling the site
should be suspended. Once it is determined that polling should continue, Resune
should be called on the suspended thread.

When multiple sites are being checked, some are likely more important than others.
We may want to ensure that the thread that is checking the more important site is given
the opportunity to do its work first. In section 5.6.1 we cover how to adjust the thread’s
priority. We most likely will want to have a thread whose job is to notify someone when
there is a problem. That notification is important and needs to happen at a higher pri-
ority than the monitoring.

Often the computer doing the monitoring is not dedicated to that task. In that case
it is desirable to control how many of the resources of the computer are used. We may
wish to control what processors in a multiple-processor machine can be used to check
the status of the web sites. In this case processor affinity lets us control what processors
a process utilizes. Processor affinity is an advanced topic, and not something generally
done. We'll cover it in section 5.7 since it relates to thread control. If you limit what
processor a process uses, you've also limited what processor a thread can use.

NAMING THREADS

Sometimes you need to keep track of what a particular thread is doing. To help you do
this, the Thr ead class supports the Nane property. This allows us to assign a name to
an instance of a thread. So rather than referencing threads by their identification num-
ber, we can then refer to them by name.

Name Nane is a property of the Thr ead object that allows a developer to assign a
name to a thread. The Name property can be assigned a value only once; any
additional attempts will result in an exception.

In Listing 5.2 we assign the main thread of the process the name Main. This enables
us to easily identify that thread.

voi d I nstanceMai n(string[]args)

{
Thr ead. Current Thread. Nane = "Mai n";
Consol e. Wi teLi ne(Thread. Current Thread. Nane) ;
WebSi teMonitor SiteMonitor;
SiteMonitor = new WebSiteMnitor("http://1ocal host/test. htni, 1000);
SiteMonitor. Start();

Associates “Main”
with the main thread

CHAPTER 5 (CONTROLLING THREADS

Thr ead. Sl eep(15000) ;
Si teMoni tor. Abort();
SiteMonitor.Join();

}
|

When we stop execution using a breakpoint, we can examine what threads are in the
application domain and what their names are. To see the value of Nane before assign-
ment, set a breakpoint on the line that assigns the value " Mai n" to the Name property
and run the program. Before the line executes, select Debug \ Windows \ Threads, or
press Ctrl+Alt+H, to bring up the window shown in figure 5.2.

|
| (] | Marne | Location | Pririty | Suspend &~

Cr 2185 <NoMame> Threadiame.WebSiteMonitarConsale. InstanceMain Mormal @

Figure 5.2 The Thread window before the main thread is named

Notice that the Name column contains an entry that is set to <No Nane>. This lets you
know that the thread currently does not have a name. The Location column contains the
method the selected thread is currently executing. The small arrow on the left side indi-
cates the current thread that the debugger is viewing. Since we have not started any other
threads there is only one thread in the process, so it makes sense that it would be the active
thread. The ID column contains the operating system thread identifier. This identifier
is unique to a thread and will likely change on each execution. We will cover Pri ori ty
and Suspend in sections 5.5 and 5.6 respectively. As you can see in figure 5.3, once
we’ve assigned the Name property the value of " Mai n" the Thread window updates.

|
| iinl | Marme | Lacation | Priority | Suspend —
Cr 2185 Main ThreadMame . Wweb3iteMonitonZonsale, Instancetain Marmal 0

Figure 5.3 The Thread window after the main thread is assigned a name

After the Sl eep statement is executed (listing 5.2), there are four additional threads
listed. Notice in figure 5.4 that the WebSi t eMoni t or is the thread that is currently
visible in the debugger.

The last three threads are related to the WebCl i ent object. This demonstrates
that many things in the .NET framework are themselves multithreaded. Having named
the two threads we are primarily concerned with, we can now easily identify them during

debugging.

INAMING THREADS 73

5.3

74

|
| I | Marne | Location | Pririty | Suspend =
2188 Main Threadhame WebsSiteMonitor Console, InskanceMain - MNormal 0
C» 1472 ‘WehSikeManitor Threadiame. WebSiteMonitar, Threadiethod Mormal 0
1072 =MNo Mame= Highest 0
2192 <Moo Mame = Mormal 0
2212 <Moo Mame:= Mormal 0 -

Figure 5.4 The Thread window after the \ebCl i ent object creates additional threads

The following rules govern thread names:

* Once a thread’s name has been set, it cannot be changed.
* Thread names do not need to be unique within an application domain.
* Thread names can contain any character.

* Thread names should be as long as needed to make it easy to recognize the thread;
there is no limit to the length of the thread name.

The Narre property of the Thr ead object allows both Get and Set . This means that
the thread’s name can be retrieved programmatically. Once a name is associated with a
thread, it cannot be changed. The danger here is that a developer might assume that a
thread’s name is unique and attempt to do some sort of logic based upon it. Nothing
prevents two threads from having the same name. If a thread needs to be uniquely iden-
tified, and the reference to the Thr ead object isn’t sufficient, then using the Get Hash-

Code method will return an integer that will be unique within an application domain.

GetHashCode Get HashCode is a method that returns an integer value that will be unique
within an application domain.

Thread names are great for what they are intended, which is associating an easily rec-
ognizable value with a thread. Assigning a thread a name can greatly improve and
simplify the debugging process.

USING SLEEP AND INTERRUPT

What's the difference between a web site stress-testing tool and a web site monitor? The
short answer is the amount of time between requests. The goals of the two products
are very different. Both applications repeatedly request pages from a web server, but a
stress-testing tool is designed to request as many pages as possible; a web site monitor
requests its pages at a much slower rate. To slow down the requesting of pages, we can
use the Thr ead class’s SI eep method.

Threads go through many different states, one of which is Wai t SI eepJoi n. As
you might guess, a thread enters this state when it executes the Wai t , Sl eep, orJoi n
methods. This section discusses how the Sl eep method of the Thr ead class affects
the state of a thread. It also discusses how a thread can be triggered to exit the Wi t -
Sl eepJoi n state by using the | nt er r upt method.

CHAPTER 5 (CONTROLLING THREADS

5.3.1

The Sleep method

Imagine how much you could accomplish if you never rested. The same is very true
of threads. Since a computer’s processor and memory are finite shared resources, if
one thread doesn’t rest other threads may not be able to get their work done. Many
applications rely on a relatively large amount of time passing between actions. For
example, if the web site monitor were to constantly request pages, it would put an
unnecessary stress on the web site that it was monitoring. Fortunately, we can use the
Sl eep method to suspend the execution of a thread for a period of time.

Sleep Sl eep is a method on the Thr ead class that enables the current thread to
pause its execution for a period of time. Alternatively, it can be used to yield
the remainder of its time to the OS.

A thread can put only itself to sleep. This means that one thread cannot cause a dif-
ferent thread to sleep by calling its SI eep method. Because S| eep is such a useful
method, we’ve been working with it for some time now. Listing 5.3 shows Sl eep in
a number of forms.

Sub Mai n()
Thread. Current Thread. Nane = " Mai n"
Consol e. Wi teLi ne(Thread. Current Thr ead. Nane)
Dim SiteMonitor As New WebSiteMnitor("http://local host/test. htni, 1000)

Di m Thr eadWat cher As Thr eadSt at eWat cher
Thr eadWat cher = New Thr eadSt at eWat cher ()
Thr eadWat cher . Wat chThr ead(Thr ead. Curr ent Thr ead)

SiteMonitor. Start()

DmD H M S M As Integer

D=0 "' Days

H=0 ' Hours

M=o ' Mnutes jl i
S = 20 ' Seconds

Ms =0 "' MIliseconds Gives up the
Thr ead. Sl eep(1000) j rema.inder.of
Thr ead. Sl eep(0) the time slice
Thr ead. Sl eep(New Ti meSpan(100)) © Sleeps for
Thread. Sl eep(New Ti meSpan(H, M 9S)) 100 ticks
Thread. Sl eep(New Ti mreSpan(D, H M YS))
Thread. Sl eep(New Ti reSpan(D, H M S, M5))
Thread. Current Thread. I nterrupt ()
Thr ead. Sl eep(Syst em Threadi ng. Ti meout . Infinite) @ Sleeps until a different
Si t eMoni t or. Abort () thread calls Interrupt
Si teMoni tor. Join()
End Sub

USING SLEEP AND INTERRUPT 75

76

Sl eep is a way for a thread to yield control to the OS. Naming the method Sl eep is
fairly accurate. You can think of it as the thread taking a nap. During naps, we don’t
consume many resources; we re still alive, and generally pretty easy to wake up. That
applies equally well to threads that have invoked their S| eep method.

There are different versions of the S| eep method. The version we have seen so far takes
an integer parameter that indicates the maximum number of milliseconds the current
thread should be allowed to sleep. In listing 5.3, the thread sleeps for one second, or
one thousand milliseconds.

This version passes zero to the Sl eep method. When the parameter to Sl eep is 0
this indicates that the current thread should yield the remainder of its time slice to
the operating system and continue executing on the next time slice. There are times
when this is a good idea. The thread watching class we discussed in section 4.5.2 is a
good example of when this approach should be used. Instead of calling Sl eep with
five milliseconds, it would have been better to call it with zero. This would indicate
that as soon as the thread had finished the current iteration of inspecting the other
thread, it should yield the remainder of the current time slice. If the thread takes
longer than one time slice to do its work, it will be interrupted and a context switch
will occur. Using the thread watching class, we can see that calling S| eep on a thread
causes it to enter the Wi t S| eepJoi n state.

This version of the SI eep method accepts a Ti meSpan object as its parameter. The
Ti meSpan object can be created numerous ways and offers an easy way to indicate
the length of time that a thread should sleep. One way to create a Ti meSpan object
is to pass in the number of ticks the span should account for. A tick is the smallest
unit of time in .NET. There are 10,000,000 ticks in a second.

TimeSpan Ti meSpan is an object that represents a unit of time. There are various
constructors that allow for a highly flexible means of representing time du-
rations. One version of the Sl eep method accepts a Ti meSpan object as
its parameter.

The Ti meSpan object also allows for the span to be denoted in terms of days, hours,
minutes, seconds, and milliseconds. The following statement causes the current thread
to sleep for one hour, two minutes, and three seconds:

Thr ead. Sl eep(New Ti neSpan(1, 2, 3))

For threading purposes, sleeping for multiple days probably is not the best approach.
Instead, the Schedul e component is likely a better fit. However, for those cases where
it is needed, the capability does exist. The following causes the current thread to sleep
for one day, two hours, three minutes, four seconds, and five milliseconds:

Thr ead. Sl eep(New Ti meSpan(1, 2, 3, 4, 5))

CHAPTER 5 (CONTROLLING THREADS

5.3.2

O !If the Sl eep method is called with Syst em Thr eadi ng. Ti neout. Infinite

passed in as the parameter, the thread will remain in the Wi t SI eepJoi n state until
a different thread wakes it by using the | nt er r upt method.

Thread. Sl eep(Syst em Threadi ng. Ti meout. I nfinite)

One reason you might want to do this is if a thread determines that it is in a state where
the best thing it can do is nothing. This may be an alternative to ending the thread by
using the Abor t method, or simply exiting the thread’s method. Once a thread ends,
there is no way to restart it. However, if a thread calls the S| eep method and passes
in I nfinite for the timeout value, it is possible to exit that state at a later time.

This concept is similar to calling Joi n. When Joi n is called and no parameter
is passed in, the current thread will wait indefinitely for the thread to end. When Joi n
is called with a timeout value, the Joi n method will block for at most that period of
time and then return a value indicating if the thread of interest ended. A key difference
is that Joi n is called on a different thread while Sl eep is called on the current thread.
Joi n also causes the current thread to pause for a period of time, but with the idea
that it is waiting for some other thread to terminate. At the point the thread being
joined terminates, the JOi n method returns. Later we will see how to pause a different
thread’s execution.

The Interrupt method

Suppose that you're tasked with making sure your company’s web site is functioning
correctly. Your boss calls and asks, “Is the web site down?” In this case, you don’t want
to wait until the thread finishes sleeping to find out if the web site is not well. The
I nterrupt method on the instance of the Thr ead object allows one thread to
wake up another.

Interrupt The | nt er r upt method can be called on a thread that is in the Sl eep-
Wi t Joi n state. It raisesa Thr eadl nt er r upt edExcept i on that causes
the thread to exit the S| eepWi t Joi n state.

I nt errupt issimilar to Abor t in that it causes an exception to be raised in the thread’s
method. If the exception is not handled, the thread will terminate. This is a recurring
theme; always wrap a thread’s main method with at ry cat ch block to capture any
exceptions that might arise. The Thr eadl nt er r upt edExcept i on is raised when-
ever another thread calls | nt er r upt . Notice in listing 5.4 that we aren’t declaring a
variable to reference the exception being caught in the case of the two thread exceptions.

private void ThreadMet hod()

{
while (true)

{
try

USING SLEEP AND INTERRUPT 77

78

CheckSite();

Thr ead. Sl eep(sl eepTi ne) ;

}
cat ch(Threadl nterrupt

{

edExcepti on) Raised when a thread

calls Interrupt

status = "Interrupted”;
System Di agnosti cs. Trace. Wit eLi ne(status);

}

cat ch(Thr eadAbor t Excepti on)

{

status = "Aborted";
System Di agnosti cs.
}
cat ch(Exception ex)
{
status = "Caught "
System Di agnosti cs.

Trace. WitelLi ne(status);

+ ex.ToString() + " " + ex.Message;
Trace. WitelLi ne(status);

The exception’s message contains information on where the exception was generated.
In our example we don’t care where the Abor t or | nt er r upt was initially triggered.

We only care that they were

triggered, so we can safely ignore the information.

To allow for easier user interaction let’s move our example from the console-based
world to the Windows Forms world. A screenshot of the application can be seen in
figure 5.5. The class being called is basically the same as in previous examples except
that instead of writing out to the console the state of the last request, we record the state
in a status variable. This isn’t ideal—in the future we’ll save the output to a database—

=
URL [hitp:/focalhosttesthim— Update
Ul Thread Sleep Time W
Palling Thread Sleep Time W Update
Initialize: I WI Interrupt I Abort I

Up 0 8/18/2001 2:03:58 PM ;I

|

Background, WaitSleeplain

Figure 5.5 Our web site moni-
toring application

but for now, it’s sufficient. We’re now using properties
to change the URL that is being checked, along with
the time to sleep between requesting a download of the
page referenced by the URL. The use of properties is
always a good idea, but it becomes even more impor-
tant when doing multithreaded development. Because
properties restrict access to data elements, it is much
easier to determine when a variable can change value.
Since multiple threads may act upon a value, it is a
good idea for them to go through a property to do so.
We will discuss this more in future chapters.

We update the values displayed in the window of the application on a variable rate

using a thread dedicated to

that purpose. Because the native Windows controls are

not thread-safe, we must use the control’s | nvoke method, passing in a delegate. We
will discuss this more in chapter 15.

CHAPTER 5 (CONTROLLING THREADS

5.4

By changing the value of U Thr ead Sl eep Ti me you can change the responsive-
ness of the application. When the Initialize button is clicked, a new instance of \eb-
Si t eMoni t or is created and assigned to the Si t eMoni t or variable. Clicking Start
causes the URL and sleep time properties on Si t eMoni tor to be updated and
invokes Si t eMoni t or’s St art method. Clicking the Interrupt button causes the
following code to be executed:

if (SiteMonitor !'= null)

{
SiteMonitor.Interrupt();
}
el se
{
MessageBox. Show("Not Initialized");
}

Si teMoni tor. | nterrupt simply invokes the | nt er r upt method on the instance
of the Thr ead class:

Moni t or Thread. I nterrupt();

When the interrupt is signaled, a Thr eadl nt er r upt edExcept i on is generated.
The exception likely will occur during the Thr ead. Sl eep statement; however, since
the Webd i ent object uses threads it is possible that the exception will occur during the
Downl oadDat a call. Exceptions should always be handled, and ideally as close to the
source of the exception as possible. Chapter 13 covers thread-related exceptions in detail.

When we create the threads in this example, we set the | sBackgr ound property
to true. In the next section we’ll explore that property and why we use it.

USING BACKGROUND AND
FOREGROUND THREADS

Suppose that you had a thread that calculates the running average time to download a
given web page. At the point the web site monitor is shutting down, there is no rea-
son for that thread to continue to exist. To simplify application termination, you can
mark the thread as a background thread. This is accomplished by using the | sBack-

gr ound property.

IsBackground | sBackgr ound is a property of the Thr ead object that controls termination
of the process. When a thread is a background thread, it will be terminated
at the point all foreground threads terminate.

In previous examples, we have assigned true to the | sBackgr ound property. | sBack-
gr ound controls how termination of a process is carried out. The application domain
will continue to exist as long as there is at least one foreground thread executing. This
means that if the main thread of the process exits and another foreground thread is
executing, the process will continue to exist and the foreground thread will continue
to execute.

USING BACKGROUND AND FOREGROUND THREADS 79

80

In the following example we set Ul Thr ead’s | sBackgr ound property to true
to indicate that the thread associated with Ul Thr ead is a background thread:

Private Sub Forml_Load (ByVal sender . . .)
Thread. Current Thread. Nane = " Mai n"
Ul Thr eadSl eepTi ne = 1000
U Thread = New Thread(AddressOf Updat eUl Met hod)
Ul Thr ead. Nane = "Ul Thr ead"
Ul Thr ead. | sBackground = True Makes UIThread a
U Thread. Start ()

background thread
End Sub

Suppose you have a process that has two threads in it: one is a foreground thread, while
the other is a background thread. If the background thread ends, the foreground thread
will continue to execute, as you would expect (figure 5.6). The ending of background
threads has no effect on the life of the process where the thread lives.

| Foreground Thread |

| Background Thread |

[Time >

Figure 5.6 Background thread ending before foreground thread

If the foreground thread terminates before the background thread, the background
thread’s execution is also ended. Figure 5.7 shows an example where the termination of
the foreground thread causes the background thread to be terminated. When the last
foreground thread ends, the process also ends. When the background thread is ended,
no exceptions are raised in the background thread’s methods. This means that the
background thread is not given the chance to gracefully exit. If some operation is par-
tially completed, it will be interrupted and the thread will terminate.

| Foreground Thread |

| Background Thread |

[Time >

Figure 5.7 Foreground thread ending before background thread

A common mistake that developers new to multithreaded development make revolves
around foreground threads and process termination. A process will continue to exist
as long as there is at least one foreground thread. Figure 5.8 demonstrates this.

CHAPTER 5 (CONTROLLING THREADS

Foreground (Ul) Thread

Foreground (Non-Ul) Thread

Windows Form disappears

[Time >

Figure 5.8 Multiple foreground threads

When a Windows Form application starts up, the only thread that exists is the thread
that creates the user interface elements, such as buttons, text boxes, and the form itself.
During the execution of the main thread, another foreground thread is created. When
the main, user interface oriented thread exits, the visual portion of the application disap-
pears. However, the application continues to execute because there is still at least one
foreground thread executing. The application will terminate when the last foreground
thread exits, or when the process is terminated.

The mistake is that the non-UI foreground thread does not terminate as expected,
not that there is more than one foreground thread.

Clean To perform a clean shutdown of a process call the Abort method on the
Shutdown) read and then call the Joi n method to wait for it to end.

In our example, the Si t eMoni t or thread accesses web sites using the WebCl i ent
object from the Net namespace. WebCl i ent retrieves web pages by opening sockets,
starting threads, and closing sockets. Ending this thread in the middle of some opera-
tions can cause undesirable results. It’s a good idea to terminate the thread cleanly,
using the Abort method. It also is a good idea to use the Joi n method to wait for
the thread to terminate. Since our application is a Windows application, we can add
an Appl i cati on C osi ng event handler:

Private Sub WebSiteMnitorFormd osing(...) Handl es MyBase. C osi ng
If Not IsNothing(SiteMnitor) Then
Si t eMoni t or. Abort ()
Si t eMoni t or. Joi n(1000)
End | f
End Sub

The parameters are omitted for space reasons. Since the user may not click on Initialize
before closing the application, we first check to see if Si t eMbni t or has been assigned.
If it has, we invoke the Abor t method and then the Joi n method. Since Joi n expects
that the thread has started, we need to change the Joi n method to add defensive
code that checks if the thread is alive before calling Joi n.

USING BACKGROUND AND FOREGROUND THREADS 81

5.5

5.5.1

82

Public Sub Join(ByVal HowlLong As I nteger)
I f MonitorThread.|sAlive Then
Moni t or Thr ead. Joi n(Howi.ong)
End I f
End Sub

This allows the application to shut down cleanly.

USING SUSPEND AND RESUME

As a child you may have played a game called “freeze tag” or “statue tag.” In the game,
one, and only one, of the players is It. If you’re It, your goal is to freeze all of the other
players by tagging them. If a player you tag is touched by a player who is not frozen,
that person is thawed and can return to play. This is fairly close to how the Suspend
and Resune methods work.

When a thread’s Suspend method is invoked it goes into a frozen state. This state
is very similar to the WAi t Sl eepJoi n state except that in order to leave that state
the thread must either terminate or the Resunme method must be invoked. Just as in
the game of freeze tag, the thread that invokes the Suspend method is not required
to be the same one that invokes the Resunme method.

The Suspend and Resune methods are not a means of synchronizing threads.
In the next chapter we discuss ways of having threads talk to each other without bad
things happening. When the Suspend method is invoked, it causes the thread to
pause its execution as soon as it reaches a point where it can do so. This means that
if that thread owns a certain resource, it will continue to own that resource even though
it is in a suspended state. In general Suspend and Resume should be avoided. They
are covered here for completeness and so that if you ever encounter a situation where
you need them you know what they are.

A multithreaded version of freeze tag is available at www.manning.com/dennis. It
is simple, but demonstrates how Suspend and Resumne can be used.

The Suspend method

We have seen how a thread can put itself to sleep for a period of time. Suppose you had
two threads: Thread A and Thread B. Thread A is the main thread, meaning it is cre-
ated when the application domain is created. It creates and starts Thread B. Thread B
does some work, and during its work Thread B sleeps for a period of time. Thread A
calls the I nt er r upt method on Thread B, forcing Thread B to continue its execution.
Figure 5.9 is a visual representation of the flow that occurs.

The number 1 in figure 5.9 is the point where Thread A creates Thread B and calls
St ar t . The number 2 is where Thread A calls | nt er r upt on Thread B. Notice that
Thread B put itself to sleep. Thread B decides to go to sleep at the point that the SI eep
statement is evaluated because the SI eep statement places the thread into a safe point.

CHAPTER 5 (CONTROLLING THREADS

Thread A

1 2]|

| Thread B [__Sleep |

[Time >

Figure 5.9 Impact of sleep and safe points

Suspend Suspend is a method on the Thr ead object that allows one thread to pause
the execution of another thread (including its own). The suspend request
will take effect as soon as the thread being suspended reaches a safe point.

A thread cannot call Sl eep on a different thread. In order for one thread to pause the
execution of another, it must use the Suspend method. Unlike Sl eep, Suspend
doesn’t necessarily cause the thread to pause immediately. The thread must enter a
safe point before it can be suspended.

| Thread A

1] Al sll4]l
| Thread B | _Suspended |

[Time [>

Figure 5.10 Example of Suspend

Thread A starts Thread B at point 1 in figure 5.10. Notice that at point 2 Thread A calls
Suspend on Thread B. It takes a little time for Thread B to enter the Suspended state.
A thread cannot cause itself to exit the Suspended state. Instead, some other thread
must invoke the Resune method (point 3) to cause a thread to exit the Suspended
state. Thread B terminates at point 4.

NOTE Suspend is not a synchronization mechanism. It should not be used in place
of a synchronization mechanism. It should only be used in situations where
synchronization is not a concern.

In the previous chapter we discussed the Thr eadSt at e property of the Thr ead class.
When Suspend is called on a thread the Thr eadSt at e property’s Suspended bit
is turned on. When Suspend is called on a thread, that has already been suspended,
it has no effect. If a thread called Suspend 1,000 times on a thread, and then called
Resurme once, the thread would exit the Suspended state and continue execution.
There are paths from one state to another that are allowed, while other paths are
not. We call these paths state transitions. An example of an allowed state transition is
going from the Unst ar t ed state to the Runni ng state when the St art method is

USING SUSPEND AND RESUME 83

5.5.2

84

called. When an invalid state transition is attempted, a Thr eadSt at eExcept i on
is thrown. For instance, when a thread is in the Suspended state as a result of some
other thread calling the thread’s Suspend method, if the Abor t method is invoked
on that thread a Thr eadSt at eExcept i on is thrown.

public void ForceAbort ()
{
try
{
if ((MonitorThread. ThreadState & ThreadSt ate. Suspended) > 0)

{

status = "Can't abort a suspended thread";
Moni t or Thr ead. Resune() ;

}
Moni t or Thr ead. Abort () ;

}
cat ch(System Thr eadi ng. Thr eadSt at eExcepti on ex)

{

status = "Abort attenpted:" + ex.Message;
System Di agnostics. Trace. Wi teLi ne(status);
}
}

Since our application doesn’t restrict what buttons the user can click, we need to provide
error handling. In general, error handling is a good idea, but when dealing with threads
it is very important. At the very least, it’s a good idea to wrap all calls to methods that
can change the state of a thread with t ry cat ch blocks. A more robust form of error
handling would be to check the state the thread is in before attempting to change it.
Spending time developing robust error handling can greatly reduce the time associated
with maintenance and debugging a multithreaded application. This concept is true of
developing any application, but because of the potentially high complexity of devel-
oping multithreaded applications it is imperative to provide good error logging, if not
error handling.

The Resume method

In the previous section we covered the Suspend method. We saw how it allows us to
interrupt the execution of a thread and place it in a Suspended state. To exit the
Suspended state, we use the Resurme method. Regardless of how many times Suspend
was called, a single call to Resune allows the thread to exit the Suspended state.

Resume Resune isa method on the Thr ead object that allows a thread to continue
execution after it has been suspended by calling the Suspend method.

In the last chapter we discussed several other thread states. In this chapter we have added
to that list. The Suspended state is entered whenever a thread has its Suspend
method invoked. In order to exit that state, we must call Resume. If a thread is in the
Suspended state and some method other than Resune is called, it will likely result
ina Thr eadSt at eExcepti on.

CHAPTER 5 (CONTROLLING THREADS

Thread- Thr eadSt at eExcept i ons occur when a method is called that attempts to
State- cause a thread to move into a state that is not allowed based upon the thread’s
Exception
current state. An example is when a thread is in the St opped state; it cannot
be moved to the Runni ng state by calling St ar t .

For example, if a thread is in the Suspended state and Abor t is called on
that thread, a Thr eadSt at eExcept i on will be raised on the calling thread.
This brings us back to handling exceptions when dealing with threads. Every
method that acts upon a thread should be included inat ry cat ch block that
logs any exceptions that occur. Many of the examples so far have not included
error handling, primarily because it can make it difficult to see the actual con-
cepts involved. In general, unless the purpose of the code is to demonstrate a
concept, error handling should be included around every call to each method
on an instance of the Thr ead class that could cause a state transition.

5.6 EXPLORING THREAD STATES

Threads can be in multiple states. For instance, a thread can be in the Backgr ound
and Wi t S| eepJoi n states at the same time. Other states are mutually exclusive;
for instance, a thread cannot be in the Abor t ed and the Runni ng state at the same
time. Table 5.1 outlines the states a thread can be in concurrently.

Table 5.1 Mutually exclusive thread states: N indicates that a thread cannot be in two states
at the same time, while a Y indicates it can.

State
-
3

3 c g
' £ E]
s g o S g

State = g y ® & o
& 3 e £ g 2 o 3 2
£ £ 2 S a '€] 2 4
$ 8§ § & g 5 § g 3
< < a =) a « = b a

AbortRequested

Aborted N

Background Y Y

Unstarted Y N Y

Suspended Y N Y N

Running N N N N N

WaitSleepJoin Y N Y N Y

Stopped N N Y N N

SuspendRequested Y N Y N N N

EXPLORING THREAD STATES 85

86

It is important when dealing with threads to know what state the thread is in. Since
threads can change state between the time you check and the execution of some
instruction, it is imperative that error handling be in place to handle unforeseen cir-
cumstances. Traditional single-threaded development usually involves controlling what
can happen based on the current state the program is in. Since state is ever-changing in
multithreaded development, a more flexible approach must be taken. For instance, it
might make sense to do the following:

if (SiteMonitor. Suspended)

{
Si t eMbni t or. Resune() ;

}

The problem is that between the time that the test to see if Suspended is true and
the time Resune is called, a different thread might have called Resune on the same
thread. Instead, the call in the example should be contained in a t ry block.

Figure 5.11 contains an extended version of the state transition diagram we presented

at the end of chapter 4.

Unstarted
Completes Timeout Occurs

Start Execution

Suspend) or
/ Joined Thread Ends
SuspendRequested R Interrupt /

Running / Background WaitSleepJoin
Suspended

Resume Sleep

Stopped

Abort Join

Abort

ResetAbort

AbortRequested
Do Nothing

Figure 5.11 Expanded state transition diagram from chapter 4. A link indicates that a state
transition can occur between those two states.

CHAPTER 5 (CONTROLLING THREADS

5.7

5.71

DIGGING DEEPER INTO THREAD CONTROL

It’s unlikely that you will need to use the advanced topics in this section, but it’s a
good idea to be aware of them. If you are new to multithreaded development, you
can safely skip this section. The material covered here contains concepts that are not
required to develop a multithreaded application.

Controlling thread priority

So far our web site monitor has monitored only one site. If we add a second site to
monitor, it might well be that one of the sites is more important than the other. It is
possible to give each thread a different priority, and this may improve responsiveness.
I say may because dealing with thread priority (figure 5.12) is somewhat tricky. It
depends a great deal on what a thread is doing, what the machine executing the pro-
cess is doing, and the configuration of the machine. If each thread is processor bound,
then giving one thread a higher priority than another might result in some threads
not being given a chance to do their work. Processor bound means the thread is using
the CPU more than other resources. Changing priority of a thread may make no dif-
ference, it might make things much worse, or it might make things much better.
We'll explore this in detail and discuss when adjusting a thread’s priority is a good
idea and when it is not.

When a thread is created, it inherits the priority of that process. In figure 5.12 the
process has a priority of 8. Thread3 has the same priority as the process since it has a
priority level of Nor mal . Priority is a relative thing. If all threads in a process have the
same priority, they will be given a chance to execute roughly the same number of times.
The catch here is that priority makes a difference only when a thread is available for
scheduling. A thread needs to be in a state where it can do work to be scheduled.

Thread Priority is relative to the priority of the process.

10 D B Highest (+2) Thread1 In this example, the process has a priority of 8.

° « AboveNormal (+1) Thread2 Thread1 in that process is set to the highest priority
level h jority level of 10.

8 4—Normal Thread3 | Process evel and has a priority level of 10

7 P BelowNormal (-1) Thread4 Th_re_ad5 is set to the lowest priority level and has a
priority of 6.

6 «---------1Lowest (-2) Threadb)
If Thread5 and Thread1 are both available for

5 scheduling, Thread1 will execute.

4

3

Figure 5.12 How a thread’s priority is calculated

DIGGING DEEPER INTO THREAD CONTROL 87

88

The priority system is based on a scale from 0 to 31, with 31 being the highest. To
change the priority of a thread, we use the Thr eadPr i ori t y property on the instance
of the Thr ead class. For example, if we have an instance of the Thr ead class called
Wor ki ngThr ead, we can change its priority to AboveNor mal by using the fol-
lowing statement:

Wor ki ngThread. Priority = ThreadPriority. AboveNor nal

From time to time the OS may temporarily increase the priority of a thread. This is
called a priority boost. This is often done when the scheduler determines that a thread
has some needed resource allocated, but doesn’t have a high enough priority that it can
complete its usage of the resource. By assigning a priority to a thread, you are giving
the scheduler a hint as to how it should execute your thread. It will follow your guid-
ance pretty closely, but it may intervene from time to time.

A process has a priority associated with it. PriorityC ass, which is an enu-
meration of five values, sets the process’s priority. The enumerated values, along with
the corresponding base priority, are listed in table 5.2. The process priority combined
with the thread’s priority yields the dynamic priority of the thread. This is the value
that is used by the operating system scheduler. Table 5.2 presents a simplified version
of how a thread’s priority is calculated.

Table 5.2 Process Class and Associated Priority

Priority Class Base Priority
RealTime 24
AboveNormal 10

Normal 8
BelowNormal

Idle 4

When you're doing multithreaded development, initially it’s best not to change thread
priority. It is possible to mask serious issues, such as race conditions, which we will cover
in the next chapter, by changing the priority of a thread. This is a short-term solution
and will most likely not fix the problem. Changing thread priority is an optimization,
and as with all optimizations it should be done only after careful analysis and profiling.
When you’re profiling, it is best to use the same type of hardware the application will be
deployed on. So, if the application will be installed on a four-processor machine, it is a
good idea to profile, and test, the application on a four-processor machine. Scheduling
of threads is done on a per-processor basis. The behavior of an application may change
when you move from a single processor to a multiprocessor machine:

CHAPTER 5 (CONTROLLING THREADS

Process Base Priority
+ Thread Priority Delta
+ Priority Boost (If Any)
Thread Current Priority

There are circumstances where changing a thread’s priority is always a good idea. When
a task is not critical to completion of some work and it can be delayed, it likely makes
sense to lower that thread’s priority. This may free up resources for other threads. If a
thread has important work to do (is processor intensive), but that work isn’t always
present, it is probably a good idea to increase the thread’s priority. Small changes in
priority are typically the best. This is not an example of if @ little does a little good, a lor
will do a lot of good.

5.72 Setting processor affinity

Under normal situations the OS scheduler assigns the highest priority available thread
to each processor in the system. This means that if a process has more than one
thread, each of those threads may execute on different processors. Generally this is
exactly what is wanted. An exception is when the process contains CPU-intensive
activity or the server is under a high load from other sources.

By limiting what processor a process can utilize, you create situations where per-
formance can be improved. A processor contains a certain amount of memory, called
a cache. By keeping the same thread on the same processor, you ensure that the cache
is utilized more frequently, and performance improves. The scheduler in Windows
attempts to keep a thread on the same processor if possible for that very reason. This
is known as soft processor affinity.

Processor Processor affinity is a means of controlling the scheduling of a process so that

Mfinity 5 certain process’s threads will execute on a set of processors.

A process can also tell the scheduler that it should run only on certain processors.
This keeps the process on the processors where it is allowed to execute. This is called
processor affinity. It is possible to change a process’s processor affinity using the Sys-
tem Di agnosti cs. Process class. Using the static/shared method on the Pr o-
cess class called Get Current Process retrieves a

reference to the current process. We can then change the | o | 0 | 1 | 1 | 0 |
Processor Af fi ni ty property to indicate the desired
affinity. Processor Af fi ni ty is a pointer to a 32-bit Figure 5.13 Bitmask

. . . . value example
integer. It contains a bitmask on which processors a process P

can execute. The low-order bit corresponds to the first

processor in the machine, CPU 0. The high-order bit matches the last processor that
can be installed in the machine, which under 32-bit Windows is 32. In figure 5.13 we
can infer that the machine has at least three processors and that the process can execute

on CPU 1 and CPU 2 but not on CPU 0.

DIGGING DEEPER INTO THREAD CONTROL 89

90

The integer value returned by Pr ocessor Af fi ni t y would be 6:
(0%2%) + (1%2%) + (1*21) + (0%2°)=6

Figure 5.14 shows the impact of changing the processes’ processor affinity.

CPU
o | T
TZ
CPU
1 T3
CPU
2 =
>
g
CRU &
3 o
(o
(0]
w
S
[0}
Q.
s Figure 5.14
= Pro or affinity

Since Thread T, has an affinity of 6 it will not be scheduled on CPU 0 or CPU 3. It
will only be scheduled on CPU 1 or CPU 2.

When a process first loads, it can determine what processors it can execute on by
examining the contents of Pr ocessor Af fi ni ty. It is important to remember that
even though you might set the processor affinity, it is possible that it will change during
the life of the process. One way this can happen is by using Task Monitor. If you right-
click on a process, on a machine with more than one processor, you can select Set
Affinity. This will display the dialog box in figure 5.15.

By selecting what processor the current process can execute on, you can essentially
override any settings that might have been specified by the program. Remember this

The Processor Affinity setting contrals which CPUs the process will
be allowed b0 execute an,
IV crua I=|crus I~ cruiie I~ cpuize
M crutL [T crua | cruis ™| cruizs
" cruz | N ™| cruiiE I~ cruize
IV cru3 = cpuiL 7 cRu 19 I~ cpu27
[T cru4 [T cruitz =} cruizo [T cruizs
[T crus [T cputs I cpuizy [~ | cruiza
[T crus [T cputs T cpuize ™| cruwizn
[~ crus [T cputs I cpuizs [~ cruiat .
Figure 5.15
ok | cancel | ProcessorAffinity
dialog box

CHAPTER 5 (CONTROLLING THREADS

5.73

when developing. Do not count on multiple processors. Even in situations where there
are multiple processors the scheduler may choose to execute each thread of a process
on the same processor. Under symmetric multiprocessing, the process has very little
control of how it is scheduled. In general, it is better to let the operating system take
care of it for you.

— E 1 Open Task Manager.
w =
‘Z’ o E 2 Right-click on the process that you wish to change the processor affinity of.
<
g:p & = 3 Select Set Affinity from the context menu that pops up.
=0 wn
3 :z: § 4 Update the check boxes.
= € 5 Click OK.

One use of this type of capability would be to restrict a misbehaving multithreaded
application to execute on a single processor. This may remove concurrency issues. Since
each thread in the process would execute on the same processor, true concurrency would
not be reached. This may reduce timing issues. This approach is not a replacement
to proper design and implementation, but under extreme circumstances it is a valid
short-term fix.

Specifying an ideal processor

Suppose that you wanted the web site monitor to utilize a certain processor. One way
you could accomplish this is to set the process’s processor affinity as we discussed in
the last section. A less restrictive approach is to set the thread’s ideal processor.

Ideal An ideal processor is one that a thread would prefer to be scheduled on. The
Processor scheduler may or may not honor that preference.

This allows us to give the scheduler a hint as to what processor we think that the thread
should execute on. The scheduler may or may not listen to our hint because we don’t
know as much about the load on the system as it does. It may be that some other process
also thinks it should execute on the same processor we think we should execute on.
The motivation of setting an ideal processor is to take advantage of the CPU’s cache.
Since it has been working with the data our thread uses, the data is already in the CPU’s
cache. Loading the CPU’s cache is a relatively expensive operation. Processors have
caches because it is much faster to retrieve data from a cache than it is from main mem-
ory. Caching is also done at multiple levels. If the data the processor needs isn’t in the
first-level cache it looks in the second. If the data isn’t in the second-level cache, it looks
in main memory. Not all systems have a second-level cache. For those systems with
only a first-level cache, if the data needed isn’t in that cache it is loaded there from
main memory. Processor cache sizes have grown to where relatively large first-level
caches are not unusual. When a processor references data, it is generally loaded into

the cache (listing 5.5).

DIGGING DEEPER INTO THREAD CONTROL 91

92

Process MyProcess;
ProcessThread MyProcessThread;

private void ThreadMet hod()

{
Moni t or Thr eadl d= AppDomai n. Get Current Threadl d() ;
M/Process = Process. Get Current Process();
for (int i=0;i<MProcess. Threads. Count ;i ++)

{
if(MyProcess. Threads[i].ld == MonitorThreadl d)
{
MyProcessThread = MyProcess. Threads[i];
br eak;
}
}
if (MyProcessThread== null)
{

throw new Exception("Thread Not Found in Current Process");

}
M/ProcessThr ead. | deal Processor = 2;

Listing 5.5 shows how to set a process’s ideal processor. The Thr eadi ng. Thr ead
object does not enable us to set a thread’s ideal processor. Instead, we must use the
Di agnosti cs. ProcessThr ead object. In order to retrieve the Pr ocessThr ead
object that corresponds to a certain thread, we must first determine the thread’s ID.
This isn’t exposed as a property of the Thr ead object. Instead, we need to call App-
Domai n. Get Cur r ent Thr eadl d from a method that is executing on the thread
we're dealing with.

The Syst em Thr eadi ng. Thread class does not expose the OS thread ID
because on some platforms one-for-one mapping may not exist between a managed
thread and an OS thread. Certain handheld platforms may not provide OS multi-
threaded support. On those platforms the .NET framework will provide the multi-
threaded support itself, instead of relying on the OS. The framework provides an
abstraction between the physical threading implementation and managed threading,.
This means that interacting with OS-level threads and processes may restrict the plat-
forms an application can execute on.

Once we have the thread’s ID, we can look for it in the current process. We retrieve
the current process using the Di agnosti cs. Process. Get Cur r ent Process
method. Once we have the current process, we examine its Thr eads collection. We
look at each ProcessThr ead object in the Thr eads collection, checking the | d
property to see if it is the same as our current thread’s ID. Once we find the matching

CHAPTER 5 (CONTROLLING THREADS

ProcessThr ead, we can set its | deal Processor property. | deal Processor
is a write-only property. This means we can set the ideal processor but we cannot see
what the current ideal processor is. Only one processor can be the ideal processor at a
time. Instead of passing in a bitmask as we did in setting the process’s processor affinity,
we pass in a value indicating which is the ideal processor. For example, we pass in 2
to indicate that CPU 2 is our ideal processor. To undo the ideal processor setting, we
use the ProcessThr ead’s Reset | deal Processor method. This removes the
setting of the current ideal processor.

1 Retrieve the current thread’s ID using Get Cur r ent Thr eadl d.
Retrieve the current process by calling Get Cur r ent Pr ocess.

STEPS TO SET
IDEAL
PROCESSOR

2
3 Look for the current thread in the current process’s threads.
4 Setl deal Processor on the ProcessThr ead object.

Setting the ideal processor is a way of giving the scheduler a hint as to where the thread
should be executed. If we've selected a process affinity mask, the ideal processors should
be one of the processor we've selected.

The concept of an ideal processor is so important that the scheduler attempts to keep
threads on the same processor, if possible. Figure 5.16 shows that by keeping a thread
on the same processor the contents of the processor’s cache need to be refreshed less
often than if a different processor was used. Under most circumstances the scheduler
does a good job. Setting the ideal processor is an optimization and should be done only
once. It is clear that it improves performance. Optimization should be performed after
correctness has been reached, and only if it is needed.

T, has selected CPU 0 as its ideal

Memory processor. By keeping T,’s most

) recently used data in CPU 0’s cache,

Cache | [Cache | [Cache | [Cache performance can be improved. If T,

is then scheduled on a different CPU,

/ CPUOJ [CPUT]|CPU2]|CPUS the data will need to be loaded into

— that CPU’s cache. If instead T | were
T 2 T 3 Threads to be scheduled consistently scheduled on CPU 0, the
data would already be in the cache.
Figure 5.16 Motivation for setting an ideal processor One thing to keep in mind is that

other processes can set things like
ideal processor. Just as tools like Process Viewer can change thread priority, a program
can change the ideal processor. To test out setting | deal Pr ocessor you can use the
ProcessThr eadVi ewer program that is available from the publisher’s web site at
www.manning.com/dennis. The program allows inspection of a process and each of its
threads. You can also set | deal Proocessor for a particular thread. This tool is for
learning purposes only and can result in system instability. Be careful playing with it.

DIGGING DEEPER INTO THREAD CONTROL 93

5.8

94

SUMMARY

This chapter exposed you to the basic concepts and syntax of thread control. You've
learned how to put a thread to Sl eep and | nt er r upt it. You've learned that one
thread can call Suspend and Resume on another thread. Most important, you've
learned the rules governing the termination of an application domain with regard to
background and foreground threads.

We've also covered some deeper topics in section 5.7. Don’t be concerned if they
seem a bit overwhelming. It’s not important that you understand them until you plan
to use them, at which time you can return to these sections. Now that you’ve learned
how to control threads, we can move on to the next chapter and see how threads can
communicate.

CHAPTER 5 (CONTROLLING THREADS

CHAPTEHR 6

Communicating
with threads

6.1 Using data to communicate 96
6.2 When things go badly 105
6.3 Summary 109

Communication is very important. In software development a project that does not
have good communication among the team members is not likely to succeed. The
same is true in multithreaded development. The ability for one thread to communicate
with another allows for robust solutions. Since C# and VB.NET do not allow for
methods without classes, each method associated with a thread delegate is associated
with the class it resides in. This means that the method has access to the data ele-
ments that are contained within its class. This provides an easy and powerful way for
a thread to have access to data elements. Those data elements are encapsulated in a
class and can be protected.

The first way of communicating between threads that we will cover is the use of
public fields. Public fields are no more than public data elements. They can be manip-
ulated directly from other objects. This is one of the simplest ways of communicating
with threads. It has many drawbacks, all of which are related to using public fields in
general. Public fields violate the concept of encapsulation. Encapsulation encourages
the designer of objects to restrict knowledge of the inner workings of an object as much
as possible. This means that if I'm using an object I should not need to know how it
works to use it.

95

6.1

6.1.1

96

We then move on to the use of public properties as a means of communicating with
threads. Public properties solve many of the issues of public fields. The area where
public properties fall short is when communication between threads involves multiple
pieces of data.

The last means of communicating with threads we cover in this chapter involves
using first-in, first-out queues associated with a public method. Public methods can
have multiple parameters and can be used to submit elements to the queue.

We complete the chapter by discussing race conditions and deadlocks. These are
two common issues related to thread communications. We will discuss their causes
and explore ways of avoiding both of these conditions.

USING DATA TO COMMUNICATE

When a thread is created using managed code, there is no way to pass information to
it directly. Instead, we must take advantage of the fact that all methods in the .NET
framework are associated with a class or an instance of a class. This means that if we
change a value of an instance of a class, a thread associated with that instance of the
class will be able to see that change. The simplest way of changing a value associated
with a class is to use a public field.

Public fields

We will continue using the web site monitoring tool we introduced in the last chapter
as our example. When a web site goes down, logging that information is only part of
the goal. The more important part is letting someone know the site is down. One
way of informing people is to send email messages.

The .NET framework makes it very easy to send messages using the Sys-
tem Web. Mai | namespace. The Snt pMai | object contains a static/shared prop-
erty called Snt pSer ver that identifies the name address of the SMTP server to use
to send the email. The send method causes a message to be sent using the specified
SMTP server. Listing 6.1 contains the class SMTPNot i fi cati on.

usi ng System
usi ng System Web. Mai | ;
usi ng System Thr eadi ng;
namespace Publ i cFi el ds
{
public class SMIPNotification
{
/1 Public Fields
public bool TinmeToSendNotification;
public string To, Subject, Body, From Ser ver Nane;
/1
Thread Sendi ngThr ead;
public SMIPNotification()

CHAPTER 6 COMMUNICATING WITH THREADS

Sendi ngThr ead= new Thr ead(new Thr eadSt art (Thr eadMet hod)) ;
Server Name="mai | ";

Fr omrTo="noone@owher e. cont';

Subj ect =" Test from code " ;

Body = "This is the Body";

Ti meToSendNot i fi cati on=f al se;

Sendi ngThr ead. Name=" SMIPThr ead" ;

Sendi ngThread. Start ();

}
private void ThreadMet hod()
{
whi | e(true)
{
try
{
if (TimeToSendNotification) (@ Controlswhena
{ message Is sent
St pMai | . Snt pServer = Server Nane;
St pMai | . Send(From To, Subj ect, Body) ;
Ti meToSendNot i fi cati on=fal se;
}I'hr ead. Sl eep(1000);
E:at ch(Exception ex)
{ System Di agnostics. Trace. Wit eLi ne(ex. Message) ;
}
}
}

@ Since sending an email message involves connecting to a mail server through the net-
work, it may take a relatively long time. It is better to send the message on a different
thread than the one monitoring the web site. The notification thread is dedicated to
sending notification email messages. It sleeps the majority of the time, waking up to
check for work and then sleeping again. When the monitoring thread determines that
a web site is down and that it should notify someone, it sets a public Boolean field,
Ti meToSendNot i fi cati on, to true. This indicates that it is time to send a mes-
sage. The notification thread sees this, and uses the Fr om To, Subj ect , and Body
public fields to send the email message.

While having one thread control the operation of another is the idea, this approach
introduces many problems. Setting the public fields must be done in the proper sequence.
Generally, performing a series of assignments in a certain order is not a good thing.

USING DATA TO COMMUNICATE 97

98

Since the fields are public, every consumer of the class has access to those data ele-
ments. This means that there is no restriction as to who can manipulate those values,
and in what order. It also means that the user of the object must be familiar with how
the object behaves. This violates the concept of encapsulation.

One way for one thread to communicate with another is to set public fields.
The issues with this approach are:

+ Decreased encapsulation of information—other objects are required to
know too much about the inner workings of an object.

+ The lack of synchronization opportunities.

PUBLIC FIELD
COMMUNICATION

+ The possibility that data changes are missed due to timing issues.

Any value can be assigned to the fields since there is no validation mechanism. The
only validation that can be performed is before the message is actually sent. Ideally we
would not allow the value to be assigned if it isn’t valid. We will cover this in the next
section on properties. In the next chapter we will discuss synchronization concepts in
detail. For now, synchronization becomes an issue when multiple threads are manipu-
lating the same data. One thread may change the value while another is accessing it.
When this occurs, the results of the interaction become indeterminate. This is one of
the biggest challenges of multithreaded programming and is amplified by allowing
direct manipulation of data elements.

The web site monitoring thread does not stop and wait for the notification thread
to finish its work (figure 6.1). There is the possibility that during the time the notifi-
cation thread is sending the message the web site monitoring thread may determine that
the web site is still down and that another message should be sent. The web site moni-
toring thread would populate the To, Fr om Body, and Subj ect fields and then set
the Ti neToSendNot i fi cat i on field to true. During this time, the Ti meToSend-
Not i fi cat i on field would already be true since the notification thread is in the process
of sending the message. Once that message is sent, the notification thread would set
the Ti meToSendNot i fi cati on to false. This means that the second notification
message would not be sent. If more than one web site is being monitored, the failure
of one site might not be reported because of the slow notification time.

Sleep Check Sleep Check Monitor Thread

|i Web
Site
Dowg
Send : Notify

? ? ?
Sleep | Work? | Sleep | Work: Message Sleep | Work? Sleep Thread

Figure 6.1 How two threads can interact

CHAPTER 6 COMMUNICATING WITH THREADS

6.1.2

The goal is for one thread to impact the state of another. In the next section we’ll cover
properties. Public properties address many of the issues with using public fields as a
communication mechanism.

Public properties

Public properties behave a lot like public fields. Properties are essentially a pair of
methods. One of the methods is used to get the value while the other is used to set it.
They are a powerful and convenient way of limiting access to data elements. Since access
to the internal data value is limited to access by the property, the value being assigned
can be inspected. The following example shows how to define a public property:

Public Class SMIPNotification
Private nTi neToSendNotification As Bool ean

Public Sub New()
nli meToSendNoti fi cati on = Fal se
End Sub

Public Property TimeToSendNotification() As Bool ean
Get
Return nTi mneToSendNot i fication
End Get
Set (ByVal Val ue As Bool ean)
If Value = Fal se Then
Throw New Exception("Assigning to False is not allowed")
End | f
I f nili meToSendNotification = True Then
Throw New Exception("M ssed notification")
End | f
mli meToSendNoti fi cati on = Val ue
End Set
End Property

End d ass
If the nTi meToSendNot i fi cati on data element is true, we do not want to allow
it to be assigned true again. This is a means of enforcing rules regarding the object. In
this case, the Ml meToSendNot i fi cati on is used to signal when the notification
thread should send a notification email. Replacing a true value with another true
value can only occur when the notification message has not been sent. In our example
we throw an exception, forcing the caller to deal with the invalid state transition.
Additionally, we can ensure that only certain values are assigned. In this case, the

only value that should be assigned to the Ti neToSendNot i fi cati on property is
Tr ue. If an attempt is made to assign Fal se to the property, an exception is thrown.

USING DATA TO COMMUNICATE 99

100

Properties Properties are a means of controlling data access that allow for robust error
handling and data protection. They are implemented as a pair of methods
that control the getting and setting data element values. If only the Get
portion of the property is present, the property is read-only. If only the Set
portion of the property is present, the property is write-only.

Properties are an important aspect of object-oriented programming. They allow the
consumer of a class to interact with that class without being tied to the internal imple-
mentation. This means that the users of a class can interact with it without knowing
how the class actually performs its operations (figure 6.2). The internal workings of
the class may change and the consumer of that class need not change the way they are
using the class. This is very closely related to the concept of an interface, which serves
as a contract between the provider of some service and the consumer of that service.

Monitor Notification
Thread Thread
I
Method on a TimeToSendNotification Property ——

Different Thread

Set
s /

S~ mTimeToSendNotification
Data Member

Alepunog peaiy

Figure 6.2 Using properties for thread communication

Our example uses properties to cross thread boundaries. This addresses several of the
issues we raised with public fields in the last section. We can control when a value is
changed. We can determine if the value is valid for a given situation and can even restrict
certain properties to being set only once. An example of this is the Nane property on the
Thr ead class. It can be assigned only once.

You might be wondering how properties are actually implemented. Listing 6.2
shows the Set portion of the Ti meToSendNot i fi cati on property (MSIL).

.nmethod public special nane instance void
set _Ti meToSendNot i fi cation(bool Value) cil nanaged

{

/'l Code size 47 (0x2f)

.maxstack 8

I'L_0000: nop

IL_0001: ldarg.1

IL_0002: ldc.i4.0

IL_0003: bne.un.s IL_0010

CHAPTER 6 COMMUNICATING WITH THREADS

IL_0005: Idstr "Assigning to False is not allowed"

I L_000a: newobj instance voi d [nscorlib] System Exception::.ctor(string)

I L_000f: throw

I'L_0010: nop

IL_0011: Idarg.0

IL_0012: Idfld bool PublicProperties. SMIPNotification::nTi mreToSend-
Noti fication

IL_0017: ldc.i4.1

I1L_0018: bne.un.s I L_0025

IL_00la: Idstr "M ssed notification"

I L_001f: newobj instance voi d [nscorlib] System Exception::.ctor(string)
IL_0024: throw

I'L_0025: nop

IL_0026: ldarg.0
I L_0027: ldarg.1

1L_0028: stfld bool PublicProperties. SMIPNotification:: nTi mreToSend-
Noti fication

IL_002d: nop

I L_002e: ret

} /1 end of method SMIPNotification::set_Ti meToSendNotification
||

Notice that the method name is set _Ti neToSendNot i fi cati on. The compiler
maps the Set portion of the property to a method named set _Pr opert yNane,
where Proper t yName is the name of the property. This lets us see that properties
are intended to make it easy for developers to wrap access to data elements with
methods. This follows a common approach of writing a Get and Set method for
each data element of a class. If a property includes a Get portion, a method named
get _Propert yName is also generated. In the case of Ti meToSendNot i fi cati on
the MSIL is shown in listing 6.3.

.nethod public special name instance boo
get _Ti meToSendNotification() cil managed
{
/'l Code size 12 (0xc)
.maxstack 1
.locals init ([0] bool TinmeToSendNotification)

I'L_0000: nop
IL_0001: ldarg.0
I L_0002: Idfld bool PublicProperties. SMIPNoti fication:: nTi neToSend-

Noti fication
IL_0007: stloc.0

IL_0008: br.s I L_000a
I L_O0Oa: Idloc.0
IL_000b: ret

} /1 end of method SMIPNotification::get_Ti meToSendNotification

USING DATA TO COMMUNICATE 101

6.1.3

102

Notice that the return data type of the get _Ti meToSendNot i fi cati on method
is bool, just as the data type of the single parameter to set _Ti meToSend-
Noti fi cati on was also bool . It isn’t important to understand all of the MSIL;
however, by looking at it you can often learn a great deal.

In our example, the web site monitoring thread determines that the site is down. It
checks to see if it has been instructed to send notification messages. If it has, it sets the
various properties on the class associated with the notification thread and then sets the
Ti meToSendNot i fi cati on property to true. This changes the private data ele-
ment that controls when the notification thread sends email messages.

If a second assignment is made to Ti meToSendNot i f i cat i on before the sending
of the message is complete and the value of the internal data element is set to true, an
exception is raised. We will address this particular problem with a more robust solution
involving the use of queues between threads.

Queues and threads

People work at different speeds. Some work very quickly; others take longer to accom-
plish their tasks. This is true of threads as well. One thread may be able to do its work
very quickly while another may take longer. Often a thread will receive a rapid succes-
sion of elements to deal with and then have long periods where it is idle. A way to
handle these situations is to utilize a queue. Recall that a queue is a first-in, first-out
collection. Logically, an element is added at the end of the queue and is later retrieved
from the front. This works well with threading issues.

+ Threads execute at different speeds and a queue can act as a buffer be-
tween them.
+ Queues enable the sequential processing of entries.

» Queues allow the workload to be spread out over a longer period of time.

WHY USE QUEUES?

. Fire—and—forget situations are good uses of queues.

In the last section we saw how public properties address many of the issues with thread
communication. Several issues could not be overcome using properties. The biggest
issue is that properties accept a single value. This means that multiple properties need
to be set in order to perform the desired task. One way of dealing with this might be
to have a property that deals with an object, in our case a Mai | Message object.
Mai | Message objects are in the Syst em Web. Mai | namespace and represent an
SMTP mail message. There are no technical reasons why setting a property couldn’t
add an instance of the Mai | Message object to a queue; however, this is not how
properties are expected to behave. Instead a public method is a more logical fit.

In listing 6.4 the SendNot i fi cat i on method accepts four parameters and assigns
them to the properties of the Mai | Message object. It then adds that object to the noti-
fication queue. The notification queue is an instance of the Col | ecti ons. Queue
class. It is instantiated in the constructor.

CHAPTER 6 COMMUNICATING WITH THREADS

Listing 6.4 Sending SMTP mail using a queue and a thread servicing the queue (C#)

usi ng System

usi ng System Web. Mai | ;

usi ng System Thr eadi ng;

usi ng System Col | ecti ons;
namespace QueuesAndThr eads

{

public class SMIPNotification

{

Queue Notificati onQueue;
private string nfServer Nane;

Thread Sendi ngThr ead;
public SMIPNotification()
{
Noti fi cati onQueue=new Queue();
Sendi ngThr ead= new Thread(new ThreadStart (Notificati onMet hod));
nSer ver Name=""
Sendi ngThr ead. Name=" SMIPThr ead" ;
Sendi ngThread. Start();

}
private void NotificationMethod()
{
whi | e(true)
{
try
{
/1 While there are entries in the queue
while (NotificationQueue. Count > 0) Loops while there are
{ entries in the queue
Mai | Message nmessage =
(Mai | Message) Not i fi cati onQueue. Dequeue(); Extracts a
Snt pMai | . St pServer = nBerver Nane; 4_‘ MailMessage object
Snt pMai | . Send(message) ; from the queue
}
Thr ead. Sl eep(1000) ;
}
cat ch(Exception ex)
{
System Di agnostics. Trace. Wit eLi ne(ex. Message) ;
}
}
}

public void SendNotification(
string ToLine,string Fromstring Subject, string Body)
{
Mai | Message Message=new Mai | Message();
Message. To=TolLi ne;
Message. Fr omeFr om

USING DATA TO COMMUNICATE 103

Message. Subj ect =Subj ect ;
Message. Body=Body;

Noti fi cati onQueue. Enqueue(Message) ; Adds a Message
} T object to the

notification queue

}
|

You can see in figure 6.3 that the web site monitoring method that adds the entry to
the notification queue executes on the web site monitoring thread. Even though that
execution occurs on a different thread, the Not i fi cat i on object is still restricting
access to its data elements. This enforces that the only way to interact with the notifi-
cation queue is via the appropriate method.

The notification thread changes from waiting for a flag to be set to looking at the size
of the notification queue. If there are no entries in the queue it sleeps for one second;
while there are entries in the queue, it retrieves and processes them. This changes the job
of the notification thread to servicing the notification queue. You can see this by looking
atNot i fi cati onMet hod in listing 6.4. This is a very common construct. The basic
idea is to have a class that contains a queue and a method that services that queue.

Method on a
Different Thread
Monitor Notification
Thread Thread
Call

I
l\/Ieth\od Perform Notification Notification
(Method) Queue Get
Entry

Notification
Object

Process Queue Entry
and Send Email

Alepunog peeiy |

Figure 6.3 Using a queue to cross thread boundaries

104 CHAPTER 6 COMMUNICATING WITH THREADS

6.2

6.2.1

1 Encapsulate data elements relating to the area in a class.

2 Create or find an object that represents a unit of work, in our case the
Mai | Message object.

3 Add a private queue data member.

4 Create a public method that adds elements representing the unit of work
to the queue.

Create a method that retrieves elements from the queue and processes them.
Create a thread associating it with the queue servicing method.

Instantiate and start the thread in the constructor of the class.

HOW TO USE QUEUES WITH THREADS

0 N o o

Provide a means of cleaning up and terminating the thread, such as a
Di spose method.

This approach is one that is very reusable. It solves many of the issues we’ve encoun-
tered so far. In the next sections we’ll discuss some issues that are not solved by this
approach, and in the next chapter we’ll introduce solutions to those problems.

WHEN THINGS GO BADLY

In the physical world the more moving parts an object contains the higher the proba-
bility of a mechanical failure. The same is true in software development. Any time
two threads interact with the same piece of data the possibility of things going wrong
exists. The two most common errors are race conditions and deadlocks.

Race conditions

The winner of a race is generally the first person to reach the end of the course. While
this may be great for athletic competition, it is not desirable in a program. A race con-
dition occurs whenever the outcome of the event is dependent on which thread
reaches a state first. To demonstrate this we’ll do some addition (figure 6.4).

Suppose you had two threads, Thread A and Thread B, as seen in figure 6.4. Both
threads act upon a variable named X. One thread adds 1 to the value currently in X
while the second thread adds 2. In our example the initial value of Xis 4. Both Thread A
and Thread B read that value to their stacks. Thread A adds 1 to its copy of X and
Thread B adds 2. Thread B happens to be faster than Thread A and updates X with 6.
Thread A is unaware of anyone else accessing X and updates it with 5. By saving its
value, Thread A undoes Thread B’s work. This is an example of a race condition.

Race A race condition is a situation where the result depends on the time it takes
Condition ; thread to execute instructions. Since the results are not predictable these
conditions are generally to be avoided.

Race conditions are considered indeterminate events, in that the outcome of the event
cannot be predicted beforehand. Additionally, they are essentially random events.
Under some circumstances, this is tolerable. If, however, your bank didn’t guard against
race conditions you’d likely find a new bank (figure 6.5).

WHEN THINGS GO BADLY 105

106

Suppose that you have an initial balance of $20 in your checking account. You win
the lottery and deposit $1,000,000 to your account. At the very instance your deposit
is being processed, a $10 check you wrote to a local pizza chain is being processed.
Without synchronization, your balance could be $10 or $1,000,020 instead of the cor-
rect $1,000,010. Since these conditions are not uncommon, it is unimaginable that
they would be allowed to happen. Banks generally deal with this by using a transaction.

ThreadA Variable X ThreadB
4
4 < > 4
Adds 1 to its Adds 2 to its
copy of X copy of X
6
5
6 D E— Updates X
Updates X N L 5

Transactions are a form of synchronization management.

One way of dealing with race conditions is to restrict access to shared resources. We
will discuss this in detail in the next chapter. A good design minimizes the number of
shared resources. In those cases where sharing a resource is required, concurrency control

must be enforced.

ThreadB

ThreadA Balance
20
20
Subtracts 10
10 1,000,020 (e
Updates
Balance [N\ | 10

20

Adds
1,000,000

1,000,020

—

Updates
Balance

CHAPTER 6 COMMUNICATING WITH THREADS

Figure 6.4
Example of a
race condition

Figure 6.5
A banking race
condition

6.2.2

TIP If a program works fine on a single processor but does not on a multiple
processor, it is likely due to a race condition. It is important to test multi-
threaded applications during development on multiprocessor machines.

Race conditions are one of the most common areas where mistakes are made when
dealing with multiple threading. A symptom of this is that the program seems to
work fine on the developer’s machine (equipped with a single processor) but does not
on the production machine (equipped with multiple processors). Race conditions can
happen on multiple- or single-processor machines. It is really a matter of probability. If
concurrency control isn’t enforced, eventually shared resources will cause a problem.

Deadlock

As a child you may have found yourself in a battle of wills with another child. Suppose
you wanted to color. If you have the coloring book and someone else has the crayons,
unless someone is willing to yield there will be no coloring. The same thing can happen
in multithreaded development. In order for deadlock to occur, more than one thread
must be attempting to access two or more resources. If there is no competition for
resources, there will be no deadlock. If you as a child owned multiple boxes of crayons
and multiple coloring books, then you may never have faced a coloring deadlock situa-
tion. Deadlocks are another common problem in concurrent programming. Databases
deal with them on a frequent basis. Figure 6.6 shows how a deadlock can occur.

The best way to deal with deadlocks in an application is to avoid entering into one.
When a deadlock occurs, the completion of a task is very unlikely. In order for some task
to complete, another task must release its resources. This involves being able to detect
when a deadlock is occurring and then resolve it. This is moderately complex.

ThreadA ThreadB
ResourceOne
Asks for Asks for
ResourceOne ThreadA ResourceTwo
o X7al ResourceTwo
E Jve. Denied: A E
sks For In Use sks For
ResourceTwo ThreadB X _~| ResourceOne
Denied:
Release In Use Release
ResourceOne ResourceTwo
Release Release
ResourceTwo ResourceOne

Figure 6.6 Anatomy of a deadlock

WHEN THINGS GO BADLY

107

108

Deadlock Deadlock is a state where one thread owns one or more resources and re-
quires one or more additional resources to complete its execution. A different
thread owns the required additional resources. That thread requires one or
more of the resources that the first thread owns.

Fortunately, following a few guidelines can minimize the occurrence of deadlock. The
first guideline is to always acquire resources in the same order. In the example, Thread A
asks for ResourceOne, then ResourceTwo while Thread B asks for ResourceTwo, then
ResourceOne. This allows both threads to have ownership of a resource and to be in
need of the other resource. Figure 6.7 shows the threads asking for the shared resources
in the correct order. While this will not totally eliminate the possibility of deadlock, it
does reduce it. It is still possible for more complex dependency chains to be formed,
but the discussion is beyond the scope of this book.

Once a resource is attained and processing is complete, it is important to release the
resources in the reverse order that they were acquired. This works much like a stack.
In figure 6.6 we did not release the resources in the correct order.

It is also a good idea to wait before reclaiming a resource. Failure to do so may cause
starvation of a thread for a particular resource. Even though a thread is releasing a
resource, if the thread immediately reacquires it no other threads will have an oppor-
tunity to utilize that resource.

Resources should be acquired as late in processing as possible and be released as
soon as possible. This minimizes contention for those resources and increases concur-
rency. This goes with acquiring only resources that you are certain you will need. A
common mistake is to acquire a resource that 7might be needed. It is better to wait until
you are certain you need the resource before acquiring it.

ThreadA ThreadB
/“b ResourceOne Asks For
Asks for ﬁ ResourceOne
ResourceOne
Asks for
Asks For ResourceTwo
ResourceTwo
ResourceTwo
Release Release
ResourceTwo
ResourceTwo
Release Release
ResourceOne ResourceOne

Figure 6.7 Minimizing deadlock

CHAPTER 6 COMMUNICATING WITH THREADS

6.3

SUMMARY

» Always acquire resources in the same order.

+ Always release resources in the reverse order of acquisition.

o Minimize indefinite waits for resources.

+ Acquire resources no sooner than needed and release as soon as possible.
Only acquire resources when you are certain you will need them.

» If unable to acquire a resource, release all other acquired resources and try
again later.

+ Combine to less atomic elements, reducing the possibility of deadlock but
also decreasing the overall concurrency. This is discussed in section 7.3.

STEPS TO MINIMIZE DEADLOCK

Deadlock is a fairly simple thing. It requires a minimum of two threads and two resources.

It also is fairly easy to avoid if the proper steps are taken. Figure 6.8 restates what a
deadlock condition looks like.

Owns\ Needs
A
Thread1: Thread2:
I'll give you A if I'll give you B if
you give me B first you give me A first

Needs Owns

Figure 6.8 Deadlock demonstrated

Sometimes the best approach is to revisit the level of locking being performed. Chapter 7
discusses the various forms of locking. But it might be that by combining, or even
breaking down, the items being locked, overall concurrency can be increased while the

probability of deadlock is decreased.
SUMMARY

In this chapter we discussed how threads communicate. We looked at the two common
issues associated with multithreaded development: deadlock and race conditions. The
next chapter will provide more tools to help you deal with those concurrency issues.

You'll likely notice that static methods associated with threads have not been used
to this point. There are times that threads using static methods make sense. The majority
of the time a thread should be associated with an instance—not all instances—of a
class. An example of when a static method should be used is when a thread, or a group
of threads, will process all messages. This can greatly simplify termination issues and
minimize the cost of creating new threads. This is essentially how the Thr eadPool
class we discuss in chapter 10 is implemented.

You've seen how threads can communicate. Now we can move on to discuss how
we can restrict that communication using concurrency control mechanisms.

109

CHAPTEHR 7

Concurrency control

7.1 What does thread-safe mean? 111 7.4 The Monitor class 128

7.2 Atomic operations 120 7.5 Digging deeper into

7.3 The Lock and SyncLock concurrency control 137
keywords 125 7.6 Summary 141

Controlling thread interaction is a key element of multithreaded development. Con-
currency control is making sure that only a single thread is accessing a shared resource
at a single time. If multiple threads interact with a resource simultaneously, undesirable
results can occur. To avoid conflicts we must address the concept of thread safety—a
focus of this chapter.

Collections are a valuable construct: It is difficult to develop an application of any
complexity without using a collection of some sort. In order to support multithreaded
applications, collections have a static method that converts a collection to being thread-safe.
Multiple threads can access a thread-safe collection without fear that data will be lost
or that the program will encounter an unexpected error.

One means of being thread-safe is to use only atomic operations, referred to as inter-
locked in the .NET framework. Using atomic operations ensures that a unit of work
will not be interrupted. This is important because if a thread is interrupted partway
through an operation, the values that existed when it started that operation may
change without its knowledge. This leads to race conditions.

A more powerful way of dealing with thread safety is to use synchronized regions
of code. This is accomplished using the | ock and SyncLock keywords or by using
the Moni t or Ent er and Exi t methods. This allows a region of code to be marked
in such a way that only one thread can execute in that region at a given point in time.

110

71

711

The Moni t or class provides other methods that allow for a high degree of control
over multiple threads. They allow pausing execution of a thread in such a way that some
other thread can signal when it is time for it to do additional work. Optionally, a timeout
can be specified that results in a construct that is quite similar to placing the Sl eep
method in a loop.

C# provides the vol at i | e keyword for giving the compiler a hint as to the syn-
chronous nature of the variable. When a variable is marked as volatile, certain types
of optimizations will not be performed on instructions that access that variable. This
approach is useful but does not ensure thread safety.

Next, we cover the synchronization supplied by COM+. .NET makes it easy to utilize
that functionality. When you use the COM+ approach, an instance of a class can be
marked as requiring synchronization. This will ensure that only one thread at a time
accesses the methods and properties of the object. This is a simple form of synchroniza-
tion, but it does not come without a performance penalty. With the COM+ approach,
performance is roughly an order of magnitude worse than with synchronous locks.

We close the chapter with a discussion of when to perform optimizations. This is
a key concept to grasp. Making something faster that does not execute for very long
doesn’t increase overall performance significantly. Optimizations should be performed
when they can produce measurable results. Optimizing an infrequently executed sec-
tion of code only adds complexity, and likely bugs.

WHAT DOES THREAD-SAFE MEAN?

In the last chapter we saw how queues can be used as a means of thread communication,
and we briefly discussed the issue of concurrency control. Related to concurrency con-
trol is the concept of thread safety. Thread safety implies that a method or an instance
of an object can be used on multiple threads at the same time without undesirable
events such as crashes, race conditions, and deadlocks occurring.

Thread-Safe A class or method is classified as thread-safe if multiple threads can interact
with it simultaneously without ill effects.

Since not being thread-safe can cause such undesirable things to happen, why not make
everything thread-safe? Thread safety does not come without a performance penalty.
The majority of programs developed are single-threaded, meaning that the most
objects and methods are called by only one thread. In that case there is no reason to
make a method or object thread-safe. It would be an unnecessary and unreasonable
performance penalty to make all objects thread-safe.

Thread safety ties in closely with race conditions. Race conditions are the cause of
many of the problems with multithreading.

Race conditions in collections
To see a race condition in action, let’s create three threads. Two threads are tasked with
filling a queue. The third thread’s job is to try to keep the same queue empty. Figure 7.1

shows the logical layout of the example.

WHAT DOES THREAD-SAFE MEAN? 111

112

Thread1 Write
Data
Read Reading
Queue Data Thread
Write
Thread2 Data

Figure 7.1 Two threads filling a queue while a third empties it

Queues contain references to objects. In this case, we'll be working with a structure
named Ent ry. Listing 7.1 shows the definition of the Ent r y. Each Ent r y structure
contains a thread name and a counter value. When an Ent r y is created the name of
the thread is passed in, along with a counter value, to make it easy to determine where
a particular Ent ry came from.

Listing 7.1 Definition of the Entry structure used to populate the queue (VB.NET)

Public Structure Entry
Public Sub New(ByVal ThreadNane As String, ByVal Counter As Long)

Me. Thr eadNaTE = ThreadNare Saves the name of
Me. Counter = Counter Stores a thread- the thread that
End Sub specific counter created the Entry

Publ i c ThreadNane As String
Public Counter As Long
Public Overrides Function ToString() As String
Return ThreadNane + " " + Counter.ToString()
End Function
End Structure
||

Structures have been in Visual Basic for some time; a major change in VB.NET is that
a structure can have constructors. The New method is invoked when an instance of
the structure is created. Listing 7.2 contains the code that creates an instance of the
Ent ry and adds it to the queue.

Listing 7.2 The method executed by both writing threads (VB.NET)

Private Sub ThreadMet hod()
Try
Dimi As Long
Dim AnEntry As Entry
For i = 1 To Text BoxNunber Of El enent s. Text
AnEntry = New Entry(Thread. Current Thread. Nane, i) T

Creates a new
TheQueue. Enqueue(AnEnt ry) T Adds the newly

Entry to be added

If (i Mbd 1000) = O Then created Entry to the queue

Thr ead. Sl eep(100) to the queue
End I f

CHAPTER 7 (CONCURRENCY CONTROL

Next
Di m updateit As Text BoxUpdat er
updateit = New Text BoxUpdat er (AddressOf Updat eControl)
Di m Message As String
Message = "Thread " + Thread. Current Thread. Nane + " Fi ni shed" + vbCrLf
Dimargs As Object() = {Text BoxQutput, Message}
Text BoxQut put . | nvoke(updateit, args)
Catch ex As Exception
MessageBox. Show(ex. Message)
End Try

End Sub
||

The method repeats until the number of entries added to the queue is the same as the
value contained in the Text BoxNurmber O El errent s textbox. Once the thread has
added all of the entries to the queue, it writes a message to the Text BoxQut put textbox
control, then terminates. Listing 7.3 shows how we create the two writing threads.

Listing 7.3 Code that creates the two writing threads (VB.NET)

Threadl = New Thread(AddressOf Thr eadMet hod)
Threadl. Nane = "1"

Thr eadl. | sBackground = True

Thread2 = New Thread(AddressOf Thr eadMet hod)
Thread2. | sBackground = True

Thread2. Nane = "2"

Threadl. Start ()

Thread2. Start ()

Notice that both threads use the method Thr eadMet hod to populate the queue.
Thr eadMet hod uses the name of the thread that’s assigned when the thread is cre-
ated to pass in to the constructor of the Ent ry structure. We use a third thread to keep
the queue empty. That thread is created in much the same way, as listing 7.4 shows.

Listing 7.4 Creation of the reading thread (VB.NET)

ThreadRead = New Thread(AddressOf Thr eadReadMet hod)
Thr eadRead. | sBackground = True

Thr eadRead. Nane = "Reader"

Thr eadRead. Start ()

The Thr eadReadMet hod checks to see if TheQueue contains any entries; if it does,
it retrieves the entry. The thread sleeps for one tenth of a second between checking to
see if there’s an entry to remove.

WHAT DOES THREAD-SAFE MEAN? 113

114

Listing 7.5 The method that the reading thread executes (VB.NET)

Private Sub ThreadReadMet hod()
Dim AnEntry As Entry

Try
Wil e True

I f TheQueue. Count > 0 Then
AnEntry = CType(TheQueue. Dequeue(), Entry)

End If

Thr ead. Sl eep(100)

End Wi le

Catch ex As Exception
MessageBox. Show(ex. Message)

End Try
End Sub

When this example is executed on a machine with multiple processors, the error message
shown in figure 7.2 will almost certainly happen. When the example is executed on a
single-processor machine, the error will still occur but not as often.

Exception on thread 0; Source array was not long enough, Check srcIndesx and length, and the array's lower bounds,

oK |

Figure 7.2 Error message indicating a race condition

The text of this message is typical of errors associated with race conditions. The two
writer threads most likely attempted to add an entry to the queue at the same time. The
steps leading up to the error probably went something like this. One of the threads
attempts to add an entry to the queue (figure 7.3).

Checks the
size of
the queue
and sees
@ / that a new
Thread 1 entry needs Thread 2
to be added
Needs to >/
add
Figure 7.3
B C Queue A thread attempts
D to add a new entry
to the queue.

CHAPTER 7 (CONCURRENCY CONTROL

The queue isn’t large enough to hold the new entry so it must be enlarged to make
room for the entry. Queues are generally implemented on top of a more basic structure

like an array. The array has a certain size available to it initially, and is grown as needed
to accommodate more entries. Figure 7.4 shows a thread causing the array to be increased

in size.

Thread 2 also has an entry it would like to add to the queue. It arrives just after
Thread 1 and sees that there is room in the queue for its entry (figure 7.5).
Since the array is large enough for the new entry, Thread 2 can place its entry in the

queue. It uses the slot that was allocated as a result of Thread 1’s request (figure 7.6).

Adds room for D

@ Thread 1 to the queue's array Thread 2
Needs to \
add
/ C Queue
D

@ Thread 1

Checks to see
if there's room

for the new entry,
sees there is \
and places Thread 2

Figure 7.4

Thread 1 causes the
underlying array of the
queue to be enlarged.

E in the slot
Needs to
Needs to \ aﬂd
add A |
l B C Queue E Figure 7.5
Thread 2 needs
D toadd entry E to
the queue.
Thread 2
@ Thread 1
Adds
Needs to \
add b |
J B C E Queue Figure 7.6
Since there is space
D available in the queue
Thread 2 can enqueue E.

WHAT DOES THREAD-SAFE MEAN?

115

71.2

116

Thread 1 attempts to add D to the queue and sees that there is no room (figure 7.7).
This causes the error message in figure 7.2.

O

Trys to add, D Thread 2
but the /
slot's
in use

Thread T f——_

Figure 7.7
Thread 1 tries to add
D to the queue and
determines there is no
Queue .
B c E ueu room. This causes an
exception to be raised.

Why doesn’t the queue attempt to allocate space for Thread 1 again? As long as a single
thread accesses the collection, there is no reason to assume that the space allocated would
no longer be available. When an unforeseeable situation occurs, the best thing to do is
to throw an exception. Additionally, if the Enqueue method contained retry logic, it
is possible that something much worse than an exception, such as an infinite loop or
thread starvation, could occur. In the next section we see how we can use collections
safely in a multithreaded environment.

Making collections thread-safe using Synchronized

We've seen that the Queue class in the Col | ect i ons namespace is not thread-safe.
This is the general rule for collections, with the exceptions of the Hasht abl e and
ArraylLi st classes. Hasht abl e is thread-safe for multiple readers and a single
writer. Multiple threads can read from the same Hasht abl e safely as long as no more
than one thread is updating it. This is most likely because a reader-writer lock guards
the Hasht abl e’s data. In the next chapter we’ll discuss reader-writer locks. The
ArraylLi st class is thread-safe for multiple readers. This means that multiple
threads can be reading from the same Ar r ayLi st as long as no thread attempts to
update it.

In the last section we saw how the Queue class is not thread-safe. Fortunately it is
easy to make a Col | ect i on thread-safe. The static/shared Synchr oni zed method
of the Col | ecti on class returns a collection that is thread-safe.

private void Forml_Load(object sender, System EventArgs e)
{

Unsaf eQueue= new Queue();

TheQueue = Queue. Synchroni zed(Unsaf eQueue) ;

}

CHAPTER 7 (CONCURRENCY CONTROL

The listing shows how to convert a Queue that is not synchronized, and thus not
thread-safe, to one that is. As a matter of practice it is better to not store the reference
to the unsafe queue in a variable. So instead, the following should be used:

TheQueue = Queue. Synchroni zed(new Queue());

This removes the possibility of someone inadvertently using the unsafe queue. Addition-
ally, the code is a bit smaller and easier to follow. If at a later date it is determined that the
queue need not be thread-safe, it is easy to remove the call to Queue. Synchr oni zed
and revert to the unsafe queue.

Synchronized The Synchroni zed method is a way of making a collection thread-safe.
Itis a static/shared method on Col | ect i on classes that accepts an instance
of the collection and returns a reference to a thread-safe object.

Figure 7.8 shows the logical flow of the example using a synchronized queue. Think
of synchronized objects as intersections with yield signs. Only one thread at a time
can go through the “intersection.” If no other threads are present, there is no need to
stop. The threads only need to stop when some other thread is accessing the object.
When the thread is yielding, it goes to the Wi t SI eepJoi n state.

When accessing collections from multiple threads, synchronized access is a must.
Synchronization is not free; there is a very real performance cost. If multiple threads can
manipulate a collection, it must be thread-safe. The question is simply do you want a
stable program? If so, then you must make shared collections thread-safe. The alternative
is to redesign the solution so that multiple threads cannot access the collection.

Figure 7.9 shows the impact of using synchronized collections. It shows that synchro-
nized queues are at least two and a half times slower enqueuing and dequeuing elements
than using the unsynchronized counterparts. This is a small price to pay for thread safety,
and if the objects are accessed from multiple threads they must be synchronized.

The X-axis represents the number of elements that were queued and then dequeued.
The Y-axis represents how many seconds the operation took. The unsynchronized
object is consistently two times faster than the synchronized object.

Write
Thread1 |~ Data

Synchronized

chron W Read Reading

Data Thread

Thread2 |~ Write
Data

Figure 7.8 Using synchronized queues

WHAT DOES THREAD-SAFE MEAN? 117

71.3

118

Cost of Synchronization

2500

2000 /

1500 / —=— UnSync
O— Sync

Seconds

1000

O E T el 1 b T T
100000 1000000 1E+07 1E+08 1E+09
Elements

Figure 7.9 Graph of the cost of synchronization

Thread safety in libraries

It is important when doing multithreaded development to know what methods are
and are not thread-safe. In .NET all public static methods are thread-safe. As a general
rule, all others are not. Some commonly used thread-safe classes are:

System.Console System.Diagnostics.Debug
System.Enum System.Diagnostics.Trace
System.Text.Encoding System.Diagnostics.PerformanceCounter

When you’re developing your own libraries, it is important that a thread-safe method
be accurately documented as being thread-safe. Without clear documentation the best
bet is to assume that the method is not thread-safe. This means that if you are inter-
acting with a method that is not thread-safe, you must take measures to ensure that
only one thread at a time interacts with that method. We'll cover ways of accomplish-
ing this in this chapter.

TIP When working with an object, assume that it is not thread-safe until you

can determine otherwise.

It is important to note that the Syst em W ndows. For m Control class is not
thread-safe. The Win32 platform is not thread-safe. In order to interact with Win-
dows Forms and Controls from multiple threads, you must use either the | nvoke or
Begi nl nvoke method.

Windows Windows Forms are not thread-safe. Accessing a form or control from differ-
Forms cnt threads will likely cause the application to become unstable and terminate.

CHAPTER 7 (CONCURRENCY CONTROL

714

You may be feeling a bit overwhelmed at this point. Not to worry. By following a few
guidelines, you will be able to write high-performance multithreaded applications that
are scalable. The basic rule is to minimize the amount of cross-thread communication
that occurs. Additionally, all access to a class’s data members should be done through
properties or methods. This will allow you to protect those data elements from con-
currency issues and make your objects and methods thread-safe.

Understanding and detecting thread boundaries

When doing multithreaded development, you should know where the thread bound-
aries are. In figure 7.10 the thread boundary falls on the queue. A thread boundary
exists at a point where two or more threads can access a common element. By keeping
those boundaries in methods and properties, you minimize the total number of bound-
aries. This allows you to focus your attention on those places where you know inter-
actions occur, rather than protecting an element from interaction from any number
of points.

Think of it in terms of land. If a piece of property has a fence, it is much easier to
secure than land that does not because the fence restricts access to the property. Fences
generally have gates that allow access to the area contained within the fence. In multi-
threaded development, we use classes to restrict access to our data members. We generally
call it encapsulation. We put a gate in here and there by using properties and methods.
This allows things outside of the class to interact with things inside, but only when
we allow it. By minimizing the number of places where interaction between threads
can occur, we can greatly simplify multithreaded development (figure 7.10).

If the object or method is not thread-safe it is important that you know that. Many
threading issues remain hidden on single-processor machines only to cause grief on a
multiple-processor one. Unfortunately, this is usually in a production environment,
where failure is far more obvious than during development.

iti i Get Entry
Method on a \%qutlng RTiadlndg \
Different Thread rea rea
/ Process Queue Entry
Call Method Add Entry
7 (Method) Queue r—

Figure 7.10 The queue lies on the thread boundary, which makes it susceptible to
concurrency issues.

WHAT DOES THREAD-SAFE MEAN? 119

72

120

ATOMIC OPERATIONS

One of my earliest programming assignments was to write the pseudocode to make a
peanut butter and jelly sandwich. When everyone had submitted solutions, the instruc-
tor took the class to the cafeteria and followed our pseudocode. It was quite humorous
to see the results. Many of the steps were omitted or too general to be followed. The
point of the exercise was to teach us to think in small units of work. Most actions are
made up of many smaller actions. For example, opening the jar of peanut butter
involves grasping the lid, holding it under a constant amount of pressure, and rotating
the jar. In conversation, we simply tell someone to “open the jar.” We understand that
the operation actually is made up of many smaller operations. This is just as true in
software development as it is in making a sandwich.

When one of those smaller operations is guaranteed to be completed without being
interrupted, we call that operation atomic. Recall from chapter 1 that when multiple
threads are executing on a processor there are many interrupts to an individual thread’s
execution. A thread that is executing is periodically interrupted and moved from the
processor. A different thread is then given a chance to work. This is called a context
switch. If a context switch can occur during an operation, that operation is not atomic.
It is best to assume that operations are not atomic and that a context switch can occur
during processing. In the following sections we’ll cover the necessary mechanisms to
protect data.

Atomic Atomic operations are statements that will always complete without inter-
Operations ruption. This ensures that they will complete as expected without need for
synchronization.

To understand what is happening we can look at the MSIL that corresponds to
instructions. A detailed discussion of IL is beyond the scope of this book, but it does
offer some valuable insight. Consider the following instruction:

X +=1

This produces the following MSIL:

ldloc.0 Load local variable in location zero onto the stack

Idc.i4.1 Load the value 1 into the stack

add.ovf Add the top two elements of the stack and put the result back onto the stack
stloc.0 Save the top value in the stack to local variable in location zero

As you can see, what we think of as being a single instruction is in reality four. It is
quite likely that after the MSIL is compiled to machine instructions that this will
change, although it may not. The point is that an instruction that on the surface
seems to be quite simple may actually be doing many things. Figure 7.11 shows how
two increment operations can interact to yield incorrect results.

CHAPTER 7 (CONCURRENCY CONTROL

Application Domain
Instance of the Class

ThreadA

Thread's Stack

Increment ——

5 \26 “1 Operation
«

a

3a
da______ vy Variable
1b
ThreadB /
Thread's Stack ab
Increment |
5 <b/ Operation
«
3b

Figure 7.11 If operations are not atomic, a value can be changed on one
thread without another thread’s knowledge.

If steps 1a and 1b happen at the same time, or roughly the same time, a race condition
will occur because the increment operation is not an atomic operation. In order for
the class variable to be incremented, it must first be on the thread’s stack. During the
time it is on the stack of a thread, a different thread may get a copy of the value. If the
operation were atomic, Thread B would not be able to access the class variable until
Thread A had completed its interaction with it.

ILDASM ILDASM is a tool for disassembling a .NET program to IL. This allows analysis
of the code generated by the compiler, and can yield insight, such as what
operations are likely to be thread-safe.

To view the IL of a program, use the ildasm.exe program that’s located in the Frame-
work’s bin directory. It allows a compiled .NET program to be reduced to IL for analysis.

721 The Interlocked class
We saw in the last section how the += and ++ operators are not atomic and thus not
thread-safe. The | nt er| ocked class provides several static methods that perform
atomic operations. When more than one thing is interlocked, it means that an action
on one is constrained or restricted by actions on the other. For example, if two people
are locked together with handcuffs and one tries to go north while the other tries to
go south, there will be a constraining result.

ATOMIC OPERATIONS 121

122

The Increment and Decrement methods

A very common operation is to increase and decrease a value by 1. It is so common that
C++ and C# include the ++ and — operators. To accomplish an atomic increment, we
can use the | ncr ement method of the | nt er | ocked class. The method accepts a
reference to an integer or a long. The variable passed in is incremented in place and
its new value is the return value for the method (listing 7.7).

Listing 7.7 A method executed by a thread that increments a value

NumberOflterations (C#)

private void ThreadMet hod()

{
try
{
for (longi =0 ;i < NumberOflterations;i++)
{
I nterl ocked. I ncrenment (ref Actual Val ue);
}
}
cat ch(Exception ex)
{
Trace. WitelLi ne(Thread. Current Thread. Name + " " + ex. Message);
}
}

In listing 7.7 if the value before the | ncr enent method executes is 5, after it executes
the Act ual Val ue variable will contain 6 and 6 is the return value for the | ncr ement
method. In the example, the return value is not being used.

Increment | NCrenment is a static method of the | nt er | ocked class that increases

the value of the variable passed in by one. It is a thread-safe method since
it is guaranteed to perform its operation without being interrupted.

By examining the following statement using ILDASM, we can learn how the inter-
locked operation works:

System Threadi ng. I nterl ocked. | ncrenment (ref a);

call int32 [nmscorlib] System Thread- Invokes the Interlocked method of MSCORLIB
ing.Interlocked::|ncrenent(int328&)

pop Removes the top element from the stack

Notice that the actual increment is a single instruction, compared to the multiple
instructions in the previous section.

Decrement Decrenent is an atomic static method of the | nt er | ocked class that
decreases the value of the variable passed in by 1. It is the converse of the
I ncr enent method.

CHAPTER 7 (CONCURRENCY CONTROL

In a single-threaded environment, the following statements will result in the variable
being returned to the value it was before they executed:

Interl ocked. I ncrenment (ref Actual Val ue);
I nterl ocked. Decrenent (ref Actual Val ue);

Figure 7.12 shows how that even though each thread executes its increments and dec-
rements with interrupts in between, the value at the end of the execution is correctly
the same as it was at the beginning.

Thread1 Thread2 Thread3 ActualValue

Inc 6

Inc 7

Dec 6

Dec b

Inc 6

Figure 7.12
Dec 5 Interlocked | ncr enent
and Decr enent

As with the Synchr oni zed collections, these methods are slower than the +=, ++, -=,
and -- operators. That is a small price to pay for stability and reliability of an application.

Exchange and CompareExchange

Suppose you wanted to assign a unique value to each instance of a particular class. The
value would serve as an ID. In our web site monitoring application the notification
queue previously contained Mai | Message objects. While this was convenient, it is
more flexible for the queue to contain an object of our own design. By adding a
Not i fi cati onEntry object, we can assign each entry a unique number.

In the last section we saw how the | nt er | ocked. | ncr enent method can be used
to increment a variable in a thread-safe way. Another method of the I nt er | ocked
classis Exchange. | nt er | ocked. Exchange is essentially a thread-safe assignment
statement. It accepts two parameters: a reference to the variable being assigned to and
the variable being assigned from. It returns the value that previously occupied the first
parameter. In listing 7.8 we assign | dCount er a number based on the current date
and time.

ATOMIC OPERATIONS 123

124

Listing 7.8 Using Exchange to assign a variable in a thread-safe way (VB.NET)

Shared Sub InitializeldCounter()
Di m BaseNunber As | nteger
DayOfIntitalization = DateTi ne. Now. Day
BaseNunber = (DateTi ne. Now. Year - 2000) * 1000000000
BaseNunber += DateTi me. Now. Month * 10000000
BaseNunber += DateTi ne. Now. Day * 100000
BaseNunber += DateTi ne. Now. Hour * 1000
BaseNunber += DateTi me. Now. M nute * 10
I nterl ocked. Exchange(| dCount er, BaseNumnber)

End Sub
||

Unless the application starts, stops, and restarts in the same minute, the value of
| dCount er will be unique for each run of the program. This approach relies on the
system clock, which always carries a certain amount of risk. It is very easy to change
the date and time of the machine. I nti al i zel DCount er is contained in the
shared New method.
Shared Sub New()

Trace. Assert (I dCounter = 0)

InitializeldCounter()
End Sub

This method is called the first time an instance of the class containing it, Not i fi -
cati onEntry, is instantiated.

New When a subroutine is named Newin VB.NET, it is treated as a constructor.
Constructors are methods that are automatically called when an object is
instantiated.

The public New method of a class is called after the shared New method. In the public
New method, we can increment the value of | dCount er :

Messageld = Interlocked. | ncrenent (1dCounter)

By using the | ncr ement and Exchange methods, we can initialize and increment
the shared variable | dCount er in a thread-safe way.

It’s nice when unique identifiers can be related to something meaningful. In our
case, it would be nice if you could determine the date the entry was generated based
on the | dCount er . To do this we need to add listing 7.9 to our public New method.

Listing 7.9 Using CompareExchange (VB.NET)

Wil e DayToRelnitialize < O
Thr ead. Sl eep(100)
End Wile
Di m Ret urnVal ue As | nteger
ReturnVal ue = Interl ocked. Conpar eExchange(DayToRel niti ali ze,
-1, DateTi me. Now. Day)

CHAPTER 7 (CONCURRENCY CONTROL

73

If ReturnValue = -1 Then

Wi le (DayToRelnitialize = -1)

Thr ead. Sl eep(100)

End Wile
End | f
If DayToRelnitialize = -1 Then

InitializeldCounter()
End | f
|

This code is a little tricky, so we’ll go over it carefully. The key element is the Conpar e-
Exchange instruction. It checks to see if the DayToRel ni ti al i ze is equal to
today. If it is, it sets DayToRel ni ti al i ze to - 1. It saves the value returned from
Conpar eExchange to a variable so we can check it. If it is - 1, some other thread
must also have determined that it’s time to reinitialize, so the current thread should
sleep until the thread doing the update is finished. If a value other than - 1 is returned
and DayToRel ni ti al i ze is - 1 then the current thread should do the reinitializa-
tion (figure 7.13).

ReturnValue = | Interlocked.CompareExchange(Variable, NewValue, | CompareValue |)

NewValue is assigned to

Variable
True
L Pl
ReturnValue = | Interlocked.CompareExchange(Variable, NewValue, | CompareValue |)

I

Returns the value of the variable prior to
assignment

Figure 7.13 Interlocked Conpar eExchange checks to see if the supplied value is the same as
the compare value then the new value is assigned to the variable and returned.

The Conpar eExchange method is relatively difficult to use. Unless the highest pos-
sible performance is needed, a different, more understandable approach should be used
such as synchronous locks, which we discuss in the next section. Locks are likely the most
common form of concurrency control. When most developers with multithreaded
experience are asked to describe multithreaded development, they will most often speak
of critical sections and locks.

THE LOCK AND SYNCLOCK KEYWORDS

Locks have become an important part of everyday life. We use locks on our houses to
keep people out who do not belong. If you only had one key, and the only way to get

THE LOCK AND SYNCLOCK KEYWORDS 125

126

into the house was with the key, then only one person could be in the house at a time.
This is how a lock in the multithreaded world works.
Unlike the I nt er | ocked mechanism, more than one line of code can be pro-

tected. This is a fairly simple solution to a complex problem.
SyncLock | dCount er Obj ect

| f DayToRelnitialize = DateTi me. Now. Day Then

InitializeldCounter()
End | f

Messagel d = I nterl ocked. | ncrenent (I dCounter)
End SyncLock

The way it works is that a thread encounters a | ock (in C#) or SyncLock (in
VB.NET) statement. It checks to see if the locking object (think of it as the key) is
available. If it is not, the thread enters the Wi t S| eepJoi n state until it can acquire
the lock. If the locking object is available, the thread acquires the lock and begins exe-
cuting the guarded instructions (figure 7.14). This is similar to the Synchr oni zed
version of collections we discussed earlier.

Locks can only be acquired using reference types. Value types, such as long and integer,
cannot be used with locks directly. In order to lock on a value type, you must either use
the Get Type statement or introduce an object to serve as the locking object. While
this introduces a certain amount of additional memory usage, it may reduce the com-
plexity of the code and yield a more maintainable solution.

Critical A critical section is a region of code, that is mutually exclusive. This means
Section that while one thread is executing that region of code no other thread can.

Critical sections are created using the | ock and SyncLock constructs.

Locks are a means of creating a critical section. Unlike a Win32 critical section, it is
not necessary to create a variable to serve as the key to the critical section. Instead, any
instance of an object can be used to control entering the critical section. A common
approach is to lock on the instance of the object itself using the e/ t hi s statement.
Many of the examples you will see use this form of locking. This is the simplest form
of synchronization control. It creates a high degree of control over access but at the
expense of flexibility. Under some circumstances this is a valid solution. Other times a
more granular approach is required.

Thread? v Object W Thread?2
Being
/ ~— Locked On T \

Locked Code Locked Code

Figure 7.14 How a lock is used to coordinate two threads.

CHAPTER 7 (CONCURRENCY CONTROL

SyncLock SynclLock is a Visual Basic keyword that is used as a synchronization mech-
anism to create a section of code that only a single thread can access at a
time. This is accomplished by acquiring a lock on an object. If the object is
currently locked, the thread must wait until the lock is released.

Suppose you had a class with three data elements in it. One approach would be to
restrict access based on the class as a whole. This would mean that only one of the
three data elements could be changed at once. If these elements were independent,
this might be too restrictive. An alternative would be to have three objects that serve
as locks. In order to access one of the data elements the corresponding lock would
first be acquired. Figure 7.15 graphically demonstrates this design tradeoff.

This introduces the concept of concurrency. Concurrency is a measure of how many
things can happen at once. A high degree of concurrency will often produce higher
performance than a low degree. The tradeoff is between concurrency and the risk of
race conditions, deadlocks, and complexity.

In the previous chapter we discussed deadlocks. Deadlocks are a very real problem
with SyncLocks. Using the | ock/SyncLock statement there is no way to time out
arequest for a resource. So if a thread monopolizes a resource, all other threads requesting
that resource will be in a WAi t SI eepJoi n state until the resource becomes available.
To reduce the possibility of deadlock, the lock is released whenever the thread exits the
locked region. This is true if an exception is raised or processing completes normally.

The design constraints regarding deadlock should always be followed when using the
| ock/SyncLock statements. If used correctly, | ock/SyncLock is a powerful means
of controlling synchronization.

You may be wondering how | ock/SyncLock works; we’ll cover that in the
next section.

Single Lock Multiple Locks
Class Class
Element1 Element2 Element3 Element1 Element2 Element3
Thread1 Thread2 Thread1 Thread2

Figure 7.15 A single lock can be used to guard multiple items or a lock can be used to protect
each item independently.

THE LOCK AND SYNCLOCK KEYWORDS 127

74

74.1

128

THE MONITOR CLASS

During grade school there were generally people tasked with the job of hall monitor.
A hall monitor attempts to make sure that students and visitors are in the right places
at the right time. If you walk into a strange school and start roaming the halls, you’re
likely to meet a hall monitor. A monitor is something that watches over something else.
What the monitor watches might be the flow of students and visitors in the hall of a
school or, in the case of multithreaded development, the access to resources by threads.
Moni t or is a class in the Thr eadi ng namespace that contains methods for capturing
and releasing synchronous locks.

The Enter and Exit methods

Moni t or . Ent er is called when a lock is requested. It blocks and doesn’t return until
the lock has been granted. If the thread that is calling Ent er already has the lock it is
requesting, the lock count for that object is incremented and the thread is allowed to
pass. If the thread that is calling Ent er does not have the lock and another thread
does, it will wait until that other thread releases the lock by calling Moni t or. Exi t .
If the lock count for the parameter passed into Ent er is zero, the current thread is
granted ownership of that lock and the lock count is incremented to one.

Compared to synchronous locks

We discussed what the | ock/SyncLock method does in section 7.3. If you’re like
me, you want to know how things work. SyncLocks are implemented using the
Moni t or . Ent er and Moni t or . Exi t methods. Table 7.1 shows two segments of
code that produce almost identical MSIL.

Table 7.1 How the Lock Method Is Implemented Using the Monitor Ent er and Exi t Methods

Clock.cs CEnterExit.cs These two pieces of code
object 0 = new object(); object objLock = new object(); produce virtually identical MSIL.
lock(o) object tmpObject = objLock; The lock statement is
{ Monitor.Enter(tmpObject); implemented using
0=123; try Monitor.Enter and Monitor.Exit.
} {
objLock =123;
}
finally

{
Monitor.Exit(tmpObject);
}

There are two things to notice about the code in table 7.1. The first is that the Mon-
i tor. Enter instruction is not inside the t ry block. There are two exceptions that
Ent er can throw: Ar gunent Nul | Except i on and Ar gunent Excepti on.

Ar gurent Nul | Except i on is thrown whenever the parameter passed to the
Ent er method is null. In this case calling Exi t would be inappropriate. Ar gunent -
Except i on is raised when the parameter to Ent er is a value type, for instance an

CHAPTER 7 (CONCURRENCY CONTROL

integer. If this were the case, then calling Exi t on the same value would result in
another exception. It is better to deal with the invalid parameter earlier than later.
Another thing to notice is the introduction of the t npQbj ect variable. This is intro-
duced to deal with the case in which the value that is being locked on changes.

If the t mpQObj ect variable is left out, you have the code in listing 7.10.

Listing 7.10 The mistake of assigning a value to something being locked upon (C#)

public void EnterExit_NoTenp()
{

obj ect objLock = new object();
Moni t or . Ent er (obj Lock) ;

try
{ S

obj Lock =123; objLoFk is not the
} same in these two

. instructions

finally
{

Moni t or . Exi t (obj Lock) ;
}

}
|

When the Moni t or . Exi t statement is executed, a Synchr oni zat i onLockEx-
cept i on is generated. This is because at the point the EXi t statement is executed, the
obj Lock variable has not been locked on. Note that adding a cat ch clause to the
t ry block would not catch this exception since the exception is raised in the f i nal | y
block. To capture the exception, and possibly reduce the time needed to track down
the bug, enclose the entire section above in at ry block as seen in listing 7.11.

Listing 7.11 Exception handling reduces the time to track down a problem (C#).

try

obj ect objLock = new object();
Moni t or . Ent er (obj Lock) ;

try
{
obj Lock=123;
}
finally
{
Moni tor . Exi t (obj Lock) ;
} The exception will
}) be thrown in the
cat ch(Excepti on ex) finally clause
{
Consol e. Wi telLi ne(ex. Message);
}

THE MONITOR CLASS 129

74.2

130

This will allow for earlier detection of this kind of error. The following guidelines for
using Ent er and Exi t should be used:

e To release a lock, call Exi t the same number of times that Ent er has been called.

* Always place Exi t inafi nal | y clause and all code that should happen within
the synchronized region inside the t ry block.

* Ensure that the object passed to Ent er is the same one that is passed to Exi t .
* Ensure that the object is initialized before calling Ent er.

* Always call Ent er before calling Exi t .

* Avoid changing the value of an object being locked on.

* Use a variable that is dedicated to being locked upon as the locking mechanism.

These guidelines are general, but if they are followed the amount of debugging required
will be greatly reduced.

Creating critical sections

The Ent er and Exi t methods are used to create critical sections of code. We use
critical sections as a means of protecting a shared resource from interaction by multiple
threads. Only one thread may be in a critical section at a time. A thread enters the crit-
ical section when it invokes the Ent er method and is granted a lock on the locking
object. A thread exits the critical section at the point it invokes the Exi t method the
same number of times that it had previously invoked the Ent er method.

This is essentially the same way that the Win32 critical section object works. To
use a Win32 critical section you must first create the critical section object using the
InitializeCritical Section API call. InitializeCritical Section
allocates an area of memory that is used by Ent er Cri ti cal Secti on and Exi t -
Critical Secti on. Thisis different than the NET approach, which allows any non-
value type object to be used as the locking mechanism.

Exi t must be called as many times as Ent er is called to release a lock. Unlike the
synchronous lock, exiting the scope where the lock was acquired does not release the
lock. Care should be taken to ensure that a thread releases any owned locks before it
terminates. Because of the indeterminate nature of the NET framework, the results of
terminating a thread that is in a critical section are not predictable.

The TryEnter method

We’ve seen how Moni t or Ent er and Exi t work when things go well, but what
happens if one of the threads doesn’t release the lock when finished with it? When
any other thread calls the Ent er method, it will be blocked indefinably. This means

that if one thread fails to release a lock all threads that try to Ent er that lock will
hang (listing 7.12).

CHAPTER 7 (CONCURRENCY CONTROL

Private Sub TryEnter Met hod()
Dim MyNane As String
MyNarme = Thread. Current Thr ead. Nane
Di m Entered As Bool ean
VWil e (True)
TryEnterLocation = "Before TryEnter " + Now. ToString()
Entered = I\/bn? tor. TryEnt er (Locki ngObj ect, 2000) - Returns true if the
TryEnterLocation = "After TryEnter " + Now ToString() lock is acquired
If Entered Then
SharedString = MyName + " " + Now. ToString()
TryEnterLocation = "In Lock " + Now. ToString()
Thr ead. Sl eep(1000) <J Is called if the
Moni t or. Exi t (Locki nghj ect) lock is acquired
TryEnterLocation = "After Exit " + Now. ToString() Executes if the lock
El se was not acquired
TryEnterLocation = "Unable to acquire lock " + Now. ToString()
Debug. WiteLi ne(MNane + " : Unable to acquire | ock")
End | f
Thr ead. Sl eep(1000)
End Wile

End Sub
||

Fortunately the Tr yEnt er method is available. Tr yEnt er comes in three different
flavors. The Tr yEnt er method, in listing 7.12, attempts to acquire a synchronous
lock on the supplied parameter. If it can acquire the lock, the method returns true. If
some other thread has the lock, the method waits for two seconds and then returns
false. This allows a thread to wait for a period of time and, if the lock doesn’t become
available, to move on and do other things.

Monitor.Try- Moni t or. Tr yEnt er is a static method that allows a thread to request a

Enter lock while optionally specifying a timeout.

Such timeout-based processing is very powerful. For instance, you could have a thread
running that simply tried to acquire a frequently used lock on a regular interval. If unable
to acquire the lock, it might signal instability of the application or system. The thread
doing the checking could then log the fact that the system is unresponsive to the event log.

Variations « TryEnt er (obj ect)
of TryEnter . TryEnter (obj ect, Ti meSpan)
« TryEnter(object, Integer)

Another version of the Tr yEnt er method accepts a Ti meSpan as the timeout value.
As we discussed in chapter 4, Ti meSpan objects allow for greater flexibility in speci-
fying time duration. The Ti meSpan version of the method also returns true if the
TryEnt er method was able to acquire the lock and false if not.

THE MONITOR CLASS 131

The last version of the Tr yEnt er method accepts only the object being locked on
as the parameter. This version of the method returns immediately if it is unable to acquire
the lock rather than waiting a certain amount. This is identical to calling Tr yEnt er
with zero as the duration in milliseconds.

Suppose that you wanted to know if a lock were available. The following creates

a property that indicates the availability of the lock:

Public ReadOnly Property LockAvail abl e()
Get
Di m bAvai | abl e As Bool ean
bAvai | abl e = Monitor. TryEnt er (Locki ngObj ect)
I f bAvail abl e Then
Moni t or. Exi t (Locki ngObj ect)
Return True
End | f
Return Fal se
End Get
End Property

To tell if the lock is available you must first try to acquire it. If successful, we release it
and return true. Otherwise, we return false. It is important to release the lock as soon
as it is acquired. We would not want our checking the availability of the lock to make
it unavailable for long periods of time.

It is important to always release a lock after it is no longer needed. The following
method will acquire the lock and never release it. This will keep all other threads from
using the lock:

Private Sub BadThreadMet hod()
Thr ead. Sl eep(60000)
Dim MyNane As String
MyNane = Thread. Current Thr ead. Nane
While (True)
BadThr eadLocation = "Before Enter " + Now. ToString()
Moni t or . Ent er (Locki ngQObj ect)

BadThr eadLocation = "In Lock " + Now. ToString()
SharedString = MyNane + " " + Now. ToString()
Thr ead. Sl eep(1000)
End Wile
End Sub

Instead, something similar to the following should be used:

Private Sub GoodThreadMet hod()
Dim MyNane As String
MyNanme = Thread. Current Thr ead. Nane
VWi le (True)
GoodThr eadLocation = "Before Enter " + Now. ToString()
Moni t or . Ent er (Locki ngObj ect)

Try
GoodThr eadLocation = "In Lock " + Now. ToString()
SharedString = MyNane + " " + Now. ToString()

132 CHAPTER 7 (CONCURRENCY CONTROL

743

Thr ead. Sl eep(500)
Finally
Moni t or . Exi t (Locki ngQbj ect)
End Try
CGoodThr eadLocation = "After Exit " + Now. ToString()
Thr ead. Sl eep(2000)
End Wil e
End Sub

Notice that the lock is released in the Fi nal | y clause. This ensures that if an excep-
tion occurs while the lock is held it is released.

Wait and Pulse

Until now our thread methods relied on Sl eep to pause between executions. Sl eep
should not be viewed as a synchronization mechanism. Attempting to do so will likely
result in race conditions and inefficient code. Suppose that you wanted to add an entry
to a queue and then signal that processing should begin on that item. This can be done
in a nonblocking way by using the Wi t and Pul se methods. Figure 7.16 demon-
strates the steps involved with using Wai t and Pul se.

Monitor | Monitor . . Monitor
Enter Wait WaitSleepJoin State ThreadA

Exit
G \
) 6
Shared Locking
1 Object

7 ;
< 4 /
Monitor Monitor Monitor

Enter Pulse Exit

ThreadB

Figure 7.16 Steps involved in using Pul se and Wi t

Step 1 involves Thread A acquiring a lock to the shared locking object. Once that lock
is acquired, the WAi t method of the Moni t or class is used on the shared locking
object. This places Thread A into the Wai t Sl eepJoi n state. Recall that in this state
the thread is essentially idle. The first two lines of the following code example demon-
strate steps 1 and 2. In the following example QueueVi t Lock is the shared locking
object referred to in the diagram.

Moni t or . Ent er (QueueWai t Lock) ;

Resul t = Moni t or. Wi t (QueueWai t Lock, 60000) ;
if (Result)

THE MONITOR CLASS 133

134

{
Debug. Wi teLi ne("Pul sed");

}

el se

{
Debug. WiteLine("Tinmed out");

}
Moni t or . Exi t (QueueWi t Lock) ;

Both Wai t and Pul se must be invoked from within a region of code guarded by a
synchronization block. All this means is that a Monitor. Enter and Moni -
tor. Exi t must surround the Moni t or. Wai t and Moni t or. Pul se methods.
The motivation for this is to eliminate the possibility of a race condition occurring.
By ensuring that only one thread at a time can call WAi t or Pul se, the chance of a
race condition occurring is eliminated. Additionally, the same object that is locked on
using the Moni t or . Ent er method must also be the object that is passed to the Pul se
and Wai t methods.

Monitor.Wait Nbni t or. Wai t is a static method that allows a thread to enter a Wi t -
Sl eepJoi n state. The thread will exit the Wi t S| eepJoi n state when
the object being waited on is signaled using the Pul se or Pul seAl |
method or an optional timeout value expires.

Pul se signals one thread that is waiting on the synchronized object. Like Wi t,
Pul se must be invoked from within a synchronized section of code.

Monitor.Pulse NMbni t or . Pul se is a static method of the Moni t or class that allows a
thread to signal one of the threads that have previously called V&i t on a
shared object.

The process begins with acquiring a lock on the object being waited on. This corre-
sponds to step 3 in the diagram. Once acquired, the Pul se method is invoked (step 4).
After Pul se the lock should be released (step 5). The following code example demon-
strates steps 3—5 in the diagram at the start of this module. Tr yEnt er is used in place
of Enter.

Entered = Monitor. TryEnt er (QueueWi t Lock, 1000) ;
if (Entered)

{
Moni t or . Pul se(QueueWi t Lock) ;

Moni t or . Exi t (QueueWi t Lock);
}

el se

{
Trace. WiteLine("Unable to add entry");

}

Notice that we use Tr YEnt er to attempt to acquire the lock. We wait for at most
one second for the lock. If we are unable to acquire the lock, we log the condition and

CHAPTER 7 (CONCURRENCY CONTROL

return. This prevents a thread from getting stuck waiting on another thread that may
not be responding.

Once a thread invokes Pul se, it must call the Moni t or . Exi t method to allow those
threads that are waiting on the object to continue. To be precise, if step 5 in figure 7.16
does not occur, neither will step 6. At the point WA t is invoked, the lock on the shared
locking object is released automatically, allowing a different thread to acquire a lock
on the shared locking object and perform a Pul se. For the thread that was in the
Vi t Sl eepJoi n state to continue, Thread A in our example, it must reacquire a lock,
on the shared locking object. For it to successfully reacquire the lock the Pulsing thread,
Thread B, must release the lock.

1 Acquire a lock on the waiting object using the Ent er method.

2 Invoke WAi t with an optional timeout.

STEPS
TO WAIT

3 Release the lock using the Exi t method.

1 Acquire a lock on the waiting object using the Ent er method.
2 Invoke the Pul se method.

STEPS
TO PULSE

3 Release the lock using the Exi t method.

The steps the waiting thread goes through are outlined in figure 7.17.

Monitor.Enter Monitor.Wait
Lock released
Thread Acquires as thread
executing lock placed in
waiting queue

Ready queue ‘

Timeout occurs

Waiting queue
or

A different thread invokes Pulse or
PulseAll

Once the lock is
reacquired the
thread begins

execution again

Figure 7.17 The states a thread goes through when Wi t and Pul se are used

THE MONITOR CLASS 135

74.4

136

A thread goes through distinct states when WAi t and Pul se are used. When the Wi t

statement is executed, the thread enters the waiting queue. The thread exits the waiting
queue if it receives a pul se, or if a timeout occurs. Once it exits the waiting queue, it
is added to the ready queue. When it can reacquire the lock, it will resume execution.

Synchroniza- A synchronization lock exception is thrown whenever an attempt is made
tion Lock to invoke Pul se or Wai t without having first acquired a lock.
Exception
We’ve seen how a single thread can be controlled using Pul se; now we’ll examine
how multiple threads can respond to Pul seAl | .

The PulseAll method

Suppose that you receive a phone call from a client or supervisor wanting to know if
all of the organization’s web sites are functioning properly. Rather than wait for the
next polling interval, you would like to check the sites immediately. One way to do
this is to use Thread. | nt er r upt . This triggers an interrupt on the thread that it
is associated with the instance of the Thr ead object on which it is invoked. Each
thread would need to be interrupted.

Similarly, the Pul se and WAi t approach we covered in the last chapter could be used.
Instead of having a Thr ead. S| eep statement, you would have a Moni t or . Wi t
statement. Unless the object that is being waited on is pulsed, WAi t with a timeout
value functions like the S| eep method:

Thr ead. Sl eep(Sl eepTi ne)

Thr ead. Sl eep can be replaced with the following lines:

SyncLock Wit LockCbj ect
Moni t or. Wai t (Wai t LockObj ect, mMit Ti ne)
End SyncLock

Vi t LockQbj ect is a shared/static object. Recall from the last section that in order
to Wi t on an object the thread must first enter a synchronized region of code. One
way to do this is to use the SyncLock statement. This is equivalent to calling Moni -
tor. Enter and Monitor. Exit.

Since Wi t LockObj ect is shared/static, there is only one instance of it for all
instances of the WebSi t eMoni t or class. To signal those threads waiting for the lock,
we use the Pul seAl | method which alerts all threads waiting on a lock that the state
of the object has changed and that they should resume processing. The differences
between Pul se and Pul seAl | are shown in figure 7.18.

Pul seAl | empties the waiting queue, moving all entries into the ready queue. As soon
as each of the threads in the ready queue are able to reacquire the lock, they begin executing,

Vi t, Pul se,and Pul seAl | can only be called successfully if the synchronization
lock around them locks on the same object that is passed in as the parameter. The fol-
lowing example demonstrates the incorrect way to call Pul seAl | :

CHAPTER 7 (CONCURRENCY CONTROL

75

75.1

Waiting Queue Waiting Queue

Thread3| | Thread2

Timeout
Expires PulseAll
or
Ready Queue Pulse Ready Queue
Thread1 Thread1| |Thread2| |Thread3

Figure 7.18 The difference between Pul se and Pul seAl |

SyncLock LockObj ect One
Try
Moni t or . Pul seAl | (LockObj ect Two)
Catch ex As Exception
MsgBox(ex. Message)
End Try
End SyncLock

Notice that the SyncLock is performed on LockObj ect One while Pul seAl |
uses LockChj ect Two. This causes a Synchr oni zat i onLockExcepti on to be
raised. The correct code is:
SyncLock LockOhj ect Three
Try
Moni t or . WAi t (LockOnj ect Thr ee)
MsgBox(" Good Thread After Wait")
Catch ex As Exception
MsgBox(ex. Message)
End Try
End SyncLock

DIGGING DEEPER INTO
CONCURRENCY CONTROL

There is much more to currency control than the basics we’ve covered so far. In this
section we cover those elements that are a little less frequently used.

C#'s volatile keyword

This topic is restricted to C#. VB.NET does not support the vol at i | e keyword. Not to
worry, very few situations require its use. In general it is easier to use the other synchroni-
zation mechanisms we’ve covered in this chapter. This topic is covered for completeness.

The Volatile Vol ati | e is a hint to the compiler that a value may change without its
Keyword | owledge and that it should not make assumptions regarding the value
during optimization.

The most important thing to know about a volatile field is that it is not thread-safe. If
two threads attempt to update a vol ati | e field at the same time, bad things will

DIGGING DEEPER INTO CONCURRENCY CONTROL 137

138

likely happen. By using the vol at i | e statement you’re telling the compiler that this
variable’s value may change in an unforeseen way. This keeps the compiler from opti-
mizing instructions that access the variable.

GUIDELINES -« Making a field vol at i | e does not make it thread-safe.

+ All fields enclosed in a synchr oni zat i on block and accessed by mul-
tiple threads should be vol ati | e.

« Avol atil e field cannot be passed as a reference. This means that an
interlocked method cannot be used with a vol ati | e field.

Compilers often perform optimizations to increase performance. One of the ways it
optimizes is by placing frequently used variables into registers. A register is a location
in the processor that can be accessed quickly. Once the value is in the register, the
compiler assumes that nothing else changes the value of the variable. This means the
generated code only accesses main memory when it knows it needs to retrieve the
value. In the case of multithreaded applications, a different thread may change the
value after the optimized code has read it in. The optimized code might not notice
the change in the value. Listing 7.13 demonstrates the use vol ati | e.

private volatile int CurrentThreadCode;

System Random rnd = new System Randon();
i nt Randoml ndex;
int TickCount;
do
Random ndex= rnd. Next (Number O Li st eni ngThr eads) ;
whi | e (Current Random ndex ==Random ndex) ;
Cur r ent Randonl ndex =Random ndex;
Ti ckCount =Envi ronnent. Ti ckCount ;
Current ThreadCode =
Li st eni ngThr eads[Random ndex] . Get HashCode() ;

whi | e(true)

{
if (CurrentThreadCode == Myl d)
{

One form of optimization that causes multithreaded applications grief is reordering
instructions. This makes most developers a little nervous. We like to think that if we do
an assignment and then a test that the test instruction will always occur after the assign-
ment. Some processors reorder instructions. Those processors are smart enough to do
this in such a way that the outcome of the program is the same as if the instructions
had not been reordered.

CHAPTER 7 (CONCURRENCY CONTROL

75.2

+ Only fields are allowed to be vol ati | e
« Avol atil e field can only be one of the following:
+ Reference type
» Unsafe pointer
« shyte,byte,short,ushort,int,uint,char,float, bool
+ An enumtype based on one of the allowed discrete value types

VOLATILE
RESTRICTIONS

When a variable is marked as being vol at i | e, the compiler ensures that all accesses
to that variable are not reordered. Additionally, it ensures that each read of the variable
comes from memory, not from a register. Marking a variable as vol at i | e does not
make it thread-safe. If more than one thread is writing to the value, a synchronization
lock should be used. The situation where vol at i | e can safely be used is when one
or more threads are reading the value while only one thread is updating it. If a syn-
chronization lock is used, there is no reason to use vol ati | e.

WHEN o A variable is accessed from multiple threads.
VI)(I)J:']I'SIEE + No Synchroni zat i on mechanisms are being used.
+ Only one thread will update the value.

Interlocked methods do not work with volatile variables. The reason is that the inter-

locked methods accept references to variables as their parameters. Volatile variables

cannot be passed as references. The following line generates a compiler error:

I nterl ocked. I ncrenment (ref Current ThreadCode);

/1 Produces The followi ng Error:

/'l Cannot pass volatile field

/1 'Vol atil eExanpl e. For mlL. Cur r ent Thr eadCode'

/Il as ref or out, or take its address

Only certain types of variables can be volatile. Only class fields can be marked as vola-

tile. Since a local variable is usually accessed by a single thread this is not too restrictive.
The code for this module is available from the publisher’s web site. An alternative

solution is presented that uses Moni t or . Wai t and Pul se instead of the vol ati | e

field. The code is simpler and easier to understand. Additionally, the listening threads

notice the change in the variable more quickly than they do in the volatile version. Simple

is generally good. Simple things are easy to understand and therefore easier to maintain.

COM+-based synchronization

COMH+ is a set of runtime services, easily accessed via .NET, that facilitates developing
enterprise applications. One of the services COM+ supplies is synchronization. COM+
uses the concept of a context as its means of synchronizing access to objects. To set
the Synchr oni zati on attribute the class must be derived from the Cont ext -
BoundObj ect class, or a class derived from Cont ext BoundObj ect .

Context- Cont ext BoundQbj ect is the base class that all objects that are bound

BoundObject 1, 5 particular context are inherited from.

DIGGING DEEPER INTO CONCURRENCY CONTROL 139

140

Imports System Runtime. Remoting. Cont exts | Marks the entire class

<Synchroni zation()> Public C ass Data for synchronization
I nherits ContextBoundObj ect

) Synchronized classes must be derived
Dim x As I|nteger

from ContextBoundObject, or from

Public Function Inc() As Integer a class derived from it, to utilize
X +=1 context-based synchronization
Return x

End Function
Public Property Count ()
Get
Return x
End Get
Set (ByVal Val ue)
X = Val ue
End Set
End Property

End O ass
||

In our example, the class Dat @ inherits directly from Cont ext BoundQbj ect . The
<Synchroni zat i on() > attribute tells the compiler that all access to instances of
data must occur in a serialized way. To accomplish this a proxy is created to cross from
the default context to the context containing the instance of Dat a.

ContextBound- All calls to objects derived from Cont ext BoundObj ect s go through a

Objects proxy. This increases the time for each call to complete.

Use Proxies
For more information on this topic, the reader is encouraged to learn about COM+. An
in-depth discussion is beyond the scope of this book. The key point is that it is a simple
way to make objects thread-safe. That simplicity is not without cost. The cost of mar-
shaling values across the context boundaries is significant. Depending on the frequency
of those calls across the boundary, performance can be an order of magnitude worse
when compared to using synchronization locks. Figure 7.19 shows how COM+ per-
forms synchronization.

When faced with the decision to make an object context bound and restricting the
process to a single processor, you should use benchmarks to aid in making the decision.
The key metric to consider is the frequency of calls to their duration. The following
simple formula can be used to determine the percentage that the overhead is contributing
to the overall execution time:

Percentage = Call Overhead / (Call Overhead + Call Duration)

Suppose that calling an object in a bound context takes an additional second to occur
when compared to calling an object in the same context. Suppose that the time each
call takes to complete is 60 seconds.

CHAPTER 7 (CONCURRENCY CONTROL

76

SUMMARY

Application Domain

Default Context Bound Context

Synchronized
Instance of the Class Data Class

Variable
ThreadA
>{ Proxy /
ThreadB

e

Increment Operation

Figure 7.19 How a synchronized context is implemented

Percentage = 1/ (1 + 60) = 1.6%

That’s less than 2 percent of the total time per call, not a bad price to pay for the sim-
plicity. Suppose instead the call only takes five seconds to complete:

Percentage = 1/ (1 +5) = 16.7%

The percentage changes to about 17 percent. Depending on performance needs, that
may be too high of a price to pay.

SUMMARY

In this chapter we’ve discussed how to effectively manage thread interactions. We've
seen that traditional software development concepts, such as encapsulation, can be
used in multithreaded development. We've discussed the most common forms of
access control, and explored some less commonly used mechanisms, such as inter-
locked operations. One of the most important things to get from this chapter is being
able to identify where concurrency control is needed, by identifying the thread
boundaries we discussed in section 7.1.4. Once you know where the moving parts
contact each other, you can use one of the means we discussed to make sure that con-
tact happens in a controlled way. In the next chapter we explore a different type of
synchronization control known as a wait handle.

141

CHAPTEHR 8

WaitHandle classes

8.1 The WaitHandle class 143 8.5 Mutex class: WaitOne and
8.2 The AutoResetEvent class 145 ReleaseMutex 156
8.3 WaitHandle 147 8.6 Summary 159

8.4 ManualResetEvent 154

Wi t Handl e-derived classes provide a means of constructing powerful synchronization
mechanisms. In this chapter we will cover Manual Reset Event , Aut oReset Event ,
and Mut ex.

Just as the Moni t or class allows for a thread to wait to acquire a lock on an object,
the Aut oReset Event allows a thread to wait for a class derived from Wai t Handl e
to become signaled. Each object derived from Wi t Handl e has two states: signaled and
unsignaled. When an Aut oReset Event becomes signaled, any thread waiting for that
event is released from the Wi t SI eepJoi n state, triggering the Aut oReset Event
to return to the unsignaled state.

Wi t Handl e-derived classes have advantages over the Moni t or class. One is that
it is possible to wait for multiple WAi t Handl e-derived classes. Using the Wi t Al |
method, a thread can wait until all Wai t Handl e-derived classes in an array, or for
only one, to become signaled. More important, Wai t Handl e-derived classes allow for
interaction between managed and unmanaged code because they expose underlying
OS handles.

Manual Reset Event issimilar to Aut oReset Event , but it differs in its behavior
when a thread is waiting. Unlike the Aut oReset Event class that returns to the unsig-
naled state, Manual Reset Event s remain in the signaled state. The Reset method
changes Manual Reset Event from signaled to unsignaled.

142

8.1

1*7 + 1*8 +
! 2 3 / 8 259 + 2*10 +
X 3*11 3*12
4 5 6 9 10 = 4%7 4 4%8 +
5%9 + 5%10 +
6*11 6%12
1 12

Figure 8.1 Matrix multiplication explained

The Mut ex object is similar to the Moni t or object in that it controls access of
threads to regions of code. It differs in that it can control access to regions of code in
different processes. This allows for robust synchronization at a process level, as well as
a thread level.

The examples used in this chapter relate to matrix multiplication. Matrix multi-
plication is the process of combining two matrices to produce a third. The number of
columns in the first matrix must equal the number of rows in the second. The resulting
matrix will have the same number of rows that the first matrix has and the number
of the columns that the second has.

Figure 8.1 shows how one matrix is multiplied by the second to produce the third.
Notice that to produce the top-left cell of the result matrix, we start by multiplying
the cell in the top-left in the first matrix by the top-left in the second. We then add
that result to the product of the cell in the first row, second column in the first matrix
times the cell in the first column, second row in the second, and so on. Matrix mul-
tiplication is being used because it is a relatively common mathematical construct used
in many fields. Operations research, computer graphics, statistics, and engineering all
use matrix multiplication.

THE WAITHANDLE CLASS

The Wai t Handl e class (figure 8.2) allows for a form of manual synchronization;
manual in the sense that you, the developer, need to do most of the work. The previous
chapter introduced automatic synchronization. This chapter focuses on more powerful,
and fundamental, constructs of synchronization.

As you can see in figure 8.2 Vi t Handl e is an abstract base class and, because it s,
instances of it cannot be created. To utilize the methods of V&I t Handl e, either we must
use static/shared methods or an instance of a class derived from it must be instantiated.

The Wai t Handl e class is a wrapper around the Win32 synchronization handles.
All classes derived from Wi t Handl e support multiple wait operations. Because these
classes are closely tied to Win32 objects, they are less portable than the Moni t or class.

WaitHandle \\Ai t Hand| e is an abstract base class that allows for the creation of synchro-
Class nization mechanisms. The three mechanisms that are derived from Wi t -
Handl e are Mut ex, Aut oReset Event , and Manual Reset Event .

THE WAITHANDLE CLASS 143

144

WaitHandle (Abstract)

& WaitTimeout : Integer
¢ Handle : IntPtr
R InvalidHandle : IntPtr

Q WaitOne()
Q <<Static>> WaitAll()
Q <<Static>> WaitAny()

Q Close
ManualResetEvent AutoResetEvent Mutex
Q Set() Q Setl) Q ReleseMutex()
Q Resetl() Q Reset()

Figure 8.2 UML diagram of the i t Hand| e class

The only property that the Wai t Handl e class exposes is Handl e, which may be used
to get or set the underlying OS handle. Wai t Ti meout is a public field that contains
the value that the Wi t Any method returns when it times out. Vi t Any, Wi t One,
and WAi t Al | are the most important methods in the Wai t Handl e class. We will
cover each of these in detail in this chapter.

An important concept when dealing with the manual synchronization classes is
object signaling. When an object is signaled, it can be thought of as being in an on state.

Manual Reset Event can be thought of as opening a door. Unitil the door is closed
there is no limit on the number of people who can go through it. The Set and Reset
methods are used to change the event’s signaled state. We'll cover it in detail later, but
for now think of it as being somewhat similar to the Moni t or . WAi t method used
with the Moni t or. Pul seAl | method.

Aut oReset Event is similar to calling Moni t or. Pul se on an object being
waited on. It allows one thread to proceed and changes its signaled state from signaled
to unsignaled. It is very similar to the Manual Reset Event class, except that when
a thread exits from the WAi t One method, the object is no longer signaled. It is as
though a call to Reset is automatically made when the Wai t One method exits.

Mut ex is used to create a mutually exclusive region of code. It can also be used to cre-
ate mutually exclusive regions of code that exist in different processes. This sort of cross-
process exclusion is a very powerful mechanism. Mut ex is similar to Moni t or . Ent er
and EXi t except that Mut ex can span multiple processes. To enter Mut ex a call is
made to Vi t One. To enter Mut ex the object must be signaled; to exit a call is made
to Rel easeMut ex. Calling the Rel easeMut ex method results in the instance of
Mut ex becoming signaled.

CHAPTER 8 WAITHANDLE CLASSES

8.2

8.2.1

Each of these objects can be used in the static WAi t Any and WAi t Al | methods
of the Wi t Handl e class. Wi t Any allows for waiting until one of many objects
becomes signaled. An example of when this would be useful is a search algorithm.
When one of the threads finds the answer, it’s time to stop looking. Wi t Al | is a way
of waiting for all objects in a set to be signaled before allowing processing to continue.
This is useful when work is split up among multiple threads and processing cannot
continue until all threads have completed their work.

This section is intended to introduce each of the Wai t Handl e classes. We will
cover each in detail in the next sections. The important thing to understand is that a
Vi t Handl e-derived object is either signaled or not. Think of this as a Boolean vari-
able. It is either on or off.

These classes are less intuitive than the Moni t or class. They provide a great deal of
power over the synchronization of threads. If the Moni t or class is not sufficient, these
classes provide the capability of creating very powerful synchronization constructs.

THE AUTORESETEVENT CLASS

Aut oReset Event is a form of thread synchronization that alternates between a sig-
naled state and an unsignaled one. Think of it as acting much like the toll turnstile at
the subway station. To get past the turnstile someone must first deposit the correct fare.
Once the fare has been deposited, only one person may enter. The turnstile switches
from the state where it allows the person to enter to the state where it does not as
soon as one person has entered. In this analogy, the turnstile is in a signaled state once
someone deposits the fare. It switches to the unsignaled state as soon as someone passes
through the turnstile.
Auto- Aut oReset Event isa class thatis derived from Wi t Handl e. Itisa thread
Resetbvent oy chronization mechanism that is in one of two states. When it is signaled,
any thread that calls, or has called, Wai t One will be allowed to proceed,
automatically resetting the class to the unsignaled state.

The Aut oReset Event class contains the Set and Reset methods. Invoking Set
results in the instance of the Aut oReset Event class becoming signaled. Invoking
Reset can be used to change the instance of the Aut oReset Event class to unsignaled.

Using the Set method

Aut oReset Event . Set is the method to insert the token, so to speak. Set ensures
that the state of the instance of the Aut oReset Event is signaled. If the state is sig-
naled before Set is called, it will remain signaled. This toll turnstile does not give
change. If more than one call to Set is made, the result will be the same: exactly one
thread will be allowed to pass.

Set Set isa method of Aut oReset Event that changes the state of an instance

of that class to signaled. If the instance of Aut oReset Event is already sig-
naled, the method has no effect.

THE AUTORESETEVENT CLASS 145

8.2.2

146

Aut oReset Event will automatically switch from signaled to unsignaled as soon as
a thread calls Wi t One, or some other wait method that we will cover later in the
chapter. Wi t One is similar to getting in line to go through the turnstile. If Set is
called before Wai t One, it is the same result as paying the fare before anyone is in
line. As soon as they walk up they are allowed to proceed.

One way that Aut oReset Event is very different than the typical subway turnstile
is that there is no orderly progression. This means that there is no way of determining
the order in which multiple threads waiting for a shared Aut oReset Event object will
be released when the Set method is invoked. The behavior of Aut oReset Obj ect
on a single-processor machine is often quite different than its behavior on a multiple-
processor machine. This reinforces the importance of regular testing during develop-
ment on hardware that is similar to the targeted platform.

Another way Aut oReset Event differs from the subway turnstile is that the
threads waiting do not change the state of Aut oReset Event . They do not deposit
their own token in the turnstile. Someone else must do it for them, since they are in a
Vi t Sl eepJoi n state while they are waiting.

Do not assume that one thread will execute before or after a different thread that
is also waiting on a shared Aut oReset Event . When Aut oReset Event is signaled
and one or more thread is waiting, all that is guaranteed is that a single thread will be
released and that Aut oReset Event will return to the unsignaled state.

Using the Reset method

The Reset method changes the signaled state of Aut oReset Event to unsignaled.
This is done automatically when a thread is released from the Wi t Sl eepJoi n
state. There may be circumstances when no thread is waiting and it is set to signaled.
Before a thread waits on that event, it may be determined that it should no longer be
signaled. In that case, calling Reset will change the state back to unsignaled.

Reset Reset isa method of the Aut oReset Event class that changes the state of
an instance of that class to unsignaled. Calling the method is generally not
required since the release of a thread from the Wi t S| eepJoi n state au-
tomatically changes the state of Aut oReset Event to unsignaled.

The constructor of Aut oReset Event contains a parameter that controls the initial

state of the instance of the class. If Fal se is passed in, the instance of the Aut oReset -

Event class is initially unsignaled. If Tr ue is passed in, it is initially signaled.
Listing 8.1 demonstrates the Set method of the Aut oReset Event class.

Private UpdateU Event As AutoReset Event
Updat eUl Event = New Aut oReset Event (Fal se)

Dim ML As C assSi npl eMatri x

CHAPTER 8 WAITHANDLE CLASSES

8.3

8.3.1

Dim M2 As Cl assSinpl eMatrix
Di m MLCol s, MLRows As Long
Di m M2Col s, M2Rows As Long

ML = New Cl assSi npl eMatri x(MLCol s, MLRows)
M2 = New Cl assSi npl eMatri x(M2Col s, M2Rows)
ML. Randoni ze(100)
M2. Randoni ze(100)

MB = ML. Ml tiply(M) Change to
Updat eUl Event . Set () signaled
Private Sub UpdateUl () Wait until
VWi le (True) UpdateUlEvent.Set
Updat eUl Event . Wai t One() is called

If Not MB Is Nothing Then
If (listViewl.|nvokeRequired) Then
Dimargs As Qbject() = {listViewl, M}
Di m updateit As ListVi ewlpdater
updateit = AddressOF Updat eLi st Vi ewW t hMatri x
l'istViewl. | nvoke(updateit, args)
El se
Updat eLi st ViewW thMatri x(listViewl, M)
End | f
End | f
End Wile
End Sub
||

Since the Aut oReset Event class is derived from the Wai t Handl e class it is
important to understand the methods of Wai t Handl e. Section 8.3 discusses the
Wi t Handl e class in detail.

WAITHANDLE

Wi t Handl e is an abstract base class. This means that no instance of it can be created.
Classes that are derived from Wai t Handl e can be created, assuming they are not
abstract base classes themselves. In section 8.2 we discussed one class that is derived
from Wai t Handl e, the Aut oReset Event class. In this section we discuss three of
the methods of the WAi t Handl e class: Wi t One, WAi t Al | , and Wi t Any.

WaitOne

Vi t One is used to wait for a class that’s derived from Wai t Handl e to reach a sig-
naled state. In the last section we covered one way Aut oReset Event , which is
derived from Wai t Handl e, becomes signaled.

WaitOne Wi t One is an instance method of all classes derived from Wi t Handl e.
It attempts to put the instance of the object it is associated with into the
Wi t Sl eepJoi n state. If it is successful it returns true; otherwise, it returns
false. A timeout value can optionally be included.

WAITHANDLE 147

148

Vi t One returns a Boolean value that indicates it is signaled. In the case where
Vi t One is invoked with no parameters, it will always return true because it blocks
until it becomes signaled. If it returns, it must have been signaled. So in the next
example Recei vedSi gnal will always be true:

Bool ReceivedSi gnal = TheEvent. Wit One();

The other versions of Wi t One accept two parameters. The first parameter is a timeout
value, either an integer or a Ti meSpan object. If it is an integer, the value indicates
how many milliseconds to wait. If the instance of Aut oReset Event becomes sig-
naled before the timeout period Wai t One will return true.

exitContext ~ The exi t Cont ext parameter of Wai t One controls how the method

Parameter |,.),aves when invoked from within a synchronized context. If Vi t One is
invoked in a synchronized context and the exi t Cont ext parameter is
not true, deadlock will likely occur.

The second parameter, exi t Cont ext, to the timed-out version of Wai t One is a
Boolean that controls how Wi t One behaves when it is invoked from within a syn-
chronized context. If the second parameter is false, Wi t One behaves the same as it
does when it is called with no parameters, except a timeout value can be specified. If the
exi t Cont ext parameter is true and the WAi t One method is invoked from within a
synchronized context, the context is exited before the thread enters the Wi t Sl eep-
Joi n state. The context is then reentered when the thread exits the Wi t Sl eepJoi n
state. Unless the COM+ approach to synchronization is being used, there is no reason
to be concerned with this parameter. If the Synchroni zat i on attribute is being
used on the class, then the value should be set to true.

Listing 8.2 Specifying if the current context should be exited before the wait

begins (C#)

private void ThreadMet hod()

{
try
{
bool Recei vedSi gnal ;
for (int i=0;i<10;i++)
{
/1 ExitContext is true == Deadl ock
Recei vedSi gnal =TheEvent . Wi t One(2000, Exi t Cont ext) ;
i f (ReceivedSignal
{ (gnal) Exit the context
before the wait

Consol e. WitelLine("received signal"); begins

}

CHAPTER 8 WAITHANDLE CLASSES

8.3.2

el se
{
Console. WiteLine("Timed Qut");
}
}

}
|

If the Synchr oni zat i on attribute is set and the class is derived from Cont ext -
BoundQbj ect, then any wait methods should have the exi t Cont ext flag set to
true. Failure to do so results in a deadlock (figure 8.3). If the waiting thread enters the
Vi t Sl eepJoi n state before exiting the synchronized context no other thread can
enter that context until the waiting thread exits. If WAi t One is used, the thread will
never exit and the process will need to be terminated.

If this form of synchronization is being used, ensure that the Synchr oni zat i on
attribute on the class indicates that the class should be reentrant. Waiting in a syn-
chronized context should be avoided; in those cases where it cannot, ensure that the
exi t Cont ext parameter is set to true.

Figure 8.3 is a simplified version of the context bound object’s issue with waiting
on events.

Application Domain

Default Context Bound Context

Synchronized

Instance of the Class ThreadB Data Class
Method That Calls WaitOne
ThreadA \
Proxy)4y Method That Interacts with |
AutoResetEvent WaitOne

| AutoResetEvent

Figure 8.3 Context synchronization can result in deadlock if the correct value is not passed to
exit Cont ext .

The other forms of the wait methods also contain the exi t Cont ext parameter. The
behavior is the same for each of those methods.

WaitAll

Suppose that you have a large amount of work to accomplish. It would be nice to split
it up among multiple threads. Since there is no guarantee that the threads will end their
work at the same time, it is important to have a means to wait for all of them to finish.
Wi t Al | is a shared/static method on the Wai t Handl e class. It allows the caller to
wait until all elements in an array of WAi t Handl e-derived classes become signaled.

WAITHANDLE 149

150

WaitAll Wi t Al | is a shared/static method of the Wai t Handl e class. It has three
forms, all of which accept an array of Vai t Handl e-derived objects. An op-
tional timeout and exi t Cont ext parameter can also be passed.

In Listing 8.3 the call to Wai t Handl e. Wi t Al | will only return if all elements in
Fi ni shedSt at e become signaled.

Private finishedState() As AutoReset Event Allocates an
s array to pass
Private Sub Manager Met hod() to WaitAll

Dimi As Long

Di m si gnal ed As Bool ean

Di mtmpOhj ect As bj ect

Wil e True
si gnal ed = wor kAvai | abl e. \ai t One(1000, Fal se)
I f signaled Then

Wai t Handl e. Wai t Al | (i ni shedSt at e) T Returns when all

elements become
signaled

Wait for all threads to finish their work
If Not notify Is Nothing Then
Gather up the results and send t hem back
resul t Objects = New ArrayList()
For i = 0 To workers.Length - 1
tnpObj ect = workers(i).GetResults
Whil e Not tnpObject I's Nothing
resul t Obj ects. Add(t npObj ect)
tnpObj ect = workers(i).GetResults
End Wil e
Next
notify(resultObjects)
notify = Not hing
End I f
fini shedWthWwrk. Set ()
End | f
End Wile

End Sub
||

Listing 8.3 is from a class library that creates a configurable number of threads and
distributes work to each. This is very similar to Thr eadPool , discussed in chapter 10.
The basic architecture of the component is described in figure 8.4.

The class library consists of a manager class that manages a collection of threads. This
allows the complexity of thread management to be encapsulated in a single location. The
manager distributes work to each thread and then waits until they all finish their work.
The Wai t Al | method is used to wait until each thread signals their work is finished
using their Aut oReset Event . When all threads have finished executing, the manager
thread collects the results and invokes a delegate that returns them to the calling class.

CHAPTER 8 WAITHANDLE CLASSES

8.3.3

Work UnitClass

Work Manager .
9 1. Distributes —| Work
Work Work Queue

Available LZ. Signals"'l Work Available — },| Work
Thread

Manager

Work Finished
Work Thread \3.Waits—/'I ork Finished |
Finished \ Result
4. Collects Queue

Results

Figure 8.4 High-level architecture of a ThreadPool-like implementation.

+ The number of objects that can be waited on depends on the OS. Under
current Windows systems it is 64.

+ Duplicate Wi t Handl e objects are not allowed.

+ Noull objects are not allowed in the array of Wai t Handl e objects.

WAITALL
RESTRICTIONS

+ All objects in the array must be derived from Wai t Handl e, directly or
indirectly.

Matrix multiplication is a good candidate for distributing work to threads. Recall that
each output cell is calculated independently. Figure 8.5 shows how the highlighted cell
can be calculated on a thread independent of other calculations.

1*7 + 1*8 +
! 2 E / E 2%9 + 2410 +
X 3*11 3%12
4 5 6 9 10 = 4%7 4 4%8 +
5%*9 + 5%10 +
6*11 6%12
1 12

Figure 8.5 Since the output for the top-right cell does not depend on any other output cell, it
can be calculated independently.

Vi t Al | allows for timed-out operation in the same way Wi t One does. A timeout
value can be specified, either as an integer indicating the number of milliseconds or as
a Ti meSpan object. The Exi t Cont ext parameter is also present. Its behavior is
the same as it is for WAi t One.

WaitAny

Suppose that you wanted to know when one Aut oReset Event, out of many,
becomes signaled. The Wi t Handl e. Wi t Any method accepts an array of Vi t -
Handl e objects and waits until one of them becomes signaled or an optional time-
out expires. If one of the elements in the array becomes signaled, the index of that

WAITHANDLE 151

152

element is returned. If no element becomes signaled and a timeout occurs, the con-
stant i t Hand| e. Wi t Ti meout is returned. If more than one element becomes
signaled, the return value is the index of the lowest element to become signaled.

WaitAny Wi t Any is a static method of the WAi t Handl e class. It accepts an array
of Wai t Handl e references. If one of the Wai t Handl es in the array be-
comes signaled, its index is returned. If a timeout is specified and no
Vi t Handl e becomes signaled during the timeout period, the constant
Wai t Handl e. Wi t Ti meout is returned.

Suppose you had an array of Wai t Handl e-derived objects that contained five ele-
ments. If elements two and four become signaled during a call to Wai t Any on that
array, the return value would be 1. The return value is the zero-based index, so the
second element would correspond to a return value of 1.

WaitAny \MAi t Any is bound by the same restrictions as Wai t Al | .
Restrictions

The example from the last section was a component that allowed for easy distribution
of work among multiple threads. It relied on each worker thread having a queue to
store work in. This allowed more than 64 tasks to be queued up at once. Figure 8.6
shows a different architecture.

Instead of the queue being in the worker class, it is in the manager class. This allows
for more flexibility. Suppose you only wanted to process work until a solution is found.
Using the manager as the means of distributing the work makes this much simpler.
The way the manager works is that a collection of work items is added using the
DoWor k method. These entries are added to the manager’s work queue and the man-
ager is informed that there is work to do. It does a Wi t Any on the workers to find
one which is ReadyFor Wor k. When one is found, work is assigned to it from the
work queue. Once the thread has completed its work, it sends Ready For Wor k back

Work Manager Work UnitClass
Do Work -
Entnes Work | Ready ForWork | Set —
Queue :

Wait ™ Work Available .Wait Nork
Work ¢ Reset Set - VVor

: Any Thread
Available ‘Wait rea
Set Thread
.Work =4 Work Element
Finished

Figure 8.6 A refined manager/worker architecture

CHAPTER 8 WAITHANDLE CLASSES

to the signaled state and the manager picks up the completed element. Listing 8.4
demonstrates the basic elements of the architecture presented in figure 8.5.

S Declares an array of
private AutoResetEvent[] FinishedState; AutoResetEvents

Fi ni shedSt ate = new Aut oReset Event [HomvanyWor ker s] ; Allocates the array of

for (long i = 0;i <HowivanyWrkers ;i ++) AutoResetEvents
{
Workers[i] = new O assWorkUnit("Wrker" + i.ToString()); Allocates the
Fi ni shedState[i] = Workers[i].Finished; worker class
}
Coe Assigns the element
bool Signaled ; the WaitHandle array
i nt ThreadReadyFor Wrk; an AutoResetEvent
while (true)
{))) Waits for one of the
Si gnal ed = Wor kAvai | abl e. Wi t One(100, fal se); AutoResetEvents to
if (Signaled) become signaled
{

Thr eadReadyFor Wor k= Wi t Handl e. Wai t Any(Fi ni shedSt at e, 100, fal se);
i f (ThreadReadyForWrk != WAitHandl e. Wai t Ti neout)
{

Unit WorkUnit = Workers[ThreadReadyFor Wr k] . Get Resul t s();

if (WrkUnit != null)

Conpl et edQueue. Enqueue(Wor kUni t);
Wor kUnit =nul | ;
if (WorkQueue. Count > 0)

{
WorkUnit = (Unit) WorkQueue. Dequeue();
if (WrkUnit !'= null)
Wor ker s[Thr eadReadyFor Wor k] . Wor k(Wor kUni t) ;
}

The basic concept is that the worker thread waits for an Aut oReset Event to become
signaled saying that there is work to do. Once it completes that work, it sets Ready-
For Wr K to signaled. One interesting point with this approach is that Ready For Wr k
is created initially signaled. The following statement creates the Aut oReset Event
and sets it to being initially signaled:

ReadyFor Wor k = new Aut oReset Event (true);

As stated earlier, if more than one element in the array being waited upon becomes
signaled, the lowest index corresponding to a signaled object will be returned. Figure 8.7
demonstrates this concept.

We've examined the methods of the Wai t Handl e class; now let’s look at the
Manual Reset Event and Mut ex classes that are derived from Wai t Handl e.

WAITHANDLE 153

8.4

154

WaitHandle Array

0
1 1
2 2
3 3
4 4
. . Figure 8.7
WaitAny Returns 1 WaitAny Returns 3 The Wi t Any method always returns
= Signaled the index of the lowest signaled element
in the wait array.
MANUALRESETEVENT

Suppose that you want to know if an Aut oReset Event object is signaled. One way
you could do this is to call Wi t One on it, passing in zero for the wait time. If the
Aut oReset Event were not signaled, it would return false. If it were signaled, it
would return true. The problem is that when an Aut oReset Event is signaled and a
wait is performed on it, the object automatically switches to being not signaled. This
means that if one thread were inspecting the state of things it would change them by
observing them. To address this and similar issues, we can use Manual Reset Event .
As the name indicates, the state of the event does not change when it is waited on. The
behavior can be thought of as being similar to a water faucet. When turned on, it will
stay on until it is turned off. This contrasts with the Aut oReset Event , which turns
itself off as soon as someone notices that it is on.

Manual- The Manual Reset Event isa synchronization mechanism that remains in

Resetbvent , signaled state regardless of how many times a wait method is called on it.

It must be changed from the signaled state using the Reset method.

Listing 8.5 shows an example that demonstrates using a Manual Reset Event object.

Private ReadyForWrk() As Mnual Reset Event Declares an array of

ManualResetEvents

Resizes the array to the

ReDi m ReadyFor Wor k(HowvanyWr kers - 1)
' j number of workers

For i = 0 To HowManyWrkers - 1
Workers(i) = New C assWorkUnit("Worker" + i.ToString())

ReadyFor Wor k(i) Wor ker s(i). ReadyFor Wr k T Retrieves the Worker’s

Resul t sReady(i) = Workers(i).ResultsReady instance of the
Next ManualResetEvent

Publ i c Function Worker ThreadAvai l ability() As Bool ean()
Di m Resul ts() As Bool ean
ReDi m Resul t s(Workers. Length - 1)

CHAPTER 8 WAITHANDLE CLASSES

Dimi As Long

For i = 0 To Workers.Length - 1

Resul ts(i) = ReadyForWork(i).WitOne(0, False) Inspects the signaled
Next T state of the
Return Results ManualResetEvent

End Function
||

To change an instance of the Manual Reset Event class from being signaled to not,
we use the Reset method. Reset returns a Boolean indicating the success of the
operation. As with all operations that return a value, ensure that the operation succeeds.
I f Not ReadyFor WrkEvent. Reset() Then

Throw New Exception("Unable to reset ReadyForWrkEvent")
End If

Instances of the Manual Reset Event class provide a robust means of synchronizing
activity. They provide a high degree of control and are easy to use. They can be used
with the Wi t One, Wi t Any, and Wai t Al | methods.

TIP The Wi t Handl e. Wai t Ti meout constant is currently 258.

Table 8.1 compares the results of the wait methods of Aut oReset Event and Manual -
Reset Event .

Table 8.1 Comparison of Aut oReset Event and Manual Reset Event

Statements AutoResetEvent ManualResetEvent
zzfjuem Signaled zzfjuem Signaled
TheEvent.Set() True Yes True Yes
TheEvent.WaitOne(0, False) True Yes True Yes
TheEvent.WaitOne(0, False) False True Yes
TheEvent.Reset() True True
TheEvent.WaitOne(0, False) False False
TheEvent.Set() True Yes True Yes
WiaitHandle.WaitAny(H, 0, False) 0 Yes 0 Yes
WiaitHandle.WaitAny(H, 0, False) 258 0 Yes
TheEvent.Reset() True True
WaitHandle.WaitAny(H, 0, False) 258 258
TheEvent.Set() True Yes True Yes
WaitHandle.WaitAll(H, O, False) True Yes True Yes
WaitHandle.WaitAll(H, O, False) False True Yes
TheEvent.Reset() True True
WaitHandle.WaitAll(H, O, False) False False

MANUALRESETEVENT 155

8.5

156

The Return Code column under each type of reset event indicates the value returned
by the statement. The Signaled column indicates if the object is signaled. Notice that
Manual Reset Event ’s signaled state does not change except for when Set and
Reset are invoked on it. The value 258 corresponds to the Wi t Handl e. Wi t -
Ti meout constant.

TIP If multiple threads manipulate the same Manual Reset Event , a synchro-
nization block may be needed to ensure proper execution.

Both the manual and autoreset events are useful constructs. Many things can only be
accomplished by using a Manual Reset Event . One word of warning, the following
instruction is atomic.

Test Aut oEvent . Wi t One()
While similar statements with a Manual Reset Event are not.

Test Manual Event . Wi t One()
Test Manual Event . Reset ()

To ensure proper execution, enclose the preceding lines in a synchronization block.

MUTEX cLASS: WAITONE AND
RELEASEMIUTEX

Suppose that you wanted to use a single text file to store the output of multiple threads.
We've seen how race conditions can happen. Any time a shared resource is used, there
is the chance of a race condition. Since a file might be accessed not only by multiple
threads but also multiple processes, the operating system provides for various file-sharing
restrictions.

public class C assSafeFile
{
private string Fil enane;
private Miutex TheMuit ex;
public C assSafeFil e(bool UseMitex,string Filenanme)

{

if (UseMitex)

{

TheMut ex=new Mut ex(fal se, " Manni ng. Denni s. Thr eadi ng. Ch8. S8") ;

})]] Creates a Mutex

this. Filename = Fil enane; that is not
} initially signaled
public void Wite(string Contents)
{

int ByteCount = System Text.Encodi ng. Uni code. Get Byt eCount (Contents);
byte[] Bytes = System Text.Encodi ng. Uni code. Get Byt es(Contents);

CHAPTER 8 WAITHANDLE CLASSES

Fil eStream TheStream
bool Success = true;
if (TheMutex !'= null)

{
Success = TheMut ex. Wai t One(10000, f al se); Waits for up to 10
} T seconds trying to
acquire the lock

if (Success)

{
try
{
TheStream = Fil e. Open(
Fi | ename,
Fi | eMbde.
OpenOr Creat e,
Fi | eAccess. Wite,
Fi | eShare. Read) ;
TheSt r eam Seek(0, SeekOri gi n. End) ;
TheStream Wit e(Byt es, 0, Byt eCount);
TheStream C ose();
}
finally
{
if (TheMutex !'= null)
{
TheMut ex. Rel easeMut ex() ; Releases the
) } acquired Mutex
}
el se
{
t hrow new Exception("Ti med out waiting for File");
}

Listing 8.6 allows multiple threads to read the file but only one to write. If two threads
attempt to open a file for write simultaneously, a Syst em | O. | OExcepti on is
raised. This exception will likely be handled by waiting for a period of time and then
attempting to open the file again. An alternative is to synchronize access to the file.

Mutex A Mut ex is a named synchronization object derived from Wi t Handl e
that allows for creation of mutually exclusive regions of code.

A Mut ex is a synchronization construct that allows for the creation of a mutually exclu-
sive region of code. A Mut ex serves much of the same function as Moni t or . Ent er
and Moni t or . Exi t. If using Ent er and EXi t can solve a problem, they should be
used. A Mut ex takes roughly two orders of magnitude longer to acquire and release a
lock than a monitor. That means that it takes roughly 100 times longer to acquire

MUTEX CLASS: WAITONE AND RELEASEMUTEX 157

158

and release a Mut ex than it does to do a Moni tor. Ent er and Monitor. Exit.
Table 8.2 offers a comparison of the Mut ex class to the Moni t or class.

Table 8.2 Comparison of Mut ex and Moni t or

Monitor Mutex

High performance Y

Allows for object being initially owned Y
Timed-out lock acquisition Y Y
Waits for one of many locks Y
Waits for all of many locks Y
Cross-process support Y
Can lock on any object Y

Tests for signaled Y Y
Support for COM+ synchronization Y
Named Y
The number of releases must match the number acquires Y Y

Mut ex offers several benefits over Moni t or. The biggest is that it is derived from
Wi t Handl e and can be used with Wai t One, Wi t Any, and Wi t Al | . This
means that a thread can use the Wai t Al | method and wait until it acquires all of the
Mut ex in an array. This would be very difficult to do using Moni t or.

Mut ex is signaled when no thread owns it. When ownership of Mut ex is acquired
using one of the wait methods, it is set to unsignaled. Mut ex can be created in the
unsignaled state. This means the thread that creates Mut ex acquires ownership of it. To
create MUt ex that is initially owned, pass in true for thei ni ti al | yOmed parameter
of the constructor. When Rel easeMut ex is called, Mut ex is no longer owned and
becomes signaled. Additionally, if a thread that owns Mut ex terminates normally, the
Mut ex is released and becomes signaled.

When Mut ex is created, it is assigned a name, which should be unique. If Mut ex
with the supplied name exists, it is returned; otherwise, a new Mut ex is created. As long
as a thread retains a reference to the Mut ex, it will continue to exist. At the point the
last thread with a reference to a Mut ex terminates, the Mut ex is destroyed. Addition-
ally, a thread can call the O 0se method on the Mut ex class to release the Mut ex.
Once a Mut ex has been released, it cannot be used.

Since a Mut ex hasa name, it can be used across processes. In listing 8.6 only one thread
of one process can access the file at a point in time. The other threads will wait, for at
most ten seconds, to acquire the file. This approach can be used with any shared resource.

The cost of using Mut ex is very high compared to using Moni t or . The reason
for the difference in performance is that Mut ex is a kernel object. Mut ex is a very
powerful construct. Because of its performance it should only be used when a faster
synchronization mechanism will not suffice.

CHAPTER 8 WAITHANDLE CLASSES

8.6

SUMMARY

SUMMARY

In this chapter we’ve covered manual synchronization constructs. As with most things,
the manual classes offer higher flexibility at the cost of ease of use and in some cases
performance. Understanding when to use each of the synchronization classes is an
important lesson and one that will come with time. A guiding principle should be to
use the highest performance, least complex solution. There will be requirements that
dictate which sort of synchronization to use; for example, if cross-process synchroniza-
tion is required, then the Mut ex class is a likely candidate for the solution. Likewise,
if a single process is involved and the highest level of performance is required, likely a
Moni t or implementation will be required.

The next chapter deals with a reader/writer lock. Reader/writer locks can be created
from synchronization primitives. They offer a solution to a very specific problem. By
being familiar with the various tools at your disposal, you’ll be able to better choose
which tool to use in a given situation.

159

CHAPTEHR 9

Reader/Writer lock

9.1 Acquiring a read lock from a ReaderWriterLock 161
9.2 Acquiring a writer lock from a ReaderWriterLock 166
9.3 ReleaseLock and RestoreLock 179

9.4 Summary 181

Reader Wit er Lock is a synchronization mechanism allowing access to data. It
allows multiple threads to read the data simultaneously, but only one thread at a time
to update it. While a thread is updating, no other thread can read the data. The name
is misleading. It may cause you to think there are two locks; in reality there is a single
lock that restricts both reading and writing,.

Think of how a conversation in a group generally goes. One person talks while the
others listen. Think of how inefficient a conversation would be if only one person
could talk to one person in a group at a given time. This is the very reason that con-
ference calls are used. In business, it is often beneficial to have a single conference call,
involving all of the parties at once, rather than have multiple person-to-person calls.
A Reader Wit er Lock allows multiple threads to read data at the same time. The
only restriction is that a thread cannot modify the data while someone is reading it.

The majority of data accesses are reads, but occasionally a thread needs to change a
value. This is problematic in that one thread may modify a data element while another
one is accessing it. To combat this, the choices are to protect the element with a syn-
chronization lock, such as | ock and SyncLock, or to use Reader Wi t er Lock.

160

This chapter uses a simulated auction to demonstrate this concept. To test our syn-
chronization system we can utilize multiple threads. Each thread will have a list of items
it is instructed to acquire, along with an allotment of bidding points. Since an auction
involves many reads to data and a few writes, it is ideal for demonstrating the concepts
of a reader/writer lock.

The .NET implementation of Reader Wi t er Lock is efficient enough for highly
granular use. In our example, each auction item has its own Reader Wi t er Lock,
allowing for a higher level concurrency and ensuring fairness in lock allocation
between threads. When a thread requests a write lock, no other threads will be granted
a read lock until the write lock request is satisfied.

The Reader Wi t er Lock is a very useful construct. Most environments force
developers to write their own or purchase a third-party tool, but the .NET platform
makes this construct available for general use. Reader Wi t er Locks are a powerful
tool for selectively guarding data.

9.1 ACQUIRING A READ LOCK FROM
A READERWRITERLOCK

The read portion of the Reader Wi t er Lock is the means that a thread uses to indi-
cate that it is reading the protected data. This is needed because the determination of
whether a thread can write to the protected data is based on the presence of one or
more threads reading it. It doesn’t make much sense for a read lock to be used with-
out a write lock. If no thread is changing the data, there isn’t much need in restricting
access to it, since the data must be constant in nature. Figure 9.1 presents the logical
structure of a Reader Wi t er Lock.

Remember that all access to a data element must be restricted to effectively protect
the data. If there are ten ways to examine and three ways to update a data element, but
only nine of the possible reading paths are protected, the concurrency issues that the
Reader Wi t er Lock is supposed to be avoiding will still occur.

ReaderWriterLock

Active Readers

reader_1 IsReaderLockHeld
AcquireReadLock]—»(Pending Reader Requests 0\ reader_2
ReleaseReadlock

reader_n

AcquireWriterLocE'—»(Pending Writer Requests O\ Active Writer 4 1 ReleaseWriterLock
’i IsWriterLockHeld

Figure 9.1 Logical structure of the ReaderWriterLock

ACQUIRING A READ LOCK FROM A READERWRITERLOCK 161

9.1.1

162

Acquiring and releasing a reader lock

Suppose that you wanted to control access to data elements so that multiple consumers
of that data could read it concurrently without data corruption. One way to do this is
to use a Reader Wi t er Lock.

Reader- A Reader Wit er Lock is a synchronization mechanism that allows con-
Writerlock .y rrent data reading but restricts data writing to occur only when no readers

are present.

A Reader Wi t er Lock selectively allows access to data. It allows multiple threads
to acquire a reader lock, which is acquired when the thread will be performing only
read operations. Nothing keeps an errant thread from acquiring a reader lock and
performing write operations. Care should be taken to ensure that only read opera-
tions occur in a region guarded by a read lock.

The power of a Reader Wi t er Lock is that it allows read operations to be log-
ically separated from write operations. Since multiple read operations do not result in
data corruption, there is no reason that multiple threads cannot simultaneously read
a variable without ill effects.

To acquire a read lock, we invoke the Acqui r eReadLock method on the instance
of the lock we wish to acquire. Acqui r eReadLock accepts a timeout value as its
only parameter. As with many other synchronization methods, the timeout can either
be an integer specifying the number of milliseconds to wait or an instance of the
Ti meSpan class.

In listing 9.1, we pass in the constant Ti meout . | nfi ni t e to indicate we wish
to wait indefinitely until we are able to acquire a read lock. We are assured that when
the method returns we have acquired a read lock. As a general rule, using Ti me-
out. I nfinite isabadidea. A better approach is to supply a timeout value because
it removes the possibility of a Reader Wi t er Lock-related deadlock. To keep this
chapter’s examples simple, we use Ti neout . I nfinite.

Once a thread has acquired a read lock, it can perform any reads that are required, and
once those reads are complete it should release the lock using the Rel easeReadLock
method. The number of calls to Rel easeReadLock must match the number of calls
to Acqui r eReadLock. If a thread fails to release the lock the same number of times
it acquires the lock a write lock will not be granted to other threads. This will lead to
deadlock if Ti meout . I nfi ni t e is being used, as well as stopping the granting of
any write locks.

TIP When the number of releases is greater than the number of acquires, a Sys-
tem Appl i cati onExcepti on is thrown.

If a thread attempts to release a lock that it does not own, an exception is generated
with the message “Attempt to release mutex not owned by caller.” This might make you
think that the Reader Wi t er Lock is implemented using the Mut ex synchroniza-
tion primitive we covered in section 8.5; however, it is not. This is a case of a somewhat

CHAPTER 9 READER/WRITER LOCK

misleading error message. If this exception is encountered, it indicates that the number
of releases is greater than the number of acquires.

Private ItenLock As ReaderWiterLock Declares the

Co)) ReaderWriterLock
Public ReadOnly Property CurrentPrice() As Decinal
Get
It emLock. Acqui r eReader Lock(Ti meout . I nfinite) Waits indefinitely
Try for a reader lock
Return TheCurrentPrice
Finally
It emLock. Rel easeReader Lock() Releases the
End Try reader lock
End Cet

End Property
||

In Listing 9.1 notice that the Rel easeReadLock is located in a Fi nal | y state-
ment. This ensures that if an exception is generated while the thread owns the read
lock it will correctly be released. This is a good example of how Fi nal 'y clauses
should be used with exception handling. Figure 9.2 shows how multiple threads can
access shared data using a Reader Wi t er Lock. Note that the shared data is not
actually contained within the Reader Wi t er Lock but is guarded by it.

Each thread acquires the lock, accesses the data, and releases the lock. Since both
threads are reading the data, there is no restriction on when the threads can access the data.

In this section we waited indefinitely to acquire the read lock. In the next section
we'll discuss how to wait for a predetermined period of time. Once that time has
expired, we need a means of determining if we have acquired the lock. Since Acqui r e-
Reader Lock does not return a value, we must use the | SReader LockHel d prop-
erty that we discuss in the next section.

1 1

Acquire Acquire
Read Read
Lock Lock

2 2
/ Read Reader/Writer Lock Read \

ThreadA ThreadB

N e /
Release Release

Read Read
Lock Lock

Figure 9.2 Two threads can read the shared data using the Reader Wi t er Lock to protect
its value.

ACQUIRING A READ LOCK FROM A READERWRITERLOCK 163

9.1.2 IsReaderLockHeld

Suppose you wanted to wait a certain amount of time for a lock to be acquired. The
parameter to the Acqui r eReader Lock method specifies how long to wait for a
reader lock to become available. As we saw in the previous section, it can either be an
integer specifying the number of milliseconds to wait or a Ti meSpan object. If the
lock is not acquired in the specified time, an Appl i cat i onExcepti on is raised.
Listing 9.2 demonstrates one way of acquiring a reader lock and utilizing a timeout.

public decimal CurrentPrice

{
get
{
do
{
try
{
It emLock. Acqui r eReader Lock(1000) ; Attempts to acquire
} a reader lock
catch(System Applicati onException ex)
{
System Di agnosti cs. Debug. Wit eLi ne(ex. Message) ;
}
} while (!ltenlock.|sReaderLockHel d); Determines if the
Ery lock was acquired
return TheCurrentPrice;
}
finally
{
I'temLock. Rel easeReader Lock(); Releases
} the lock
}
}

The code loops until it acquires the reader lock; if it takes more than one second to
acquire the lock, an Appl i cat i onExcepti on is raised. The property | sReader -
LockHel d returns a Boolean value true if the current thread has a reader lock to the
data, false if it does not.

IsReader- | sReader LockHel d is a property of the Reader Wi t er Lock class that
LockHeld indicates if the thread on which the executing code inspects the property
currently owns a reader lock.

164 CHAPTER 9 READER/WRITER LOCK

Another use for the | sReader LockHel d property is to determine if invoking the
Rel easeReader Lock method results in the lock being freed:

try
{
return TheCurrentPrice;
}
finally
{

It emLock. Rel easeReader Lock();
if (ltemlock.|sReaderLockHel d)

{

throw new Exception("Reader Lock still held after rel ease");

}
}

This can help detect situations where the number of releases is less than the number
of acquires. The closer the error-detecting code is to the error, the easier it is to detect
the error. If the error were not detected here, the mistake would likely manifest itself
by having no other thread able to access the read lock. This would make the pro-
gram hang. These sorts of issues are much more difficult to resolve without error-
detecting instructions.

TIP Use the | sReader LockHel d property to determine if a lock is held before
Acqui r eReader Lock and after Rel easeReader Lock. This helps track
down the number of acquires not matching the number of releases. Since
there is a performance penatly, this sort of checking should only be per-
formed during development. Release builds should not include this check.

When faced with an inconsistent or undesirable outcome, the first step should be to
include robust error-detecting and -handling code. This is an area where exceptions
and assertions can play a key role. Additionally, it is a good idea to determine if a
thread already has a reader lock before the acquire method is called. The following
code demonstrates a more defensive way of dealing with the acquire method:

if (Itemock.|sReaderLockHel d)
{

throw new Exception("Reader Lock hel d before acquire");

}
do

{
try
{
It emLock. Acqui r eReader Lock(1000) ;

The concept here is to make sure that the conditions of a thread are in the state you
think they are. If not, throw an exception to help track down the error.

ACQUIRING A READ LOCK FROM A READERWRITERLOCK 165

9.2

9.2.1

166

ACQUIRING A WRITER LOCK FROM
A READERWRITERLOCK

In the previous section we discussed the reader portion of Reader Wi t er Lock.
Now we turn to the write portion. The purpose of a write lock is to ensure that no
threads are reading data while it is being updated.

Acquire, release, and IsLockHeld

The goal of a write lock is to enable multiple threads to read shared date while restrict-
ing write access in a way that ensures data corruption does not occur. We have already
covered the read lock. Multiple threads can safely read data at the same time. Only one
thread can be modifying data at one time. While a thread is modifying the shared data,
no other thread can access the data without the risk of data corruption. In terms of our
simulated auction, a write lock allows a new bid to be accepted. Listing 9.3 demon-
strates the bidding process.

Public Sub Bid(ByVal Ampbunt As Decimal, ByVal BiddersName As String)

If Itenmlock. | sWiterLockHel d Then .
T If a write lock

is held, throw
an exception

Throw New Exception("Witer |ock held before acquire")
End | f

Try
Do
Try
I'temLock. AcquireWiterLock(Ti meout Val ue) Try to acquire
Catch Ex As System Applicati onException the lock
System Di agnosti cs. Debug. Wi t eLi ne(Ex. Message)
End Try

Loop until the

writer lock is

Loop While Not ItenlLock.|sWiterLockHel d
I f AuctionConpl ete Then T

Throw New Exception("Auction has ended") acquired
End I f
If (Amount > TheCurrentPrice) Then
TheCurrent Pri ce = Anpunt
TheBi dder sNanme = Bi dder sNane
El se
Throw New Exception("Bid not higher than current price")
End |f J Once the update is
Finally complete, release
I't enLock. Rel easeW it er Lock() the writer lock
If (ltenlock.|sWiterLockHel d) Then
Throw New Exception("Witer Lock still held after rel ease")
End | f
End Try
End Sub

CHAPTER 9 READER/WRITER LOCK

As you can see in listing 9.3, it is similar to Acqui r eReadLock in that it accepts a
timeout parameter. The Acqui r eW i t eLock method is, obviously, used to acquire
a write lock.

Acquire- Acqui reW i terLock is a method on the Reader Wi t er Lock class
WriterLock ¢},5¢ allows a thread to request ownership of a write lock. It accepts a timeout
parameter and throws an Appl i cat i onExcept i on if the lock cannot be

acquired in the specified time period.

If the write lock cannot be acquired within the specified duration, an exception is raised.
Figure 9.3 shows the relationship between a read lock and a write lock.

At any given point a thread cannot have a write lock and some other thread have
a read lock on the same instance of the Reader Wi t er Lock class. When a thread
wishes to acquire a write lock, it calls Acqui r eW i t eLock. It then must wait until
all threads that currently have read locks release them. Once all threads have released
the read locks, the requesting thread is granted its write lock. While that thread has a
write lock, no other threads will be able to acquire a read or write lock.

1 1

Acquire Acquire
Read Read
Lock Lock

2 2
/ Read Reader/Writer Lock Read \

ThreadA

ThreadB

\ Shared /
\ 3 Data 3 /
Release Release

Read Read
Lock Lock

OR

1

Acquire
Write 1
Lock Acquire
Read
2 Lock
/ Write Reader/Writer Lock

ThreadA

ThreadB
Shared
3 Data
Release

Wri Acquire Read Lock must wait until
rite .
a ReleaseWriteLock has been
Lock
performed

Figure 9.3 When a write lock has been granted, no thread will be granted a read or write lock
until it is released.

ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 167

9.2.2

168

IsWriter- | sSWiterLockHel disa property of the Reader Wi t er Lock class that

LockHeld allows a thread to determine if it has acquired a write lock on an instance
of the Reader Wi t er Lock class. If the thread currently owns a write
lock, true is returned.

To release a write lock, a thread uses the Rel easeW it er Lock method of the
Reader Wi t er Lock class. If the thread does not own the lock, an Appl i cat i on-
Excepti on is raised with the message “Attempt to release mutex not owned by
caller.” Once the thread has released its write lock, other threads are able to acquire
their desired locks. This ensures that the data a thread is viewing doesn’t change while
it is looking at it. Care should be taken to ensure that a thread does not modify shared
data unless it currently owns a write lock.

UpgradeToWriterLock

There are times when it’s unclear if the lock required will be a reader or a writer. For
example, in the auction simulation, in order to determine if a new bid is higher than
the existing bid we must first look at what the current bid is (listing 9.4). Once we’ve
examined the current bid, we can see if the new bid is higher.

public void Bid(deci mal Anpunt, string Bi dder sNane)

{ if (ltemLock.|sWiterLockHel d)
{ throw new Exception("Witer Lock held before acquire");
i}f (lI'temlock. | sReader LockHel d)
{ t hrow new Exception("Reader Lock held before acquire");
item_ock. Acqui reReader Lock(Ti neout.Infinite); Initially acquire
Ery a reader lock

if (DateTime. Now > TheAucti onEnds)
{

t hrow new Exception("Auction has ended");
}
if (Anpbunt > TheCurrentPrice) 4—‘

{

See if we need to
acquire a writer lock

I'temLock. UpgradeToW it erLock(60000); Upgrade to
if (!ltemlock.|sWiterLockHel d) a writer lock
{
throw new Exception("Witer Lock not held after upgrade");

}

if (Anpbunt > TheCurrentPrice) T Check to see if

{ we’re still the

TheCurrentPrice = Anmount; highest bidder

TheBi dder sNane=Bi dder sNane;

CHAPTER 9 READER/WRITER LOCK

}

el se
{
t hrow new Exception("Bid not higher than current price");
}
}
el se
{
throw new Exception("Bid not higher than current price");
}
}
finally ReleaseReaderLock
{ releases both
I t emLock. Rel easeReader Lock() ; Reader and Writer
if (ltemlock.|sWiterLockHel d)
{
throw new Exception("Witer Lock still held after rel ease");
}
if (ltemlock.|sReaderLockHel d)
{
throw new Exception("Reader Lock still held after rel ease");
}
}

}
|

In listing 9.4, it’s unclear if a writer lock is needed until the bid amount is compared
to the current price. In the last section, we dealt with this by acquiring a write lock. A
more optimal solution is to acquire a read lock and determine if a write lock is
required. If it is, we call Upgr adeToW i t er Lock.

The advantage is that we only require a write lock when it is needed. Since write
locks keep all reader locks from accessing data, using them unnecessarily results in
reduced performance. Be careful when upgrading from a read to a write lock. There
is a relatively small chance that during the transition from read to write some other
pending write request may change the value. Figure 9.4 presents a graphical version
of the logic involved.

Reader\WriterLock
ﬂ(Pending Reader Requests 0\3 Active Readers
2 Thread1
’ 1. AcquireReadLock V
[E ReleaseReadlLock
’ 4. UpgradeToWriterLock ‘
4
L>< Pending Writer Requests 0\5 Active Writer

Figure 9.4 Acquiring a read lock

ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 169

170

| ReaderWriterLock

4. UpgradeToWriterLock | Active Readers
Thread1
IZ ReleaseReadlock
5
L>< Pending Writer Requests O\G‘A Active Writer

Figure 9.5 The steps involved in an UpgradeToWriterLock

The process begins by the calling thread requesting a read lock (step 1). This causes
an entry to be added to the pending reader requests queue (step 2). Once that lock is
granted (step 3), the calling thread can then request the upgrade to the writer lock.
Figure 9.5 shows the steps involved in the upgrade.

When the calling thread calls Upgr adeToW i t er Lock (step 4), the thread is
removed from the list of active readers and placed in the pending writer requests queue
(step 5). If a request from a different thread is already in the pending writer requests
queue, it will be allowed to gain a write lock before the thread that requested the upgrade.
The reason is the write lock requests are serviced in the order they are received, without
any sort of priority associated with them. Once the requesting thread has been granted
the write lock, it is moved to the active writer location (step 6). Listing 9.5 contains a
class that can be used to see how a value can change during Upgr adeToW i t er Lock.

I nports System Threadi ng
Public O ass Sinpl eExanpl e
Di m rwLock As Reader Wi terLock
Di m protectedVal ue As String
Di m pauseThreadTwo As Manual Reset Event
Di m Thr eadOne As Thread
Di m ThreadTwo As Thread

Public Sub New()
protectedValue = "Initial Value"
rwLock = New Reader WiterLock()
pauseThreadTwo = New Manual Reset Event (Fal se)
End Sub

Public Sub Test ()
ThreadOne = New Thr ead(Addr essOf Met hodOne)
ThreadOne. Start ()

ThreadTwo = New Thr ead(Addr essOf Met hodTwo)
ThreadTwo. Start ()
End Sub

CHAPTER 9 READER/WRITER LOCK

Private Sub Met hodOne()
rwLock. Acqui r eReader Lock(1000)
Di m seqNum As | nteger = rwlLock. WiterSeqgNum
Di mreadVal ue As String = protectedVal ue
pauseThr eadTwo. Set ()
Thr ead. Sl eep(1000)
rwLock. UpgradeToW it er Lock(10000)
If (protectedVal ue <> readVal ue) Then
Di m f eedback As String
f eedback = "Val ue Changed: """
f eedback += readVal ue
f eedback += """ = """
feedback += protectedvalue + """"
Consol e. Wi teLi ne(feedback)
End |f
rwLock. Rel easeReader Lock()
End Sub

Private Sub Met hodTwo()
pauseThr eadTwo. Wi t One()
rwLock. AcquireWiterLock(10000)
protect edval ue = "Set in Method Two"
rwLock. Rel easeW i terLock()

End Sub

Publ i ¢ Sub Wit For Fi ni shed()
Thr eadOne. Joi n()
Thr eadTwo. Joi n()

End Sub

End d ass

The output produced by listing 9.5 is:

Val ue Changed:"Initial Value" !'="Set in Method Two"

Why not just acquire the write lock while holding the read lock? Consider the exam-
ple in listing 9.6.

Listing 9.6 ReaderWriterLock Deadlock example (C#)

Reader WiterLock RALock=new Reader Wi terLock();
RWL.ock. Acqui r eReader Lock(Ti meout . Infinite);

/'l Read sone val ue

RW.ock. Acqui reWiterLock(Tineout.Infinite);

/] The above instruction will not return

/1l Wite sone val ue

RW.ock. Rel easeW i terLock();

RW.ock. Rel easeReader Lock();

ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 171

9.23

172

The problem is Acqui r eW i t eLock will not return until it has successfully acquired
a write lock and a write lock will not be granted until all read locks are released. Since
the current thread has a read lock, it will never be able to acquire a write lock. This is a
form of deadlock. It is unusual in that only one thread is required to form this deadlock.

Acquiring To acquire a writer lock, all threads with a reader lock, including the thread
a Writer Lock requesting the write lock, must release them. Upgr adeToW i t er Lock is
an alternative to releasing the reader lock.

Since Acqui reW i t er Lock does not consider which thread owns any outstanding
reader locks, the same thread that is attempting to gain a write lock owns a read lock
and will not be able to acquire the write lock.

Upgrade- UpgradeToW it erLock is a method on the Reader Wit erLock
ToWriter- class that allows a thread that has a read lock to convert it to a write lock,
Lock . .
without first releasing the read lock.

An alternative might be to release the read lock before attempting to acquire the write
lock. Listing 9.7 shows how this might be done.

Reader Wi terLock RW.ock=new Reader Wi terLock();
RW.ock. Acqui r eReader Lock(Ti neout. Infinite);

/'l Read sone val ue

RW.ock. Rel easeReader Lock() ;

/1l Adifferent thread may change what was

/1 previously read during the read lock, this
/1 will likely result in a race condition.
RWL.ock. Acqui reWiterLock(Timeout.Infinite);

/1 Change sone val ue

RW.ock. Rel easeW it erLock();
|

When Rel easeReader Lock is called, the read lock is released. There is no way to
regain that lock; instead, a new lock will need to be acquired. The next section discusses
a way of going from a read lock, to a write lock, and then back to a read lock.

DowngradeFromWriterLock

We know how to convert from a read to a write lock. Suppose we want to do the
opposite? Upgr adeToW i t er Lock returns LockCooki e, which can be used with
the Downgr adeFr om\W i t er Lock method to change from a writer lock to a reader
lock. There is no possibility of change between the time Downgr adeFr omW i t er -
Lock is called and the read lock is granted because when moving from a writer to a
reader there is no chance that some other thread is already a reader, or can become one.

This is not true when moving from a reader to a writer. In order to handle possible
race conditions, Upgr adeToW i t er Lock uses the writer request queue. If a thread

CHAPTER 9 READER/WRITER LOCK

requests a write lock, it is given the same priority as a thread that is converting from
a reader lock. If the reader request queue was a priority queue, the threads that had
obtained a read lock could potentially starve the threads that attempted a write lock
request directly.

Listing 9.8 demonstrates downgrading from a writer to a reader lock. Note that this can
only be performed if the thread originally obtained a read lock and used the Upgr ade-
ToW it er Lock method. The cookie returned by Upgr adeToW i t er Lock can
only be used with Downgr adeFr omW i t er Lock.

usi ng System
usi ng System Thr eadi ng;
nanespace Manni ng. Denni s
{
public class DataUD: Thr eadedTest er Base

{

Manual Reset Event[] i nteract Events;

public DataUD(ref Data pd,string n,string v)
:base(ref pd,n,v)

{
i nteract Events =new Manual Reset Event[4];
for (int i=0;i< interactEvents .Length;i++)

{
interact Events[i]=new Manual Reset Event (f al se);
}
}
public void Interact(Acti onsEnum i ndex)
{

interact Events[(int)index].Set();
/!l Gve the associated thread time to do its thing
Thr ead. Sl eep(1000) ;
}
public enum Acti onsEnum
{
Upgr adeToW i t e=0,
Downgr adeToRead=1,
Rel easeRead=2
}
protected override void ThreadMet hod()

{

LockCooki e cooki e;

Message("Enter");

acqui reEvent . Wi t One() ;

Message("Starting Wait for Read Lock");

pr ot ect edDat a. rwLock. Acqui reReader Lock(Ti meout. I nfinite);

Message("+++ UD- Acquired Read Lock");
string s = protectedData. Val ue;

ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 173

i nteract Event s[(i nt)Acti onsEnum UpgradeToWite].WitOne();

Message(""" UD- Upgradi ng Read Lock");

cooki e=pr ot ect edDat a. rwLock. Upgr adeToW i ter Lock(Ti neout.Infinite);
Convert the re:cq

lock to a write lock
i nteract Event s[(i nt)Acti onsEnum Downgr adeToRead] . Wi t One() ;

Message("vvv UD- Downgradi ng Read Lock");

prot ect edDat a. Val ue= val ueToWi te;

pr ot ect edDat a. rwLock. Downgr adeFromW i t er Lock(ref cookie);
string s2 = protectedData. Val ue; Change bajq
to a read lock

interact Event s[(i nt)Acti onsEnum Rel easeRead] . Wai t One();
Message("??? UD- Rel easing Read Lock");
prot ect edDat a. rwLock. Rel easeReader Lock() ;
Message("-- - Rel eased Read Lock");
}
}

}
|

One of the biggest advantages of the Downgr adeFr omW it er Lock method is
that it will not block. This means that it will immediately return granting the thread
a read lock because there cannot possibly be a read lock at the point a write lock has
been granted. Additionally, at the point the write lock is released, all pending read
locks will also be released.

Listing 9.8 uses a base class that reduces the complexity of the Dat aUD class. Other
classes use this base class. Listing 9.9 contains the base class code.

usi ng System
usi ng System Thr eadi ng;
namespace Manni ng. Denni s
{
public abstract class ThreadedTest erBase

{

protected string valueToWite;

protected bool acquireCall ed,;

protected bool interactCalled;

protect ed Manual Reset Event acquireEvent;
protected Manual Reset Event interactEvent;
protected Data protectedData;

protected Thread wor ker Thr ead;

protected string nanme;

protected void Message(string nsg)

{
pr ot ect edDat a. Message(nsg) ;
}
public void Acquire()
{

acquireCalled = true;
acqui reEvent . Set () ;

174 CHAPTER 9 READER/WRITER LOCK

/1l Gve the associated thread time to do its thing
Thread. Sl eep(1000) ;
}
public void Interact()
{
if (!acquireCalled)
{
throw new Exception("Call Acquire first");
}
interactCalled = true;
interact Event. Set ();
/'l Gve the associated thread time to do its thing
Thr ead. Sl eep(1000) ;
}

prot ect ed ThreadedTest er Base(ref Data pd, string nange, string val ueToWite)
{
this.valueToWite = val ueToWite;
acquireCall ed = fal se;
interactCalled = fal se;
acqui reEvent = new Manual Reset Event (fal se);
i nteract Event = new Manual Reset Event (f al se);
this.protectedbData = pd;
wor ker Thread = new Thr ead(new ThreadSt art (ThreadMet hod)) ;
wor ker Thr ead. Name = nane;
t hi s. name = nang;

wor ker Thread. Start();

}
protected abstract void ThreadMet hod();

public void WaitForFinish()
{
wor ker Thr ead. Joi n();
/!l Gve the associated thread time to do its thing
Thread. Sl eep(0);
}
}

}
|

This base class simplifies the creation of threads used during the testing process. List-
ing 9.10 contains code that drives the example.

Listing 9.10 Code that demonstrates that a DowngradeFromWriterLock does

not block

public voi d UpgradeDowngr adeExanpl e()
{

Data pdata = new Data();

DataWiter wil;

DataWiter w2;

Dat aUD udi;

ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 175

udl= new DataUD (ref pdata, "Upgraderl: {0}","Upgraderl");
wl= new DataWiter(ref pdata,"Witer_1 : {O}","witer_1");
w2= new DataWiter(ref pdata,"Witer_2 : {0}","witer_2");
Thr ead. Sl eep(1000) ;

wl. Acquire(); // acquire wite |ock

udl. Acquire();

udl. I nt eract (Dat aUD. Acti onsEnum Upgr adeToWite);

wl. Interact(); // set value and rel ease |ock

wW2. Acquire(); // acquire wite |ock

wW2.Interact(); // set value and rel ease |ock

udl. I nt eract (Dat aUD. Acti onsEnum Downgr adeToRead) ;

udl. I nt eract (Dat aUD. Acti onsEnum Rel easeRead) ;

wl. Wi t For Fi ni sh();

Consol e. WiteLine("Enter to exit");

Consol e. ReadLi ne();

The Dat aW i t er class is contained in listing 9.11.

Listing 9.11 DataWriter class

usi ng System
usi ng System Thr eadi ng;
namespace Manni ng. Denni s
{
public class DataWiter :ThreadedTesterBase
{
public DataWiter(ref Data protectedData,string name,string val ueToWite)
:base(ref protectedData, nane, val ueToWite)
{
}
protected override void ThreadMet hod()
{
Message("Enter");
acqui reEvent . Wi t One() ;
Message("Starting Wait for Wite Lock");
prot ect edDat a. rwLock. Acqui reWiterLock(Ti meout.Infinite);
Message(" +++Acquired Witer Lock");
i nteract Event. Wai t One();
Message("Setting val ue");
prot ect edDat a. Val ue=val ueToWi te;
Message(" ???Rel easing Witer Lock");
pr ot ect edDat a. rwLock. Rel easeW it er Lock();
Message("---Rel eased Witer Lock");

176 CHAPTER 9 READER/WRITER LOCK

A caution regarding upgrading and downgrading reader locks: A lock should be short-
lived. This will increase concurrency and decrease contention for locks. If a thread
goes from being a reader to a writer and back to a reader, and stays in that state for an
extended period of time, other threads will not be able to acquire a write lock. In general,
locks should not be held the vast majority of the time, and only acquired when needed.
The general rule of acquiring late and releasing early applies.

9.24 WriterSeqNum and AnyWritersSince

Suppose you wanted to know if any changes had occurred since you acquired and
released a reader lock. One way to determine this is to use the Wi t er SeqNumprop-
erty of the Reader Wi t er Lock object. This property returns a value that can be
used with the AnyW it er sSi nce method to determine if any writer locks have
been released since W i t er SeqNumwas acquired.

Public Sub Bid(ByVal Ampbunt As Decimal, ByVal BiddersName As String)
Dim WiterSeqgNum As | nteger

It emLock. Acqui r eReader Lock(Ti meout. I nfinite)

Retrieve the writer
If (Amount > TheCurrentPrice) Then J sequence number
WiterSegNum = | tenlock. WiterSeqNum and save it
I t emLock. Rel easeReader Lock()
Thr ead. Sl eep(1000) ' Make the changes nore obvi ous
I'temLock. AcquireWiterLock(Ti meout.Infinite)
If (ltenmlock. AnyWitersSince(WiterSegNum) Then

) Look for
If (Amount > TheCurrentPrice) Then new writers
TheCurrent Price = Anpunt
TheBi dder sName = Bi dder sNane
El se
Throw New Exception("Bid not higher than current price ")
End If
El se
TheCurrent Pri ce = Amount
TheBi dder sName = Bi dder sNane
End |f
El se
Throw New Exception("Bid not higher than current price")
End | f

In listing 9.12 we first acquire a reader lock. To simplify the code we wait indefinitely
for the lock. Once the reader lock is acquired we retrieve the writer sequence number—
the number of nonnested times a write lock has been acquired and released. It starts
at 1 and increases by 1 each time Rel easeW i t er Lock is invoked by a thread that
results in that thread no longer owning the write lock.

ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 177

178

Writer- Wit er SeqNumis a property of the Reader Wi t er Lock class that re-

SeqNum turns an integer that indicates the current number of write locks acquired.

Table 9.1 demonstrates how various statements impact the values of Wi t er SeqNum
along with the return value of the AnyW i t er sSi nce method.

Table 9.1 How Statements Impact W i t eSeqNumValues

Statements CVTi,ters ::::«rance Is Read Is Write
Since Number Lock Held Lock Held
Dim WSN As Integer N/A N/A N/A N/A
Dim RW As ReaderWriterLock = N/A 1 F F
New ReaderWriterLock()
RW.AcquireReaderLock(Timeout.Infinite) N/A 1 T F
WSN = RW.WriterSegNum F 1 T F
RW.ReleaseReaderlLock() F 1 F F
RW.AcquireWriterLock(Timeout.Infinite) F 2 F T
RW.AcquireWriterLock(Timeout.Infinite) F 2 F T
RW.ReleaseWriterLock() F 2 F T
RW.ReleaseWriterLock() T 2 F F
RW.AcquireReaderLock(Timeout.Infinite) T 2 T F
WSN = RW.WriterSegNum F 2 T F
RW.ReleaseReaderlLock() F 2 F F
RW.AcquireWriterLock(Timeout.Infinite) F 3 F T
RW.AcquireWriterLock(Timeout.Infinite) F 3 F T
RW.ReleaseWriterLock() F 3 F T
RW.ReleaseWriterLock() T 3 F F

Notice that initially the Wi t er SeqNumis one. At the point Acqui reW i t er Lock
executes, the value changes to 2. The method AnyW i t er sSi nce returns false until
the second Rel easeW i t er Lock executes. This is due to the nesting of the write locks.
Notice that there are two calls to Acqui r eW i t er Lock and two calls to Rel ease-
Wit erLock. The second Rel easeW it er Lock actually releases the lock and
indicates that there has been a writer since the sequence number was acquired.

USAGE AnyW i t er sSi nce and Wi t er SeqNumallow for an easy way to deter-
mine if a value might have changed. It allows for a thread to cache values and
increase performance. AnyW it er sSi nce changes when | sWiter-
LockHel d changes from true to false. Wi t er SeqNum increases when
I sWiterLockHel d changes from false to true.

CHAPTER 9 READER/WRITER LOCK

The value of Wi t er SeqNumchanges when a thread acquires a write lock for the first
time while the return value for AnyW i t er sSi nce changes when a thread releases
the write lock for the last time. Notice the correlation between the change in the return
value of AnyW i tersSinceand | sWiterLockHel d.

9.3 RELEASELOCK AND RESTORELOCK

When reading a book it’s nice to be able to stop, save your place, and resume. Often a
bookmark is used to keep track of the current location. Similarly, the Reader Wi t er -
Lock class allows a thread to release its locks and later restore them. Rel easelLock
is a method on the Reader Wi t er Lock class that allows a thread to release all locks,
regardless of the nesting depth, and save the state to a lock cookie. Once the state is
stored in the lock cookie, the Rest or eLock method can be used to put the lock back
to the same state it was in before Rel easelLock was called. Listing 9.13 demonstrates
the use of Rel easelLock and Rest or eLock.

static void TestSi npl eRel easelLock()
{

RW Acqui reWiterLock(Timeout.Infinite);

LockCooki e Lock = RW Rel easelLock(); Saves the current

lock state
Restores the state
of the locks

RW Rest oreLock(ref Lock);
RW Rel easeW it er Lock();

It is possible that some other thread has acquired a lock during the period between
Rel easelLock and the call to Rest or eLock. To handle this situation the Rest or e-
Lock method blocks until it can acquire the required locks. Unlike the other Reader -
Wit er Lock methods that acquire locks, there is no means to specify a timeout value.

ReleaseLock Rel easelock is a method on the Reader Wi t er Lock that releases all
currently held locks and stores the state information to a LockCooki e
structure for later restoration using the Rest or eLock method.

The value that Rel easeLock has over releasing the locks using Rel easeReader -
Lock or Rel easeW i t er Lock is that it can release all locks, regardless of the nest-
ing level, in a single call. If, for instance, a thread determined that it should die, it could
call Rel easelLock. The alternative would be to know what sort of lock is currently
held and the number of times acquire has been called.

RestoreLock Rest or eLock is a method of the Reader Wi t er Lock class that accepts
areference to a LockCooki e as its only parameter. Rest or eLock blocks
until it can acquire the required locks.

RELEASELOCK AND RESTORELOCK 179

180

The following instruction releases all locks that the current thread has on the RW
instance of Reader Wi t er Lock:

RW Rel easeLock();

Instead of using the Rel easeLock method, the following instructions perform
roughly the same function:

whi | e(RW | sReader LockHel d)

{
RW Rel easeReader Lock() ;

}
while (RWIsWiterLockHel d)

{
RW Rel easeW it er Lock();

}

Since Rel easelLock returns a LockCooki e structure we can save the current lock
state for future use. During the period between Rel easelLock and Rest or eLock,
other threads have access to the values. This means that the values that are being pro-
tected by the Reader Wit er Lock may have changed before Rest or eLock is
called. To handle this situation we can use the AnyW i t er sSi nce method we dis-
cussed in the previous section.

RestoreLock Rest or eLock is a method of the Reader Wi t er Lock class that accepts
a reference to LockCooki e as its only parameter. Rest or eLock blocks
until it can acquire the required locks.

Listing 9.14 checks to see if some other thread has acquired a write lock since the
Rel easelLock statement was executed.

RW Acqui reWi terLock(Timeout.Infinite); <— Acquire a write lock

int SeqNum = RW Wi terSeqNum Save the current

LockCooki e Lock = RW Rel easelLock(); WriterSeqNum

RW Rest or eLock(ref Lock); <— Restore the write lock

if (RWAnyWitersSince(SeqNum)) Look for

{ . . . new writers
Trace. WiteLine("A thread has witten to the data");

}

el se

{
/1 Data has not changed since Rel easelLock

}

RW Rel easeW it er Lock();

CHAPTER 9 READER/WRITER LOCK

9.4

SUMMARY

This is the safest way to use the release and restore lock methods. Failure to use the
AnyW i t er sSi nce method may result in data values changing without the knowledge
of the thread that uses Rest or eLock. If the functionality of release and restore lock
is required, use care to ensure that the Reader Wi t er Lock is not bypassed.

SUMMARY

We've seen how a Reader Wi t er Lock can be used to allow multiple threads read
access to a data element while preserving the integrity of the data. Reader Wi t er -
Locks are a powerful construct that fit certain synchronization needs. When the situation
is right, using a Reader Wi t er Lock can result in a marked performance increase.

In the next chapter we examine the Thr eadPool class. Thr eadPool s are col-
lections of threads that are reused to perform some short-lived task. Thr eadPool s,
like Reader Wi t er Locks, can solve certain problems very well.

181

10.1

CHAPTEHR 10

The ThreadPool class

10.1 ThreadPool class and 10.4 Two unsafe methods 190
QueueUserWorkItem 182 10.5 The use of ThreadPools in .NET 192
10.2 The RegisterWaitForSingleObject 10.6 Summary 193
method 184

10.3 Informational methods and
properties 187

A thread pool is a collection of threads tasked with units of work that exist for the life
of the thread pool. It allows easy distribution of work among multiple threads and is
an ideal construct for dealing with multiple short-lived tasks that can be performed in
parallel. In this chapter we explore the powerful features of the .NET thread pool.
For the examples in this chapter we revisit the matrix multiplication problem we
discussed in chapter 8. The Wor kManager class from chapter 8 was a simplified
thread pool system. In the first section we will replace the thread control logic with a

thread pool.

THREADPOOL CLASS AND
QUEUEUSERWORKITEM

In chapter 8 we constructed a simplistic thread pool implementation; not surprisingly
the result was somewhat complex. A thread pool allows for a simple means of performing
multiple tasks on different threads. The thread pool manages its threads: It controls their
number, lifetime, priority, and activities. The example in listing 10.1 demonstrates add-
ing items for the Thr eadPool to process using the QueueUser Wr ki t emmethod.

182

{ is invoked by

private void ThreadMet hod(object O) ThreadMethod
T the thread pool

Unit Work;

Work = (Unit)Q

Wor k. Dowor k() ;

Resul t Cbj ect's. Add(Work) ;
I nterl ocked. Decrenent (ref ExpectedConpl et eEl enents);
i f (ExpectedConpl et eEl ements ==0)

{
Fi ni shedW t hWork. Set () ;
}
}
public void DoWork(Unit[] Work, WrkFinished Finished)
{

Resul t Obj ects. C ear();

Notify = Finished;

Expect edConpl et eEl enent s=Wor k. Length ;

Wi t Cal | back cal | back = new Wit Cal | back(Thr eadMet hod) ;
for (long i = 0;i <Work.Length ;i++)

{

QueueUserWorkitem
adds work elements
to the thread pool

}

Thr eadPool . QueueUser Wr kl t en(cal | back, Work[i]);
} T

There are several restrictions on thread pools. There can be only one thread pool per
process. This means that if multiple tasks are being performed using thread pools in
the same process, they will share the same thread pool. If one of the tasks takes a dispro-
portionate share of the processing time, the other tasks will suffer. The reason that there
is only one thread pool per process is that the method QueueUser Wor kl t emon
the Thr eadPool class is a static/shared method. The likely reason that the designers
made this choice is to maximize performance.

ThreadPool A Thr eadPool isaclass in the Thr eadi ng namespace that allows concur-
rent work to be performed in a simple way.

One of the most expensive operations when dealing with threads is the creation of
threads. Recall that the main purpose of a thread pool is to manage a set of threads so
that new ones do not need to be created to perform a task. Instead, one of the existing
idle threads is assigned a task to complete. Once that task is completed, the thread
becomes available for other work; under normal circumstances it does not terminate.

Since the Wor kManager class now uses the NET thread pool, the design becomes
much simpler (figure 10.1).

The tradeoffs between using a thread pool and managing threads in a custom way
are shown in table 10.1. Thread pools are ideal for short-lived, independent tasks that
are not in conflict.

THREADPOOL CLASS AND QUEUEUSERWORKITEM 183

10.2

184

WorkManager

Do Work
Add Thread Pool

Entries
T>a [Thread J]
ﬁ

Para Matrix Class

(o |
Finshed Delegate k’/—i

Work Manager
Finished 4 Set— Thread

Figure 10.1 Wbr kManager using the Thr eadPool class

Since the tasks are executing on multiple threads, any shared data must be protected
using some form of synchronization mechanism, such as Reader Wit er Lock,
Moni t or, or a synchronization lock. Care should be taken to ensure that deadlock
does not occur since the control provided to a thread in a thread pool is limited.

Table 10.1 Comparison of Thr eadPool and Generic Thread Management

ThreadPool ?ﬁr";'zc
Ideal for short running tasks Y N
Control thread name N Y
Control thread priority N Y
Control life of thread N Y
Highly flexible N Y
Thread synchronization recommended (Sleep, Wait, Suspend) N Y

THE REGISTERWAITFORSINGLEOBJECT METHOD

A common use of threads is to wait for some event to occur. The Thr eadPool class
provides built-in support for waiting for a Wai t Handl e-derived object to become
signaled. At the point the Wai t Handl e object becomes signaled, the Wi t Or Ti ner -
Cal | back delegate is invoked. Wai t Or Ti mer Cal | back accepts two parameters.
The first is an object that contains state information used by the callback to perform
any needed processing. The second parameter indicates why the method is being
invoked. If the second parameter is true, the method is being invoked because the
Vi t Handl e-derived object became signaled. If the parameter’s value is false, the
Wi t Handl e-derived object did not become signaled during the specified timeout.
Listing 10.1 demonstrates using the Thr eadPool class’s Regi st er Wi t For -
Si ngl eMbj ect .

CHAPTER 10 THE THREADPOOL CLASS

Public O ass d assWrkManager
Private ExpectedConpl et eEl enents As | nteger
Public Del egate Sub WorkFi ni shed(ByVal Results As Arraylist)
Public Del egate Function WrkToDo(ByVal Param As Object) As Object
Private Notify As WorkFi ni shed
Private Fini shedWthWrk As AutoReset Event
Private Resul t Objects As Arrayli st

Public Sub Dowrk(ByVal Work() As Unit, ByVal Finished As WorkFi ni shed)
Resul t Cbj ects. O ear ()
Dmi As Long
Notify = Finished
Expect edConpl et eEl ements = Work. Lengt h
For i = 0 To Work.Length - 1
Thr eadPool . QueueUser Workltem(_
New Wi t Cal | back(Addr essOf Thr eadMet hod)
Work(i))
Next
Di m Si gnal edCal | back As Wit O Ti ner Cal | back
Si gnal edCal | back = New Wi t O Ti ner Cal | back(AddressOf Manager Met hod)

Thr eadPool . Regi st er Wai t For Si ngl eObj ect (Fi ni shedW t hWork, _
Si gnal edCal | back, ResultCbjects, Tinmeout.Infinite, True)

End Sub
Register th
Publi ¢ Sub ThreadMet hod(ByVal O As Obj ect) WaitHandio-derived
DimWrk As Unit object
Wrk = O

Wor k. DoVr k()

Resul t Obj ect s. Add(Wor k)

I nterl ocked. Decr ement (Expect edConpl et eEl enent s)
| f Expect edConpl et eEl enents = 0 Then

Cause the WaitHandl e derived class to becone signal ed.
Fi ni shedW t hwor k. Set ()
End | f
End Sub

Private Sub Manager Met hod(ByVal O As nbject, ByVal signal ed As Bool ean)
This method is invoked when the WiitHandl e derived cl ass
becones signal ed.
Noti fy(Resul t Obj ects)
End Sub
End d ass
|

The state object is passed to the Regi st er Wai t For Si ngl eCbj ect method. When
the Vai t Hand| e-derived class becomes signaled, that state information is passed to the
Wi t O Ti ner Cal | back delegate. The next-to-last parameter of Regi st er Wi t -
For Si ngl eObj ect is a timeout value. This is the time the thread in the pool waits

THE REGISTERWAITFORSINGLEOBJECT METHOD 185

186

Thread Pool

Invokes
Delegate

Figure 10.2 Regi st er Wai t For Si ngl eObj ect logical overview

WaitHandle

Watches —

for the Wai t Handl e-derived object to become signaled. If the timeout occurs, the last
parameter to Wi t O Ti mer Cal | back will be false. If the object becomes signaled
before the timeout, it will be true.

Register- Regi st er Wai t For Si ngl eObj ect is a shared/static method of the
Si:\;?lt(;:zj:ct Thr eadPool class. Itallows a delegate to be associated with a Wi t Handl e-
derived object, such as an Aut oReset Event . When the Wai t Handl e-
derived object becomes signaled, or a timeout occurs, the passed-in delegate

is invoked.

The last parameter of Regi st er Wai t For Si ngl eQoj ect controls if the wait occurs
only once or if it repeats (figure 10.2). If this value is true, the delegate will wait only once for
the Wi t Handl e-derived object to become signaled. If the parameter is false, the delegate
will be invoked repeatedly. The frequency of invocation depends on whether or not a time-
out is specified, along with how often the Wi t Handl e-derived object becomes signaled.

One way to understand the Regi st er i t For Si ngl eQbj ect method is to
attempt to implement a simplified version of it. The Regi st er Wai t For Si ngl e-
Qoj ect method in listing 10.3 responds much the same way as the “real” Regi st er -
Vi t For Si ngl e(oj ect method.

Public O ass M/Wit For Event
Private Shared MyThread As Thread

Publ i c Shared Sub Regi st er Wit For Si ngl eCbj ect (_
ByVal EventOflnterest As WiitHandle, _
ByVal What Tol nvoke As Wit Or Ti ner Cal | back,
ByVal state As Object, ByVal Tinmeout As Integer,
ByVal OnlyOnce As Bool ean)
MySt at eCbj ect = state
MyEvent Of I nterest = Event Of I nt er est
MyOnl yOnce = Onl yOnce
My/What Tol nvoke = What Tol nvoke
M/ Ti meout = Ti neout
MyThread = New Thr ead(AddressO Thr eadMet hod)
M/Thr ead. | sBackground = True
MyThr ead. Name = "MyWi t For Event Thr ead"
MyThread. Start ()
End Sub

CHAPTER 10 THE THREADPOOL CLASS

Private Shared Sub ThreadMet hod()
DimtinedQut As Bool ean
Do
timedQut = Not MyEvent Of I nt erest. Wai t One(MyTi meout, Fal se)
MyWhat Tol nvoke(MySt at eQbj ect, tinedQut)
Loop Wiile Not MyOnl yOnce
End Sub

This method creates a thread that is started when the shared/static method that per-
forms the same function as Regi st er Wi t For Si ngl ebj ect is invoked. This
simplified version of the method does not execute in a thread pool, but it conveys the
key elements of what the Thr eadPool method does. Regi st er Wi t For Si ngl e-
bj ect is a powerful way of monitoring a Wai t Handl e-derived object, such as an
Aut oReset Event and invoking a delegate when it becomes signaled.

10.3 INFORMATIONAL METHODS AND PROPERTIES

One of the most powerful advantages that the .NET framework offers over previous
Microsoft development platforms is the amount of diagnostic information available. This
section introduces three Thr eadPool -related informational methods and properties.

10.3.1 GetMaxThreads and GetAvailableThreads

Suppose you wanted to know how many threads the Thr eadPool class might use,
and how many it was using. This can give insight into the nature of your application.
The Thr eadPool class does intelligent assignment of tasks to threads. If a large num-
ber of threads are being used, the tasks are likely I/O bound. The Get MaxThr eads
method of the Thr eadPool class is used to determine the largest number of threads
Thr eadPool will use. The Get MaxThr eads method returns two out parameters.
The first is the maximum number of worker threads the thread pool will use; the
second is the maximum number of threads associated with servicing completion ports.
Listing 10.4 shows Get MaxThr eads and CGet Avai | abl eThr eads in use.

private void timerl_Tick(object sender, System EventArgs e)
{

i nt Nunber Of Wor ker Thr eads;

i nt Nunber O Conpl eti onPort Thr eads;

i nt MaxNunber Of Wor ker Thr eads;

i nt MaxNumber O Conpl et i onPort Thr eads;

/1 Return the maxi mum nunber of threads that can be
// active in the thread pool.
Thr eadPool . Get MaxThr eads(

out MaxNunber OF Wor ker Thr eads,

out MaxNumber Of Conpl et i onPort Thr eads) ;

INFORMATIONAL METHODS AND PROPERTIES 187

188

Thr eadPool . Get Avai | abl eThr eads(The number
out Number O Wor ker Thr eads, of available
out Number O Conpl et i onPort Thr eads) ; threads

| abel 7. Text = Number OF Wor ker Thr eads. ToStri ng();

| abel 9. Text = MaxNunber Of Wor ker Thr eads. ToString();

| abel 10. Text = MaxNumber O Conpl eti onPort Threads. ToStri ng();
| abel 12. Text = Nunber O Conpl eti onPort Thr eads. ToString();

The numbers returned by Get MaxThr eads indicate the number of threads that can
be allocated for Thr eadPool . To determine how many threads are available for work
in Thr eadPool , we use the Get Avai | abl eThr eads method. It also returns two
values: the number of worker threads available and the number of threads available
for servicing completion ports.

GetMax- Cet MaxThr eads is a static/shared method of the Thr eadPool class that
Threads returns the maximum number of worker and completion port threads that
will be used.

If the number of available threads is zero, the Thr eadPool class must wait until a
thread becomes available. During this time any work items added will simply increase
the size of the work queue in the Thr eadPool object. The number of elements that
can be queued is limited only by the amount of available memory.

GetAvailable- Get Avai | abl eThr eads returns the number of worker and completion

Threads port threads available to service requests.

The number of threads available does not necessarily correlate to the number of
threads in the process. Until a thread is needed, it is not created. Once a thread is cre-
ated it will exist as long as the Thr eadPool object feels it is needed. The number of
threads in use is a helpful measure. It is determined by subtracting the number of
available threads from the maximum number of threads, giving an indication of load.
If a task is processor bound, the number of threads in use will likely stay close to the
number of processors in the computer. If a task is I/O bound, the number of threads
in use will increase, likely to the maximum number of threads allowed. The sl eep
statement for a thread can be used to simulate an I/O bound task:

obj ect WorkUnit (object param)
{
Mul t Param tnpParm = (Ml t Param param
Thr ead. Sl eep(10000) ;
return C assParaMatri x. Mul t RowCol umm(
t mpPar m ML,
t mpParm M2,
t npPar m Col umm,
t npPar m Row) ;

CHAPTER 10 THE THREADPOOL CLASS

When the change in the example is made to the Wor kUni t method in the O ass-
ParaMat ri x class, the thread pool will exhaust the number of available threads.
This increases the processing time; however, the tasks do successfully complete.

+ The number of available threads will always be the same or less than the
maximum number of threads.

» A process that exhausts the available threads is either I/O bound or con-
tains long-running tasks that possibly should not be performed in a
thread pool.

» Thr eadPool will only create a managed thread when it determines that
one is needed.

« ThreadPool manages the life of its threads.

THREAD POOL CHARACTERISTICS

+ The maximum number of threads is determined by multiplying the
number of processors by 25.

As of this writing, the algorithm used to determine the maximum number of allowed
threads allows 25 threads per processor. So if you have a quadprocessor machine, the
values returned by Get MaxThr eads will be 100. If a series of tasks consistently
exhausts the number of threads available, it may be an indication that the tasks may
not be suited for use in a thread pool.

10.3.2 The IsThreadPoolThread property

In chapter 5 we saw that the Thr ead class supports a Nane property. The Name
property cannot be set on threads that are being used by Thr eadPool . To determine
if a given thread is part of Thr eadPool , we can use the | sThr eadPool Thr ead
property of the Thr ead class. Listing 10.5 shows how we can determine if a thread
pool is managing a thread.

private void buttonl nspect Mai nThread_C i ck(obj ect sender, System EventArgs e)

{
MessageBox. Show(Thr ead. Current Thread. | sThreadPool Thread. ToString());
}
private void ThreadPool Thr eadMet hod(obj ect o)
{
MessageBox. Show(Thr ead. Current Thread. | sThreadPool Thread. ToString());
}
private void buttonTThreadPool Thread_C i ck(obj ect sender, System EventArgs e)
{

Wi t Cal | back nyCal | back;
myCal | back=new Wi t Cal | back(Thr eadPool Thr eadMet hod) ;
Thr eadPool . QueueUser Wor ki t em(nyCal | back) ;

}

INFORMATIONAL METHODS AND PROPERTIES 189

10.4

190

The | sThr eadPool Thr ead property is a read-only property. This means that it
can only be inspected, never assigned. This makes sense. If it could be changed, it
would be possible to take a thread that was part of a pool and change the value of
| sThr eadPool Thr ead to indicate it was not.

TWO UNSAFE METHODS

There are times that performance is the only concern. In cases when the highest perfor-
mance is the goal and the Thr eadPool class is involved, the unsafe methods should be
used. Unsaf eQueueUser Wor ki t em performs the same function as QueueUser -
Wor ki t emexcept that it does not ensure the same level of security (listing 10.6). The
same is true of Unsaf eRegi st er Wi t For Si ngl ehj ect . The unsafe methods
are faster because they are doing slightly less than their safe counterparts. First we will
review security in .NET, in particular the evidence approach of determining the level
of trust for code.

Dimi As Long
Di m HowMvanyTi nes As | nteger
Try
HowvanyTi mes = Convert. Tol nt 32(Text BoxHowivany. Text)
Nunmber Renmai ni ng = HowManyTi nes
Catch ex As Exception
MessageBox. Show(ex. Message)
Exit Sub
End Try
Di m cal | back As Wit Cal | back
cal | back = New Wit Cal | back(AddressCOf NoQp)

Start Tine = Now Adds a work item

For i = 1 To HowManyTi nes without examining
Thr eadPool . Unsaf eQueueUser Vor ki t en(cal | back, Not hi ng) the stack

Next

Security is a huge topic and what we cover here is just scratching the surface. An
entire book could, and likely will, be written on security. Our focus is on how it per-
tains to threading: to protect users from malicious code. While I hope that no one
reading this writes malicious code, there are plenty of people who do. To combat this,
numerous approaches have been invented. Most revolve around who is executing the
code. .NET introduces the concept of evidence and assigning a level of trust to code
itself rather than its user. Regardless of my security level, if the code I attempt to exe-
cute is from an untrusted source it should not be executed unconditionally.

CHAPTER 10 THE THREADPOOL CLASS

Unsafe- Unsaf eQueueUser Wr kil t emis a method on the Thr eadPool class
%‘\‘,e";:jser' that enters a work item for the thread pool to service. It is faster than
orkitem QueueUser Wr kI t embecause it does not transfer the caller’s stack infor-
mation to the thread in the thread pool that services the request. This reduces

security but improves performance.

The way that NET determines what should be allowed to execute involves gathering
evidence, such as the URL where the code originated, whether the code is signed, and,
if so, by whom. The call stack is also inspected.

Evidence Evidence refers to the collection of data elements that are applied to a secu-
rity policy to make a determination if code should be executed.

The call stack is inspected because it is possible that an assembly is trusted but the code
calling it is not. An example of this would be if a financial institution released code to
access your financial records that are stored in a secure proprietary format. While it is
acceptable, and expected, that the financial institution would call that assembly, it is
not desirable for malicious code to use that assembly to access and disseminate your
financial information (figure 10.3).

Call Stack Call Stack

Trusted Code Trusted Code

Trusted Code Trusted Code

Trusted Code Trusted Code
Figure 10.3

Trusted Code Trusted Code Evidence is used to determine

Trusted Code Unlaswn Cogle if trusted code is being called
by unknown code.

Figure 10.3 refers to trusted code. For our discussion here, code that is trusted is code
with sufficient positive evidence to allow it to be executed by the .NET runtime after
comparison to the security policy. Since an unknown piece of code is executing code
in the right-hand box, that code should not be allowed to execute with the same level
of trust as if it were executed by trusted code.

+ Location of the assembly
» Source URL of the assembly

+ Internet zone from which the assembly was retrieved

» Signed code

TYPES OF EVIDENCE

+ Strong name

TWO UNSAFE METHODS 191

10.5

192

The performance gains resulting from using the unsafe methods are marginal. Care
should be taken to be sure that the time to add the entries to the thread pool is the
bottleneck before using the unsafe methods. Most likely greater return can be gained
by optimizing the code that performs the work relating to the work entry. Once the
security restrictions are relaxed, it is possible that some undesirable outcome may occur.
The capability is there, but it should be used with care and only when truly needed. It
should be viewed as a last resort, and should not be done without careful analysis.

THE USE OF THREADPooOLS IN .NET

The Thr eadPool class provides considerable functionality to the .NET platform.
Server-based timers, asynchronous execution of delegates, asynchronous file I/0, and
network socket connections all rely on the system thread pool to perform their opera-
tions. By providing a robust set of classes to perform relatively complex operations,
the .NET framework allows for a new level of efficiency in programming.

+ Location of the assembly
+ Source URL of the assembly

+ Internet zone from which the assembly was retrieved

THREADPOOL

» Signed code

SELECTED FEATURES
OF .NET THAT USE

« Strong name

Listing 10.7 demonstrates asynchronous execution of delegates.

del egate void TheDel egate();
private void TheMet hod()
{

System Di agnostics. Trace. Wi teLine("The Method");

Thr ead. Sl eep(1000);
}
private void ASyncCal | backMet hod(1l AsyncResult ar)
{

System Di agnostics. Trace. Wit eLi ne("ASyncCal | backMet hod") ;
}
private void buttonBegi nl nvoke(object sender, System EventArgs e)
{

TheDel egat e MyDel egate = new TheDel egat e(TheMet hod) ;

AsyncCal | back MyAsyncCal | back = new
AsyncCal | back(ASyncCal | backMet hod) ;

MyDel egat e. Begi nl nvoke(MyAsyncCal | back, null);

}

CHAPTER 10 THE THREADPOOL CLASS

10.6

SUMMARY

To accomplish something similar without using a thread pool would take considerable
effort. The easiest solution would be to create a thread for each Begi nl nvoke. The
problem with this approach is that as the number of invocations increases the quantity
of resources required to process those invocations also increases.

Network operations greatly benefit from the use of thread pools. The Webdl i ent
object uses the thread pool to retrieve web pages. The following code retrieves a web
page and places the results in a string:

Results = "";

WebCient client =new Webd ient();

Byte[] Bytes;

Bytes = client. Downl oadDat a((string)State);

Resul ts = System Text. Encodi ng. UTF8. Get Stri ng(Bytes);
client.Dispose();

The caller of the Downl oadDat a method is unaware that Downl oadDat a performs
its processing using threads. In general, hiding complexity from the caller of a method
is desirable.

Another .NET construct that uses the thread pool are server-based timers. Server-
based timers should not be confused with Windows Forms timers. The difference
between the two is significant. Windows Forms timers simply post a message to the mes-
sage queue at the specified interval. All processing of the messages happens on the same
thread. This means that if some operation that takes considerable time is invoked from
the message queue processing thread, the application will hang until that message is
processed. We discuss timers in detail in chapter 14.

Server-based timers are thread pool based. A delegate is invoked at the specified
interval. The following example shows the usage of a server-based timer:

private System Threadi ng. Ti mer tiner2;

System Thr eadi ng. Ti ner Cal | back cal | back;
cal | back=new System Threadi ng. Ti mer Cal | back(ti mer2_El apsed);
timer2 = new System Threadi ng. Ti mer (cal | back, nul |, 100, 100) ;

Server-based timers allow for longer running processing to occur without the user inter-
face being affected. Without thread pools, server-based timers wouldn’t be feasible.

SUMMARY

In this chapter we’ve examined the Thr eadPool class. We've seen that it is an easy
way to distribute small units of work among multiple threads. We've also seen that the
NET framework itself relies on the Thr eadPool class for much of its asynchronous
processing such as server-based timers and network communication. The next chapter
introduces the concept of Thr eadSt at i ¢ data and thread local storage.

193

ThreadStatic and
thread local storage

11.1 Using ThreadStatic variables 195
11.2 Using unnamed data slots 197
11.3 Using named data slots 199

11.4 Freeing named data slots 201
11.5 Summary 203

Sharing data is a primary concern in multithreaded programming. One way to mini-
mize development effort is to restrict access to data elements to a single thread. Thread
local storage (figure 11.1) is a way to create a variable that can store values associated
with each thread. This allows the code of each thread to reference what appears to be
the same data element but is instead associated with the referencing thread.

Stack-based variables are inherently local to a thread. Additionally, if an instance
of a class contains a single thread, the instance variables of that class are also local to
the thread. In cases where static/shared variables must be used, or multiple threads are
associated with a class, some means must be taken to ensure that concurrency issues are
addressed. One way to do this is by using the Thr eadSt at i ¢ attribute. Additionally,
more primitive thread local storage mechanisms are introduced.

Thread local storage is a powerful construct. In situations where a class cannot be
restricted to containing a single thread, it is an alternative to using synchronization con-
structs on a shared data element. If a data element is associated with one, and only one,
thread then using thread local storage may be an ideal solution.

194

—— Thread
. Local
— Data

Figure 11.1
Thread local storage

11.1 USING THREADSTATIC VARIABLES

Unrestricted data sharing between threads is a risky thing to do. In previous chapters
we've seen that synchronization objects, such as the Moni t or class, can be used to
restrict access to data by multiple threads. If a variable is not a communication mecha-
nism, there generally is no reason for it to be shared among threads.

One way that a variable is not shared is by declaring it local to a method. When a
local variable is declared in a method, it is created on the stack of the thread that executed
the statement. We declare a variable in a method and rightly assume that no other
thread will manipulate it. The following instructions create a thread stack based variable
named X. The variable X is local to the St ackBasedVar i abl e method:

Private Sub StackBasedVari abl e()
Dim x As |nteger
End Sub

Alternatively, variables can be declared as instance variables of a class. In the next
example, Cl assVar i abl e is an instance variable. This means that its value can dif-
fer between each instance of Cl assTest St ati c.

Public Cass CassTestStatic
Private Cl assVariable As Integer
<ThreadStatic()> Private Shared ThreadStaticVariable As |nteger
Private Shared StaticVariable As Integer
Private Sub StackBasedVari abl e()
Dim x As |nteger
End Sub
End d ass

Stati cVari abl e is a shared variable. Some languages refer to shared/static variables
as class variables. The value in St at i cVari abl e is the same across all instances of
C assTest St ati c. The term shared implies that the variable is shared among all
instances of the class. This is correct. However, static/shared variables do not require
an instance of the class to exist. The following is perfectly legal and sometimes desired:
Private Sub Test ()

Cl assTestStatic. StaticVariable = 1

Cl assTest Static. ThreadStaticVariable = 1
End Sub

USING THREADSTATIC VARIABLES 195

196

The variable Thr eadSt at i cVari abl e is a different sort of shared/static variable.
In a single-threaded application it behaves the same as St at i cVar i abl e. The dif-
ference is that when more than one thread accesses the variable its value will be deter-
mined based on the thread that is accessing it. The best way to think of it is that there
is an array of Thr eadSt at i cVar i abl es. The element of the array that is accessed
is determined by the thread accessing it. This isn’t exactly how it’s implemented, but
it would be possible to implement thread local storage that way.

ThreadStatic ThreadSt at i c is an attribute that is added to the declaration of a variable
in a class. It informs the compiler that if the variable is accessed from different
threads each thread should have a distinct static variable. This is a simple way
to make a variable local to a thread and create thread local storage. Thr ead-
St ati c is the managed equivalent of the C++’s __decl spec(t hread).

Thr eadSt at i ¢ variables behave like thread stack based variables in that their value
depends on the thread. However, they are accessible to the thread in the same way a
static/shared variable is. Thr eadSt at i ¢ variables are a convenient way of making
data stored in a class accessible to a thread without synchronizing access or passing values
as parameters. Not all designs need utilize Thr eadSt at i ¢ variables. For example, if
an approach of one thread per class was taken, then thread static variables make no
sense. If more than one thread can access data elements in a class, and the value is
meaningful only to that thread, then thread static variables should be considered.
Listing 11.1 demonstrates the use of thread static variables.

Public O ass d assThreadStatic_Test

<ThreadStatic()> Shared ThreadStatic_Data As String = "Initial"

Private TheForm As For nilfest ThreadStati c

Public Sub New(ByVal TheForm As For nilest Thr eadSt ati c) Makes a variable
Me. TheForm = TheForm unique per thread

End Sub

Public Sub Test ()
Di m cal | back As New Wit Cal | back(AddressOf Cal | backMet hod)
Thr eadPool . QueueUser Wor kil t en{ cal | back, "1")
Thr eadPool . QueueUser Wor kil t en(cal | back, "2")
Thr eadPool . QueueUser Wor kil t en(cal | back, "3")
Thr eadPool . QueueUser Wor kil t em(cal | back, "4")
End Sub
Private Sub Cal |l backMet hod(ByVal state As Object)
Di msLine As String
sLine = "Before Assign ThreadStatic_Data = "
sLine += ThreadStatic_Data + " "
sLine += Thread. Current Thread. Get HashCode() . ToStri ng()
TheFor m AddFeedbackLi ne(sLi ne)

ThreadStatic_Data = state Assigns the thread’s copy

Thread. Sl eep(5000) of the ThreadStatic_Data
sLine = "After Assign ThreadStatic_Data ="

CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

sLine += ThreadStatic_Data + "
sLine += Thread. Current Thread. Get HashCode() . ToStri ng()

sLine += " " + ThreadStati c_Data. Get HashCode(). ToStri ng()
TheFor m AddFeedbackLi ne(sLi ne)
End Sub
End d ass

Thread static variables are one way of having data associated with a particular thread.
In the next section we discuss an alternative method of storing data on a per-thread
basis. The data elements are stored in locations that may or may not have names. These
locations are called slots. In the next section we discuss unnamed data slots.

11.2 USING UNNAMED DATA SLOTS

In the previous section we saw how the Thr eadSt at i ¢ attribute can be used to create
data elements that are accessed by multiple threads. Thr eadSt ati ¢ instructs the
compiler that a particular variable should be viewed as local to a thread. A more
involved way of accomplishing thread local data storage is to use unnamed data slots.
An unnamed data slot is a storage location that is local to a thread. The slot is allocated
using the Al | ocat eDat aSl ot method of the Thr ead class. Once allocated, when
multiple threads access the data slot they are given their own area of storage.

Unnamed An unnamed data slot is a region of memory associated with a thread that
Data Slot does not have a name. Unnamed data slots are created using the Al | ocat e-
Dat aSl ot method.

Al | ocat eDat aS| ot is not, and should not, be called by each thread. It is executed
once, setting up the data slot for all threads. Al | ocat eDat aSl ot returns a Local -
Dat aSt or eS|l ot which is used by each thread to access its local data store. Since
NET provides garbage collection, there is no method that frees an unnamed data slot.

Allocate- Al | ocat eDat aSl ot is a method of the Thr ead class that creates an un-
DataSlot named storage location that is relative to the thread accessing it.

In listing 11.2, TheSl ot is a class variable contained in the same class as Cal | -
backMet hod. Cal | backMet hod is passed as a parameter to the constructor of the
Vi t Cal | back delegate for use with the Thr eadPool object.

public class C assTLS UnnamedSl ot _Test
{ Declare a variable to

Syst em Local Dat aSt or eSl ot TheS! ot ; access the data slot

private ForniTest ThreadStatic TheForm ;
public C assTLS UnnanmedSl ot _Test (For nTest ThreadSt ati ¢ TheForm

{

USING UNNAMED DATA SLOTS 197

198

}

TheSl ot = Thread. Al |l ocat eDat aSl ot () ;

) Allocate a thread
this. TheForm = TheForm ;

local data slot

public void Test()

{

}

Wai t Cal | back cal | back = new Wit Cal | back(Cal | backMet hod) ;
Thr eadPool . QueueUser Wor kil t en(cal | back, "1");
Thr eadPool . QueueUser Wr kl t en(cal | back, "2");
Thr eadPool . QueueUser Wr ki t en(cal | back, "3");
Thr eadPool . QueueUser Wor kl t en(cal | back, "4");

private void Call backMet hod(obj ect state)

{

}

string sLine;
sLine= "Before Assign TLS = "; J Retrieve any data

that is in the slot
string sData= (string)Thread. Get Data(TheSl ot); before assignment
sLine += sData;
sLine += " Hash Code=" + Thread. Current Thread. Get HashCode() . ToStri ng();
TheFor m AddFeedbackLi ne(sLi ne); J Store thread-specific

data in the thread

Thr ead. Set Dat a(TheS| ot , st ate) ; local data slot
Thr ead. Sl eep(5000) ; Retrieve the thread-
sLine= "After Assign TLS = " J specific data from
sData= (string) Thread. Get Dat a(TheSl ot) ; the data slot
sLine += sData;
sLine += " Hash Code=" + Thread. Current Thread. Get HashCode() . ToStri ng();
TheFor m AddFeedbackLi ne(sLi ne);

The Thr eadPool class is an easy way to create multiple threads and demonstrate thread
local storage. Listing 11.2 demonstrates how four entries are added to the Thr eadPool .

Each

entry is associated with Cal | backMet hod, differing only by the supplied

parameter. Because Cal | backMet hod contains a S| eep statement that pauses the
Thr eadPool thread for 5 seconds, we are certain that the threads involved will differ.
If the method did not contain the Sl eep statement, it is possible that the same thread
would service each entry.

When the Test method is invoked, the following output is produced:

Before Assign TLS = Hash Code=43
Before Assign TLS = Hash Code=48
Before Assign TLS = Hash Code=49
Before Assign TLS = Hash Code=50

After
After
After
After

Assign TLS = 1 Hash Code=43
Assign TLS = 2 Hash Code=48
Assign TLS = 3 Hash Code=49
Assign TLS = 4 Hash Code=50

CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

Notice that even though each thread is accessing data using TheS| ot with Get Dat a
and Set Dat a, the values are unique to each thread. Set Dat a and Get Dat a allow
for saving and retrieving a value stored in an object.

GetDataand Get Dat a is a method of the Thr ead class that retrieves thread local values
SetData from a data slot, while Set Dat a is used to store a reference to an object in
thread local storage.

Thread local storage is a relatively scarce resource, and should only be used when needed.
Creating data slots is relatively expensive, and should be performed only once. If the
static nature of data can be determined in advance, then the Thr eadSt at i ¢ attribute
should be used instead. Unnamed data slots offer a very secure means of storing values
specific to a particular thread. In the next section we discuss named data slots that offer a
more convenient way of storing thread local values if a lesser level of security is tolerable.

1.3 USING NAMED DATA SLOTS

There are times when it is easier to keep track of a value by using a name rather than by
passing a variable. Get NamedDat aSl ot allows a thread local storage slot to be retrieved
using a name. In listing 11.3 TheSI ot is allocated in the class constructor, Publ i ¢
Sub New using the Al | ocat eNanmedDat aSl ot method of the Thr ead class.

AllocateNamed- Al | ocat eNanmedDat aS| ot is a method on the Thr ead class that allo-

DataSlot cates thread local storage and associates it with a supplied name.

If a slot has not been created using the Al | ocat eNanedDat aSl ot method before
Cet NarredDat aSl ot is called, the slot will then be allocated. This means that calling
Al | ocat eNanedDat aSl ot is optional. As a good coding practice, if it can be deter-
mined that a thread local data slot will be required then allocation should be performed
before accessing the slot.

GetNamed- Get NanedDat aS| ot isa method of the Thr ead class that retrieves thread
DataSlot local storage based upon a supplied name. If the slot does not exist before
Cet NanmedDat aSl ot is invoked, it will be created.

If a slot exists when Al | ocat eNanmedDat aSl ot is called, Ar gunment Except i on
is raised. Consider the following example:

Try
TheNanmedSl ot = Thread. Al | ocat eNanedDat aSl ot (" TheSl ot ")
TheNanmedSl ot = Thread. Al | ocat eNanedDat aSl ot (" TheSl ot ")
Catch ex As Exception
System Di agnostics. Trace. Wi t eLi ne(ex. Message)
System Di agnostics. Trace. WiteLine(ex. ToString())
End Try

The first Al | ocat eNanedDat aSl ot will succeed. The second will generate the
following output:

USING NAMED DATA SLOTS 199

200

Itemhas al ready been added. Key in dictionary: "TheSlot" Key bei ng added:
"TheSl ot" System Argunment Exception: Item has already been added. Key in
dictionary: "TheSlot" Key being added: "TheSlot"

at

at
at
at
at

System Col | ecti ons. Hasht abl e. | nsert (

hj ect key, (bject nval ue, Bool ean add)

System Col | ecti ons. Hasht abl e. Add(Obj ect key, Object val ue)
Syst em Local Dat aSt or eMgr . Al | ocat eNanedDat aSl| ot (String nane)
Syst em Thr eadi ng. Thr ead. Al | ocat eNanedDat aSl ot (Stri ng nane)
TLS_NamedSl ot _Test App. Cl assTLS_NanedS| ot _Test .. ctor (

For nifest ThreadStati c TheFornm) in D:\My Docunent s\ books\

t hr eadi ng\ chapt er 11\ proj ect s\ VB\ 11. 4\ TLS_NanedSI ot _Test App\
TLS_NanedSl ot _Test.vb:line 10

This offers some insight into how named data slots are implemented in .NET. We can
see that the exception was raised because an entry already existed in a Hasht abl e.
This means that Hasht abl e is used to associate the named data slot with its name.

Named slots offer an alternative to keeping a variable with the originally allocated
slot, as must be done when using an unnamed data slot. They are more convenient than
using an unnamed data slot, but are not as convenient as using the Thr eadSt at i c
attribute. If more flexibility is required, then one of the data slot methods should be used.

Listing 11.3 shows how to allocate a slot, store data, and then retrieve data from it
in a thread local way.

Public O ass C assTLS_NanedSl ot _Test Create a named
Di m TheNanmedSl ot As System Local Dat aSt or eSl ot data slot
Private TheForm As Fornilest ThreadStatic
Public Sub New(ByVal TheForm As Fornilest ThreadStati c)

TheNamedSl ot = Thread. Al | ocat eNanedDat aSl ot (" TheSl ot ")
Try

TheNamedSl ot = Thread. Al | ocat eNanedDat aSl ot (" TheSl ot ")

Catch ex As Exception

System Di agnostics. Trace. Wi teLine(ex. Message + " " + ex.ToString())

End Try
Me. TheFor m = TheForm

End

Sub

Public Sub Test ()
Di m cal | back As New Wit Cal | back(AddressOf Cal | backMet hod)
Thr eadPool . QueueUser Wor kl ten(cal | back, "1")
Thr eadPool . QueueUser Wor kil t en{ cal | back, "2")
Thr eadPool . QueueUser Wor kil t em(cal | back, "3")
Thr eadPool . QueueUser Wor kil t em(cal | back, "4")
End Sub
Private Sub Cal |l backMet hod(ByVal state As Object)
Set Dat aMet hod(st at e)
Thr ead. Sl eep(5000)
Get Dat aMet hod()
End Sub
Private Sub Set Dat aMet hod(ByVal TheData As bject)

CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

Di m TheSl ot As System Local Dat aSt or eS| ot

TheSl ot = Thread. Get NanedDat aSl ot (" TheSl ot ") T Retrieve the named

slot for use with the
SetData method

Thr ead. Set Dat a(TheSl ot, TheDat a)
End Sub
Private Sub Cet Dat aMet hod()
DimsData As String
Di msLine As String
Di m TheSl ot As System Local Dat aSt or eS| ot

TheSl ot = Thread. Get NanedDat aSl ot (" TheS| ot ") T Retrieve the named

slot for use with the
GetData method

sLine = "After Assign TLS ="
sData = Thread. Get Dat a(TheSl| ot)
sLine += sData
sLine += " Hash Code=" + Thread. Current Thread. Get HashCode() . ToSt ri ng()
TheFor m AddFeedbackLi ne(sLi ne)

End Sub

End d ass
||

We have seen how to create and access a named data slot in this section. Unlike
unnamed data slots, named data slots can be freed. In the next section we will discuss
the impact of freeing a data slot.

11.4 FREEING NAMED DATA SLOTS

There are times when we wish to stop using one variable and start using another. The
Fr eeNamedDat aSl ot method of the Thr ead class is used to change which data
slot is associated with a name. Since .NET is a nondeterministic environment, calling
FreeNanmedDat aSl ot does not actually free the object contained in the slot.
Instead, it is similar to calling the Renbve method of a Hasht abl e. Listing 11.4
shows the impact of using Fr eeNarmredDat aS| ot .

public class C assTLS NanedSl ot _Test

{
Syst em Local Dat aSt or eS| ot TheNanedSl ot ;

private void Test Val ues()
{
string TheVal ue;
System Local Dat aSt oreSl ot TheS| ot ;
System Local Dat aSt or eS|l ot TheSl ot Aft er Fr ee;
TheSl ot = Thread. Get NanedDat aSl ot (" TheSl ot ") ;

Retrieve or
Thr ead. Set Dat a(TheSl ot, "Ori gi nal Val ue"); create a slot
TheVal ue=(string) Thread. Get Dat a(TheSl ot) ;
Trace. Wit eLi ne(TheVal ue); Remove the slot
Thr ead. Fr eeNanedDat aS| ot (" TheSl ot ") ; from the Hashtable

Trace. WitelLine((string)Thread. Get Dat a(TheSl ot)); Retrieve the value

from the slot

FREEING NAMED DATA SLOTS 201

202

TheSl ot Aft er Free = Thread. Get NanedDat aSl ot (" TheSl ot");
TheVal ue=(string) Thread. Get Dat a(TheSl| ot Aft er Free);
if (Thevalue == null)

{ Associate “TheSlot”
Trace. WiteLine("No Data"); with a different
} data slot

}

At the point Fr eeNarmredDat aS| ot is invoked on “TheSlot”, the value of the variable
TheSl ot is unaffected. The output from the above code follows:
Original Val ue

Original Val ue
No Dat a

Notice that the second line output contains “Original Value.” The Get Dat a statement
immediately after the call to the Fr eeNarmedDat aS| ot method generates this line.
This is proof that Fr eeNamedDat aS| ot does not destroy the contents of the slot.

To see what is going on in the Fr eeNamedDat aS| ot we can pass in a null value
for the name of the slot:

private void Test RemoveNul | ()

{
try
{
Thr ead. Fr eeNanedDat aS| ot (nul |);
}
catch (Exception ex)
{
Trace. WiteLine(ex. ToString());
}
}

This produces the following output:

System Argunent Nul | Excepti on: Key cannot be null.

Par amet er nane: key
at System Col | ecti ons. Hasht abl e. Renmove(Obj ect key)
at System Local Dat aSt or eMyr . Fr eeNanmedDat aSl| ot (Stri ng nane)
at System Threadi ng. Thr ead. Fr eeNanedDat aSl ot (Stri ng nane)

Without Fr eeNamedDat aS| ot there would be no way to change what data slot a
name was associated with. Since Al | ocat eNamedDat aS| ot throws an exception
when the name is already associated with a slot, we must have some way of making a
name available for reuse. That is exactly what Fr eeNanedDat aS| ot does.

It is important to understand how Fr eeNamedDat aS| ot behaves when multiple
threads are involved. If a thread calls Fr eeNanmedDat aSl ot , then any calls to Get -
NanmedDat aSl ot by it or a different thread will result in a different data slot being

CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

11.5

SUMMARY

returned. Unless the threads have a variable with a Local Dat aSt or eS| ot value
stored in it, their values will be lost. It may be that is what is desired, but since there
is the possibility of data disappearing while a thread is accessing it, care should be taken
when using Fr eeNanedDat aS| ot .

FreeNamed- Fr eeNanedDat aS| ot is a static method on the Thr ead class that removes
DataSlot an association between a name and a thread local data slot. It allows a name
to be associated with a different set of thread local slots.

One reason that you might want to use it is if the threads are working on a solution
and one of the threads finds the answer. One thread could easily signal all other threads
to stop their work. Under general circumstances data slots are allocated and used for
the life of the program, or at least the life of the threads accessing them.

SUMMARY

In this chapter we've discussed ways of associating data with a particular thread.
Using the Thr eadLocal attribute is the simplest, and least flexible, way of making
data values dependent on which thread accesses them. If a more robust mechanism is
needed, then named data slots should be used. If the highest degree of control is
required, then an unnamed data slot should be used and managed using some sort of
collection. Not every application will require the use of thread local storage. It should
only be used in cases where it is a good fit.

The next chapter discusses delegates to a higher degree of detail than we have thus
far. Delegates are one of the most exciting aspects of the .NET framework.

203

12.1

CHAPTEHR 1 2

Delegates

12.1 Delegates revisited 204 12.5 Asynchronous delegates 216
12.2 The ThreadStart delegate 207 12.6 Creating and invoking

12.3 Callbacks 208 dynamic delegates 219

12.4 Handling thread exceptions in 12.7 Summary 221

Windows Forms 214

Delegates are a powerful means of associating methods and instances of objects. They
are one of the largest areas of innovation of the .NET platform. Delegates are inter-
twined throughout not only multithreaded development in .NET; but also general devel-
opment. This chapter covers the delegates associated with multithreaded development.

Additionally, it covers asynchronous execution of delegates. Asynchronous delegates
are those invoked using the Begi nl nvoke method. An important aspect of any asyn-
chronous development is determining when a task has completed, and gathering any
results. This is accomplished using the Endl nvoke method. The AsyncCal | back
delegate allows a method to be invoked when an asynchronous task completes.

The chapter concludes with a discussion of dynamic delegates. This is a form of late
binding, where the method and object associated with it are determined at runtime.

DELEGATES REVISITED

A common need in programming is to be notified when something happens. There
are two basic ways to deal with this need: polling and notification.

One way to know if something happens is to frequently check to see if what is
being watched meets some criteria. This is generally referred to as polling. The prob-
lem with polling is that the interval between checks is constant, while the occurrence

204

of the phenomenon being monitored likely is not. This means that if the interval of
checking is one hour, it may be that the phenomenon occurs and goes unnoticed for
59 minutes. Additionally, if more than one occurrence of the phenomenon occurs
during the interval, only one instance is captured.

Polling Polling is the process of repeatedly checking the status of some decision criteria
to determine if predefined criteria have been met. The duration between the
time the criteria are met and the time they are detected can be referred to
as latency.

Think of polling as the time-old question that almost every child asks—often more
than once—during a trip. “Are we there yet?” The child is polling to determine if the
phenomenon he or she is concerned with has occurred. The general response from
parents is “Not yet, I'll tell you when we get there.” This brings us to the other com-
mon way of checking to see if something happens: notification.

Notification requires some means of communication between the entity being
notified and the entity doing the notification. In the .NET framework this is accom-
plished by using a delegate. The history behind delegates can be traced back to func-

tion pointers in C/C++.

Delegate A delegate is a type-safe, object-oriented means of referencing, and eventually
invoking, a method as though it were any other variable. They are often re-
ferred to as type-safe function pointers.

A delegate is an object that associates a method with an optional instance of another
object. This allows a delegate to be invoked on an instance of a class, not only on static
methods. This is a major improvement over function pointers that required the method
that was having its address taken be static. Figure 12.1 demonstrates using a delegate.

o Reference to the
Delegate definition Method Invokes —7{ instance of the delegate
Y Entity that will invoke the
Instance of the delegate instance of the delegate

Figure 12.1 Using a delegate

First, there must be a delegate declaration. This tells the compiler what the methods that
will be associated with the delegate must look like, in terms of parameters and return
value. An example of a declaration of a delegate is:

del egate voi d Sinpl eDel egate();

This delegate can only be used with methods that do not accept parameters and do not
return a value. Attempting to associate the delegate with some other type of method
will produce a compile error. This is a powerful feature of delegates. This means that

DELEGATES REVISITED 205

delegates can be used without fear that the method does not match the delegate’s def-
inition, since this will result in a compile-time error.

Use of Delegates are a powerful way of allowing one class to notify another when a
Delegates dition is met. This all i fa class to inft i f
condition is met. This allows one instance of a class to inform an instance o
a different (or the same) class that something happened that it cares about.
Delegates are widely used in the .NET framework.

Once the delegate is defined, an instance of it can be created. This is very similar to cre-
ating a user-defined data type. The delegate usage looks much like any other object:
Si mpl eDel egat e MyDel egat e;

MyDel egat e = new Si npl eDel egat e(Met hodToPoi nt To) ;

This creates an instance of the Si mpl eDel egat e and associates it with the Met hod-
ToPoi nt To. Once the instance of the delegate is created, the next step is to invoke
the delegate. This causes the method associated with the delegate to be executed.
Invoking a delegate is identical to executing a method:

DoSonet hi ngAndCal | Back(MyDel egat e) ;

This causes the method Met hodToPoi nt To to be executed. Listing 12.1 shows the
elements involved in entirety.

public class FormDel egates_Revisited : System W ndows. For ns. Form

{

del egate voi d Sinpl eDel egate();

Define the signature
voi d Met hodToPoi nt To() g

of SimpleDelegate

{
MessageBox. Show("In the Method to point to");

}

private void DoSonet hi ngAndCal | Back(Si npl eDel egat e TheDel egat e)

{
Trace. Wi teLi ne(TheDel egate. Target. ToString());
TheDel egate(); Invoke the

} delegate

private void buttonTest_dick(object sender, System EventArgs e)

{ Define an instance Instantiate the
Si npl eDel egat e MyDel egat e; of the delegate instance of the
MyDel egate = new Si npl eDel egat e(Met hodToPoi nt To) ; delegate

DoSonet hi ngAndCal | Back(MyDel egat e) ; Pass the instance of the

} delegate as a parameter
g P =

Now that we have seen how delegates are used, let us move on to how they relate to
multithreading.

206 CHAPTER 12 DELEGATES

12.2 THE THREADSTART DELEGATE

In previous chapters we briefly discussed the Thr eadSt art delegate. The only way
to create a thread using managed code is to use a ThreadSt art delegate. Visual
Basic.NET developers might be confused by the following example:
Private Test Thread As Thread

Private Sub ThreadMet hod()

End Sub

Public Sub Test ()

Test Thread = New Thr ead(AddressOf Thr eadMet hod)
End Sub

The use of the ThreadSt art delegate is not obvious: Nowhere in the code is it
declared. However, if we look at the MSIL for the Test method in table 12.1 we can
see that ThreadSt art is being used. This is an example of the convenient things
that Visual Basic does for developers.

Table 12.1 MSIL Generated by Visual Basic

IL_000a newobj instance void [mscorlib]System.Threading.ThreadStart::.ctor(object,
native int)

Listing 12.2 shows the usage of the Thr eadSt art delegate.

I nports System Threadi ng
Public d ass Fornilest ThreadSt art
I nherits System W ndows. For ns. Form

Private TestThread As Thread
Private Sub Test Met hod()
MessageBox. Show("I n Test Method on Thread " + Thread. Current Thr ead. Nane)
End Sub

Private Sub CreateTest Thread()
Di m Test ThreadStart As ThreadSt art
Create a new instance of the ThreadStart del egate,
' associating it with Test Met hod
Test ThreadStart = New ThreadStart (AddressOf Test Met hod)

Creates a new thread that will execute
the Test SharedThreadStart ThreadStart del egate.
Test Thread = New Thread(Test ThreadStart)

Test Thread. Name = "TheTest Thr ead"
Test Thread. Start ()
Test Thread. Joi n()

THE THREADSTART DELEGATE 207

12.3

208

The Thr eadSt ar t delegate provides a standardized way of passing a reference to a
method to the Thr ead class constructor. This is accomplished by passing in a reference
to a method. In Visual Basic this involves the Addr essOf operator. In C# the name
of the method suffices. Once the instance of the delegate is created, the only properties
available are Tar get and Met hod. Both are inherited from the delegate base class.

ThreadStart The Thr eadSt ar t delegate is a class derived indirectly from the Del egat e
Delegate ;o5 [t allows a thread to be associated with an instance of a class and a method.

The Met hod property is of type Syst em Ref | ecti on. Met hodl nf o and this is
how the thread knows what to invoke. One of the methods of the Runt i meMet hod-
I nf o class is | nvoke, which is how the method associated with the delegate is executed.

One of the most powerful advances of delegates over function pointers is the ability
to associate a delegate with a particular instance of a class. The Tar get property is how
this is accomplished. In cases where there is no instance of a class to be associated with,
the Tar get property is Not hi ng/ nul | . When the method associated with a delegate
is Shar ed/ st at i ¢ there is no instance with which to be associated. The Tar get
property is of type obj ect .

In the example code at the beginning of this section we declare a Thr eadSt ar t
delegate called Test ThreadSt art. When the Thr ead starts it does something
similar to the following:

Test ThreadSt art. Met hod. | nvoke(Test ThreadSt art. Target, Not hi ng)

Since the method passed to the Thr eadSt ar t delegate cannot have any parameters,
we pass in Not hi ng in the last parameter. This parameter is used to pass values to
the method associated with the delegate.

Unless there is a specific need, there is no reason to retain a reference to the
ThreadSt art delegate. If development is being done in Visual Basic .NET, there is
little reason to create a Thr eadSt ar t delegate. If development is being done in C#,
Thr eadMet hod can be created in-line:

Test Thread = new Thread(new ThreadStart(Test Method));

Another form of asynchronous execution involves callbacks. Callbacks are essentially
delegates that are invoked when some condition is satisfied.

CALLBACKS

Callbacks are a way of notifying a consumer when some event occurs. Think of it in
practical terms. If you call a coworker and he or she is busy, he or she may offer to call
you back. This is the idea behind a callback. A caller invokes a method on an object,
passing a delegate that can be used to signal some event. The object stores the reference
to the delegate until it is needed.

We will discuss several multithreading-related callbacks in this section.

CHAPTER 12 DELEGATES

12.3.1

TimerCallback

Often there is a need for actions to be performed at set intervals. Earlier we discussed
the differences between polling and notification. One way to implement polling is to
use a timer. Windows developers naturally think of the Windows message timer. The
message timer enters a \WM_TI MER message in a window’s message queue at regular
intervals. Visual Basic exposes this functionally using its Ti mer control. For certain
types of operations the message timer is adequate. A key issue with the message timer
is that it relies on a single-threaded message pump to process the messages. If the task
associated with the timer takes a long time, the message queue is blocked until it
completes its work. This explains why poorly written applications freeze when doing
long-running operations.

A more flexible approach is to use a thread-based timer. In chapter 10 we discussed
the Thr eadPool class. One use of the class is to create a thread-based timer. For user
interface intensive operations it is better to use a message timer since the calls back to
the user interface will need to be passed to the user interface thread using the | nvoke
mechanism. For operations that are not tied extensively to the user interface, the
thread-based timer is an excellent choice.

TimerCallback Ti ner Cal | back is a delegate that is used with the Syst em Thr ead-
i ng. Ti mer class to create a thread-based timer. Ti mer Cal | back is in-
voked when the timer interval expires.

The following example code shows how Ti mer is created. First we must create Ti ner -
Cal | back, passing in a method to be invoked:

Syst em Thr eadi ng. Ti mer nyTi ner;
voi d Cal | backMet hod(obj ect state)
{

Trace. Wite(state);
Trace. WiteLi ne(DateTi ne. Now. ToString());

}

private void StartTimer(long First,long Each, object state)

{
Ti ner Cal | back myCal | back;
myCal | back= new Ti ner Cal | back(Cal | backMet hod) ;
nyTi mer =new Syst em Thr eadi ng. Ti mer (nmyCal | back, state, First , Each);

}

The Ti ner constructor accepts four parameters:
e Ti mer Cal | back. This lets Ti mer know what method to invoke when it’s time
to invoke a method.

* An object to transmit state information. This is the same mechanism that the
Thr eadPool class uses to communicate with its worker threads.

CALLBACKS 209

12.3.2

210

* The time to wait before the timer executes the first time. It can be zero, indicating
the timers should start immediately, or Ti neout . I nfi ni t e, indicating the
timer should not start at this time.

* The time to wait between invoking Ti mer Cal | back. It also can be zero,
Ti meout . | nfi nite, or the number of milliseconds to wait.

If the duration of the method associated with Ti mer Cal | back is greater than the
interval to wait, each instance will be executing on a different thread. This means that if
more than one instance of the method associated with Ti mer Cal | back is executing
at the same time, the operation will be performed in parallel. Since the thread-based
timer uses Thr eadPool , there is a limit on how many threads can be executing at
once. When that limit is reached, no new threads will be created and those items
waiting to execute will be entered into a queue. Care should be taken in the methods
associated with Ti mer Cal | back to ensure they are thread-safe.

Combine The += operator is a shortcut for the shared/static Combi ne method. In
Visual Basic the Cormrbi ne method must be used.

A powerful feature of delegates is the ability to associate multiple methods with a single
delegate. This is called a multicast delegate. In C# this is accomplished using the +=
operator. The following code example associates three methods with the same delegate:

Cl assTwo ACl ass = new O assTwo();

Ti mer Cal | back myCal | backl nf o;

myCal | backl nf o= new Ti mer Cal | back(| nf oCal | backMet hod) ;

myCal | backl nfo += new Ti ner Cal | back(Ad ass. | nfoCal | backMet hod) ;
myCal | backl nfo += new Ti ner Cal | back(AddLi neCal | back) ;

nmyCal | backl nfo("test");

Each method associated with the delegate will be invoked. The order of invocation is
the same as the order the methods were added to the delegate. In this case | nf o-
Cal | backMet hod will execute, and once it has completed, Acl ass. | nf oCal | -
backMet hod, and then AddLi neCal | back. This allows for a series of methods to
occur in a certain order.

The ThreadSt art delegate can be used in a multicasting way. This means that
when one method exits, another begins. This is a way to isolate cleanup code that
should execute after the main logic has completed.

WaitCallback

In chapter 10 we discussed the Thr eadPool class in detail. The following examples
show how a work item is created and added to Thr eadPool for processing:

Private Sub WorkMethod(ByVal state As bject)
Trace. Wite(Thread. Current Thread. Get HashCode. ToString())
Trace. Wite(" ")
Trace. WitelLine(state. ToString())

End Sub

CHAPTER 12 DELEGATES

CALLBACKS

Private Sub AddWorkltem()
Trace. Wi teLi ne(Thread. Current Thr ead. Get HashCode. ToStri ng())
Di m Workl tem As Wi t Cal | back
Wor kl tem = New Wi t Cal | back(Addr essOfF Wor kMet hod)
Thr eadPool . QueueUser Wor ki t em(Wor kl t em Dat eTi me. Now)
End Sub

The Wai t Cal | back delegate is how a method and a state parameter are associated
with an entry in the thread pool’s user work item queue.

WaitCallback Vi t Cal | back is a delegate used to associate a work item in Thr eadPool
with a method to invoke.

The Wi t Cal | back class, along with all system delegates in the .NET framework, is
derived from the Mul ti cast Del egat e class. Multicast delegates allow a series of
methods to be associated with a single delegate, letting a chain of execution occur. The
following code selectively adds two methods to the Wor ki t emcallback.
Di m TenpCal | back As Wit Cal | back
Di m Wrkltem As Wit Cal | back
Wor kl t em = Not hi ng
I f CheckBoxTi ne. Checked Then

TenpCal | back = New Wit Cal | back(Addr essOf Wor kMet hodTi ne)

Wor kl tem = Wit Cal | back. Conbi ne(Workltem TenpCal | back)
End | f

I f CheckBoxSl eep. Checked Then
TenpCal | back = New Wi t Cal | back(AddressOf Wor kMet hodSl eep)
Wor kl tem = Wi t Cal | back. Conbi ne(Workltem TenpCal | back)
End | f

If Wor k1 t emis Not hi ng/ nul | when passed to Wi t Cal | back, the result is the
same as a simple assignment.

Since a delegate can reference multiple methods, we must use Get | nvocat i onLi st
of Mul ti cast Del egat e to determine what methods are associated with a delegate.

Getlnvocation- Get | nvocat i onLi st is a method of the Mul ti cast Del egat e class
List that returns a collection of Del egat es associated with the current instance
of Mul ti cast Del egat e.

The following example demonstrates how to determine what methods will be invoked,
along with any targets:

Private Sub Di spl ayDel egatel nfo(ByVal D As Milticast Del egate)
Di m TheDel egate As System Del egate

Trace. WiteLine(D. ToString())
For Each TheDel egate In D. Getlnvocati onLi st ()
Trace. WiteLine("*****")
Wth TheDel egat e. Met hod
Trace. WiteLine("Method: " + . Nane)

211

12.3.3

212

Trace. WiteLine("Full Nane: " + .DeclaringType. Ful | Nane)
End Wth
If (TheDel egate. Target |s Nothing) Then
Trace. WiteLine("Target: Null")
El se
Wth TheDel egat e. Tar get
Trace. WiteLine("Target Type:" + .GetType(). Full Nane)
Trace. WiteLine("Target: " + .ToString())
End Wth
End | f
Next
End Sub

The Tar get object is a reference to the instance of a class associated with the method.
In the case of a Shar ed/ st at i ¢ method, the target will be Not hi ng/nul I .

The Met hod property returns an instance of Met hodl nf o which provides a means
of examining the method in detail. In the example, Decl ari ngType refers to the
class that contains the method declaration. The Name property of the Met hodl nf o
class returns the name of the method.

WaitOrTimerCallback

There are times that waiting until a timer’s interval has passed is not desirable. In those
situations Thr eadPool ’s Regi st er Wi t For Si ngl e(bj ect allows for timer-
like functionality. We covered Regi st er Wai t For Si ngl eObj ect in chapter 10.
Listing 12.3 shows how to use Regi st er Wai t For Si ngl eCbj ect .

private AutoReset Event AutoReset;

private void Test()

{
Aut oReset = new Aut oReset Event (f al se);
Del egat e Cal | back;
Del egat e TenpCal | back;
Cal | back = new Wai t O Ti mer Cal | back(Fi rst Cal | backMet hod) ;
TenpCal | back= new Wi t Or Ti mer Cal | back(SecondCal | backMet hod) ;
Cal | back = Ml ticast Del egat e. Combi ne(Cal | back , TenpCal | back) ;
TenpCal | back= new Wi t O Ti mer Cal | back(Thi rdCal | backMet hod) ;
Cal | back = Ml ticast Del egat e. Conbi ne(Cal | back , TenpCal | back) ;
TenpCal | back= new Wi t O Ti mer Cal | back(Four t hCal | backMet hod) ;
Cal I back = Ml ticast Del egat e. Combi ne(Cal | back , TenpCal | back) ;
Thr eadPool . Regi st er Wai t For Si ngl eObj ect (Aut oReset ,

(Wai t O Ti mer Cal | back) Call back, null, 10000, false);
}

CHAPTER 12 DELEGATES

To associate a Wai t Hand| e-derived class with a method we must use i t Or Ti ner -
Cal | back. Wai t Or Ti ner Cal | back requires that the method to be associated
with it have two parameters: (1) an object used to pass state information and (2) a
Boolean used to indicate why the method is being invoked. If it is true, the method is
being invoked because the Wai t Handl e-derived object did not become signaled in
the time span specified by the timeout value passed to Regi st er Wi t For Si ngl e-
Qoj ect . If the value is false, the method is being invoked because the Wi t Handl e-
derived object became signaled before a timeout could occur.

In listing 12.3 we created a chain of four methods that will be executed each time
the delegate is invoked. Fi r st Cal | backMet hod is one of those methods. It checks
to see a value has been set for the Shar edDat a data slot. If it has, a trace message is
written out to that effect. It then sets the Shar edDat a slot to First:.

private void FirstCall backMet hod(object state, bool timedQut)

{
Local Dat aSt oreSl ot Sl ot ;
Sl ot =Thr ead. Get NanedDat aSl ot (" Shar edData") ;
string Data;
Data = (string)Thread. GetData(Slot);
if (Data !'= null && Data.Length > 0)
{
Trace. WiteLine(Data + " was left froma previous call");
}
Data = "First:";
Thr ead. Set Dat a(Sl ot , Dat a) ;
}

There are times that the methods in an invocation list need to communicate with each
other. This allows a chained form of processing, similar to a pipeline architecture. In
the previous code a named data slot called Shar edDat a is used to share information
between the different methods in the invocation list.

Using Multicast One means of communication between methods that are part of the same
Delegates iy ocation list is to use thread local storage.

Remember, when using thread local storage with a thread pool the threads are reused.
This means that the contents of a data slot might contain information from a previous
work item.

TIP In Thr eadPool , when using thread local storage, care must be taken to
ensure that a previous thread’s activities do not affect the current activity.

The alternative to using thread local storage is to utilize the state object that is passed in.
If this approach is taken, it is best to use a collection of some sort, such as Hasht abl e.
This way an element can be set in the collection without changing the actual state object:

System Col | ecti ons. Hasht abl e St at el nf o;
St at el nf o= new System Col | ecti ons. Hasht abl e();

CALLBACKS 213

12.4

214

Thr eadPool . Regi st er Wai t For Si ngl ehbj ect (Aut oReset ,
(Wai t O Ti mer Cal | back) Cal |l back, Statelnfo, 10000, false);

In each nethod we can then set an entry in the table:

if (state !'= null)

{
System Col | ecti ons. Hasht abl e Stat el nf o;

Statelnfo = (System Col | ecti ons. Hashtabl e)state;
St at el nf o[" SharedDat a"] = Dat a;

}

HANDLING THREAD EXCEPTIONS IN
Winbows Forvs

In an ideal world, all thread-related exceptions would be dealt with using the appropriate
t ry/ cat ch mechanisms. To handle those cases where some execution is not handled,
we can use Thr eadExcept i onEvent Handl er . This section applies to Windows
Forms development only because the event handler is associated with the Appl i cat i on
object. The following code shows how Thr eadExcept i on can be used:

Public Sub New()

MyBase. New()
AddHandl er Application. ThreadExcepti on, AddressOf Handl er
Thread. Current Thread. Nane = " Mai n"
InitializeConmponent ()
End Sub

Private Sub Handl er(ByVal s As bject, ByVal e As ThreadExcepti onEvent Args)
MessageBox. Show(e. ToString() + vbCrLf + e. Exception. Message)
End Sub

If you use the Appl i cati on. Thr eadExcepti on event any unhandled thread
exceptions, except for Thr eadAbor t Except i on, that are generated on the main
thread of the application will be captured. Recall that Thr eadAbor t Except i on is
raised when Abor t is called on the thread. If the Appl i cat i on’s Thr eadExcep-
tion handler handled the Thr eadAbort Excepti on it would be impossible to
call Abort on a thread and have the thread terminate.

Thread- Thr eadExcept i on is an event of the Appl i cat i on class that allows for
Exception handling any unhandled thread exception. It uses the Thr eadExcept i on-

Event Handl er delegate. Only thread exceptions raised on the main thread

of the application, that is, the thread that installs the handler, will be handled.

When the following statement is executed, the exception handler will catch the excep-
tion and display a dialog box:

Throw New Syst em Thr eadi ng. Thr eadSt at eExcepti on(" M/ Exception")

When the exception is raised, a dialog box containing the following is displayed:

CHAPTER 12 DELEGATES

System Thr eadi ng. Thr eadExcepti onEvent Ar gs

My Exception

In a production application a more robust error-handling mechanism would be used.
Instead of displaying a dialog box, most likely an entry would be logged to the event
log indicating that the exception occurred. This should not be seen as a way of not
having to deal with exceptions; instead, it should be viewed as a safety net.

Thread- Thr eadExcept i onEvent Ar gs is a class that is passed as the second pa-

EExceptAion- rameter of the Thr eadExcept i onEvent Handl| er delegate. It contains a

VeNtArgS eference to the exception that caused the handler to be invoked. This infor-
mation is available via the Except i on property.

There may be confusion about events and delegates. Events are implemented using
delegates. For example, the Thr eadExcept i on event uses Thr eadExcept i on-
Event Handl er to handle any thread exceptions. To see this, we can examine the
MSIL for the New method at the beginning of this section:
newobj instance void[Systeni

Syst em Thr eadi ng. Thr eadExcepti onEvent Handl er: : . ctor(object,

native int)
The exception handler must have two parameters: an object and an int. The first is
the sender object, a reference to the thread that raised the exception. This will always
be the thread that added the thread exception handler. If some other thread causes an
unhandled thread exception to be raised, the Appl i cat i on thread exception handler
will not catch the exception.

TIP The thread exception handler will only catch thread exceptions that are raised
on the main thread of the application. If an unhandled thread exception is
raised on some other thread, the thread will terminate. This underscores the
importance of using t ry/ cat ch statements.

The following code example creates a thread that attempts to call Resune on
myThr ead. If the thread is in any other state than suspended, this will cause an
exception to be generated.

Private Sub NewThr eadMet hod()
myThr ead. Resune()
End Sub
Private Sub CreateThreadToResune()
Di m NewThread As New Thr ead(AddressOf NewThr eadMet hod)
NewThr ead. Name = " NewThr ead"
NewThr ead. Start ()
End Sub

In the case where My Thr ead is not in the suspended state, the following is generated:

Unhandl ed Exception: The thread ' NewThread' (0x1050) has exited with code 0O
(0x0) .

System Thr eadi ng. Thr eadSt at eExcepti on: Thread i s not user-suspended; it can
not be resuned.

HANDLING THREAD EXCEPTIONS IN WINDOWS FORMS 215

12.5

216

The fact that the Thr eadExcepti on event does not handle all exceptions that
occur in an application domain reinforces the need for robust error handling using

try/ cat ch blocks.

ASYNCHRONOUS DELEGATES

Suppose that you wanted to write a method that might be executed synchronously or
asynchronously, depending on what was required at the time. In the following example
AMet hod may be executed directly, synchronously, or asynchronously using a delegate:

del egate voi d ADel egate();
private void Awet hod()
{
int Wrker, Conpl et e;
Thr eadPool . Get Avai | abl eThr eads(out Worker, out Conplete);
string Line;
if (Thread. Current Thread. Name == nul|)
{
Line = "{null}";
}

el se

{
Li ne = Thread. Current Thr ead. Naneg;

}

Line += " ";

Li ne += Thread. Current Thread. Get HashCode(). ToStri ng();
Line += " ",

Li ne += Worker. ToString();

MessageBox. Show(Li ne) ;

}
private void Test()
{

AMet hod() ;

ADel egat e MyDel egate = new ADel egat e(AMet hod) ;
MyDel egat e();

MyDel egat e. Begi nl nvoke(nul I, null);

Both the Visual Basic .NET and C# compilers produce methods to support asynchro-
nous execution of delegates. Consider the following example:

public class SinpleDel egate

{
publ i c del egate void ASi npl eDel egate();

}

CHAPTER 12 DELEGATES

This declares a delegate that accepts no parameters and does not return a value.
Figure 12.2 shows the disassembled view of the Si npl eDel egat e class. Notice that
Begi nl nvoke, Endl nvoke, and | nvoke are added to ASi npl eDel egat e.

#F D:\My Documents'books' threading',chapter12'Projects',CS - | Ellﬂ

File Wiew Help

g4 DMy Documentshbooksithreading'chapter! 2Projects\C54W 2 BhaspneDelegates_SimpletbintD ebugtasyncDe
e b MAMNIFEST

- syncDelegates Simple
i JJE FormasyncDelegates_Simple
Ell Simplel eleqate
Lo b class public auto angi beforefieldinit
E 25impleDelzgate
i B class nested public auto ansi sealed
- extends [mzcorlib]System. MulicastDelegate
B chor: void(object native int]
B Beginlrvoke : class [mecorib]System ldsyncResultclass [mecorlib]System. AspncCallback, object)
B Endinvoke : voidiclazs [mzcaorlib]System. lAspncResult)
B Irevoke : void])
Lo B ctor : void]]

&

_aszembly AspncDelegates_Simple

K | | | L B

NN A

Figure 12.2 Disassembled view of the Si npl eDel egat e class

Also notice the signature of the Begi nl nvoke method. In our example at the begin-
ning of this section we pass in Not hi ng/ nul | for the two parameters. In the next
section we will discuss | AsyncResul t and AsyncCal | back.

Beginlnvoke Begi nl nvoke is a compiler-generated method that allows a delegate to be
executed asynchronously. This is accomplished using the Thr eadPool class.

One major difference between direct invocation of a delegate and using Begi nl nvoke
is that Begi nl nvoke cannot be used when multiple targets are involved. This means
that multiple methods cannot be associated with a delegate that will be executed
asynchronously. The following example causes an exception to be raised:

ADel egat e MyDel egate = new ADel egat e(AMet hod) ;

MyDel egat e += new ADel egat e(ADi f f er ent Met hod) ;
MyDel egat e. Begi nl nvoke(nul I, nul I');

12.5.1 Endinvoke
There are many times that a method needs to return a value or provide output
parameters. This is a little more complex when dealing with asynchronous execution.
To retrieve the results we must use the Endl nvoke method. The compiler generates
Endl nvoke, just as it generates Begi nl nvoke.

ASYNCHRONOUS DELEGATES 217

12.5.2

218

Endinvoke Endl nvoke is a compiler-generated method that is used to retrieve the return
value and/or any output parameters of an asynchronous delegate.

This means that the signature of the Endl nvoke method depends on the signature
of the delegate it is associated with. In the following example the Endl nvoke
method accepts two parameters and returns a string:

Del egat e Function Test Del egat e(ByRef state As Object) As String

Private Function Test Met hod(ByRef state As bject) As String
Di m Thr eadHashCode As String
Thr eadHashCode = Thread. Current Thr ead. Get HashCode() . ToStri ng()
state = " State: Testnmethod " + ThreadHashCode
Return "ReturnVal ue: Returned From Test Met hod "
End Function
Private Sub Test ()
Di m MyDel egate As Test Del egate
MyDel egat e = New Test Del egat e(AddressOf Test Met hod)
Dimstate As New bject ()
Di m AsyncResults As | AsyncResul t
AsyncResul ts = MyDel egat e. Begi nl nvoke(state, Nothing, Nothing)
Di m ReturnVal ue As String
Ret urnVal ue = MyDel egat e. Endl nvoke(state, AsyncResults)
Trace. Wit e(ReturnVal ue)
Trace. WitelLine(state. ToString())
End Sub

Endl nvoke will always accept one more parameter than the delegate it is associated
with and have the same return value as that delegate. The additional parameter is an
object that supports | AsyncResul t .

TIP If the compiler tells you that “No overload for method 'EndInvoke' takes
X" arguments” where Xis the number of arguments you are attempting to
use, it is likely because the parameters of the delegate are not declared as
byref orref. The compiler rightly assumes that it does not have to deal
with values being returned if the parameter is not marked as a reference.

Begi nl nvoke returns an instance of an object that supports | AsyncResul t.
That return value should be passed to Endl nvoke to retrieve any out parameters
and to determine the return value.

Endl nvoke is a blocking call. That means that it will not return until the delegate
instance it is associated with completes execution. The thread that calls Endl nvoke will
stop executing until Endl nvoke returns. An alternative is to use AsyncCal | back.

AsyncCallback

AsyncCal | back is a means of associating a delegate with the asynchronous delegate.
When the asynchronous delegate completes its execution, the method associated with
AsyncCal | back is invoked. That method can then call Endl nvoke and retrieve

CHAPTER 12 DELEGATES

output values or the return code. In the following code example, we start execution of
MyDel egat e in the Test Cal | back method. When we call Begi nl nvoke we
pass in Conpl et eCb as the second parameter. The method associated with Com

pl et eCh, Conpl et e, is executed as soon as Test Met hod completes its execution.

Private Sub Test Cal | back()
Dimstate As Cbject = ""
Di m TheAsyncResult As | AsyncResul t
Di m MyDel egate As Test Del egate
My/Del egat e = New Test Del egat e(AddressOf Test Met hod)
Di m Conpl et eCb As AsyncCal | back
Conpl eteCb = New AsyncCal | back(AddressOf Conpl et e)
TheAsyncResult = MyDel egat e. Begi nl nvoke(state, Conpl eteCh, Not hing)
Trace. WiteLine("Exiting TestCall back")
End Sub

Private Sub Conplete (ByVal TheAsyncResult As |AsyncResult)
Di m TheResults As AsyncResult = CType(TheAsyncResult, AsyncResult)
Di m ReturnVal ue As String
Dimstate As Cbject = ""
Di m MyDel egate As Test Del egat e
MyDel egat e = CType(TheResults. AsyncDel egat e, Test Del egat e)
Ret urnVal ue = MyDel egat e. Endl nvoke(state, TheAsyncResult)
Trace. Wit e(ReturnVal ue)
Trace. WitelLi ne(CType(state, String))
End Sub

Conpl et e is invoked as soon as the asynchronous execution is complete. It calls
Endl nvoke and retrieves both the output parameters and the return value of
Test Met hod.

The last parameter in the Begi nl nvoke method is an object that is passed
through to the | AsyncResul t object. It is available from the AsyncResul t object
by accessing the AsyncSt at e property.

12.6 CREATING AND INVOKING
DYNAMIC DELEGATES

Suppose you know that at some point you need to execute one of five delegates. One
way to do that would be to create a large case statement and create each of the delegates.
Another alternative is to use the Cr eat eDel egat e method of the Del egat e class.
Cr eat eDel egat e allows for late binding. It allows a developer to determine at
runtime what method is associated with a particular delegate, along with an optional
target. The target is the same as the target from the previous sections in this chapter;
it is an instance of a class that the method belongs to. In the following example the
target is the current class, referenced by the t hi s keyword:

CREATING AND INVOKING DYNAMIC DELEGATES 219

220

voi d Test Met hod4()
{

St ackTrace MyTrace=new StackTrace ();
Trace. WiteLi ne(M/Trace. Get Frane(0). Get Met hod() . Nan®) ;

}
del egate voi d TestDel egate();
private void buttonTest_dick(object sender, System EventArgs e)

{
Del egate MyDel egat e;
string[] Methods = { "TestMethod0", "TestMethodl" , "TestMthod2",
"Test Met hod3", " Test Met hod4"};
Random Rnd=new Randon{ Envi ronment . Ti ckCount) ;
string MethodToUse = Met hods[Rnd. Next (Met hods. Length)];
MyDel egat e = Del egat e. Cr eat eDel egat e(t ypeof (Test Del egate), t hi s, Met hodToUse

)
MyDel egat e. Dynani cl nvoke(nul l);

}

Once the delegate has been created we need some means of invoking it. The Dynami c-
I nvoke method allows for invocation of delegates that are created using the Or eat e-
Del egat e method. It accepts an array of objects as its only parameter. These objects
are the parameters, if any, that the method associated with the delegate expects.

CreateDelegate Or eat eDel egat e is a static method of the delegate class. It creates a delegate
of aspecified type and associates it with a target object and a method to invoke.

The late binding referred to in this section refers to binding a method, and option
object, to a delegate. It should not be confused with other forms of late binding.

Dynamicinvoke Dynami cl nvoke isa method of the delegate class. It allows delegates created
using Cr eat eDel egat e to be invoked. It accepts a single parameter, which
is an array of objects that should correspond to the arguments of the method
associated with the delegate.

There are many situations where late binding is a good idea. There are things that
must be accounted for when doing late binding. One situation that can arise is that the
target method referenced does not exist. In that case the following exception is raised:

An unhandl ed exception of type 'System Argunent Exception' occurred in
nscorlib.dll

Additional information: Error binding to target nethod.

The alternative to using Cr eat eDel egat e and Dynani cl nvoke is to use a large
case statement:

private void UseCaseSt at enent ()

{
Test Del egat e MyDel egat e=nul | ;
string[] Methods ={"Test Met hod0", " Test Met hod1"};

CHAPTER 12 DELEGATES

12.7

SUMMARY

Random Rnd=new Randon{ Envi ronment . Ti ckCount) ;
string MethodToUse = Met hods[Rnd. Next (Met hods. Length)];
swi t ch(Met hodToUse)

{
case "Test Met hod0":

MyDel egat e = new Test Del egat e(Test Met hod0) ;
br eak;

case "Test Met hodl":
MyDel egat e = new Test Del egat e(Test Met hod1) ;
br eak;

}
if (MDelegate != null)
MyDel egat e() ;
}

One of the biggest advantages of using this approach is that if references to nonexistent
methods exist they will be caught at compile time rather than runtime. As with all
things there are tradeoffs to both approaches and the situation will dictate which is the
better approach.

SUMMARY

In this chapter we discussed various forms of delegates. Delegates allow for a high
degree of flexibility. They allow a reference to a method to be treated like any other
variable, without the risks of using function pointers in C++. Delegates are a key part
of any asynchronous development in the .NET platform. By understanding delegates
in general, you'll find that multithreaded development becomes much simpler.

221

CHAPTEHR 1 3

Excep tions

13.1 Exceptions revisited 223

13.2 Thread-related exceptions 224

13.3 The AppDomain UnhandledException event 232
13.4 Summary 234

Exceptions are a flexible and powerful way of handling alternative outcomes. Excep-
tions are particularly important in multithreaded development. This chapter revisits the
concepts behind exceptions and then examines the exceptions that are associated with
threads. The chapter ends by examining Unhandl edExcept i on of the application
domain object.

Exceptions provide a way to force a condition to be dealt with. Traditional error
handling relies on the caller of the method or function checking to see if an error hap-
pened. If the caller does not check, the error goes unnoticed. Exceptions force a caller
to deal with an unexpected condition. If the caller does not handle the exception, the
call stack is searched for an appropriate handler. If none is found, the exception
becomes an unhandled exception. When an unhandled exception occurs on a thread,
it is terminated.

Appropriate exception handling is an important part of good multithreaded devel-
opment practices. Time spent adding exception handlers will be more than returned
during the debugging and stabilization phases of development.

222

13.1 EXCEPTIONS REVISITED

Exceptions are a powerful way of handling exception conditions in programs. They have
many advantages over other forms of error handling. One area where an exception is
very robust is in giving information about the location of the condition that caused
the exception to be raised. This can be augmented by chaining exceptions together,
essentially re-throwing the exception after adding additional information:

Private Sub Test Met hod2()
Try
Test Met hod3()
Catch ex As Exception
Di m NewException As Exception
NewException = New Exception(" Test Met hod2", ex)
Thr ow NewExcepti on
End Try
End Sub

In the example, when an exception is caught by a method it creates an exception,
adding its own information along with a reference to the original exception. Once the
new exception is created, it is thrown.

One of the biggest shortcomings of traditional error handling is the reliance on
return values. A typical usage has a function return some value to indicate success and
some other value to indicate an error occurred. One variation of this is to have a param-
eter that returns error code. The following code is typical of that sort of error handling:

Private Function O dFashi onedFunction() As Bool ean
Di m Sonet hi ngBadHappened As Bool ean
Sonet hi ngBadHappened = Fal se
I f Sonet hi ngBadHappened Then
Return Fal se
El se
Return True
End | f
End Function

The caller of this function must check the return value to see if an error occurred.
One acceptable form of usage is:

Private Sub O dFashi onedCal | er ()

If Not O dFashi onedFunction() Then
' Handle the error

El se
" Things went wel |

End I f

End Sub

One major problem with this approach is that it trusts that the caller will check the
return value. All too often the return value, and the possible error, is ignored:

EXCEPTIONS REVISITED 223

13.2

13.2.1

224

Private Sub Not Checki ngRet ur nCode()
A dFashi onedFunction()
End Sub

One of the biggest advantages of an exception is that it forces a method to deal with
an error or lose control of execution. Additionally, the error-handling routines can be
separated from the main code of the method, allowing for more maintainable code:

Private Sub Excepti onBasedFuncti on()
Di m Sonet hi ngBadHappened As Bool ean
Sorret hi ngBadHappened = Fal se
I f Somet hi ngBadHappened Then
Throw New Exception(" Sonet hi ng bad happened")
End | f
End Sub

THREAD-RELATED EXCEPTIONS

Now we turn our attention to the exceptions most commonly encountered when doing
multithreaded development. Since exceptions are going to occur, it is important that
a program handle them in an appropriate way.

The ThreadAbortException class

Thr eadAbor t Except i on is different from most exceptions in that when the excep-
tion is handled, unless Reset Abort is called, exiting the t ry/ cat ch block causes
the method to also exit. Recall from section 4.3.2 that Reset Abort allows Thr ead-
Abor t Excepti on to behave like other exceptions. Thr eadAbor t Except i on is
raised whenever an instance of the Thr ead class has the Abort method invoked. It
allows a thread method opportunity to perform any needed exit processing.

Most exceptions behave as follows:

private void Typi cal Exception()

{
try
{
t hrow new Exception("Test");
}
catch (Exception ex)
{
Trace. WiteLine("In Catch");
}
finally
{
Trace. WiteLine("In Finally");
}
Trace. WitelLine("After Try");
}

When the exception is generated in the t ry block, control transfers to the cat ch
clause. After the cat ch clause has executed, control transfers to the f i nal | y block.

CHAPTER 13 EXCEPTIONS

After the fi nal | y block executes, control transfers to the next instruction, in this
case a Tr ace statement.

ThreadAbort- Thr eadAbor t Except i on is raised on a thread whenever Abor t is called
Exception on the instance of the Thr ead class associated with the thread. It allows for
a graceful exit.

In the case of Thr eadAbor t Except i on at the point the t ry block exits, the method
containing the t r'y block also exits. This allows the thread’s method to be informed that
the thread is in the process of exiting, and alternatively call Reset Abor t . Listing 13.1
shows the typical flow that occurs when a Thr eadAbor t Except i on is raised.

public class FornrlhreadAbortException : System W ndows. For ns. Form

{

private Thread TheThread;
private void ButtonStart_d ick(object sender, System EventArgs e)

{
Start TheThread();
}
private void StartTheThread()
{
TheThread = new Thread(new ThreadStart (Thr eadMet hod)) ;
TheThr ead. | sBackground = true; Ani §
TheThread. Name = "TheThread"; the '.}l::::znzfa:s
TheThread. Start (); The new thread is created
})) starts
private void ThreadMet hod()
{
try
{
while (true)
{
Trace. Wite("*");
Thr ead. Sl eep(1000) ;
}
}
catch (ThreadAbort Exception ex)
{
Trace. WiteLine(ex. ToString()); A ThreadAbortException
}_ occurs
finally
{
Trace. WiteLine("Finally!");
}
Trace. WiteLine("This will not be reached"); This instruction will
} not be reached

THREAD-RELATED EXCEPTIONS 225

13.2.2

226

private void ButtonAbortThread_d ick(object sender, System EventArgs e)

{
/1

TheThr ead. Abort () ; A ThreadAbortException
} is raised on the thread

If the thread’s method calls Reset Abor t , Thr eadAbor t Except i on behaves like
any other exception. An important note: Reset Abor t must be called in the cat ch
clause. If it is called in the f i nal | y clause it will have no effect:

catch (ThreadAbort Exception ex)

{
Thr ead. Reset Abort () ;
Trace. WitelLine(ex. ToString());
}
finally
{
Trace. WiteLine("Finally!");
}
Trace. WiteLine("This will be reached");

One version of the Abor t method allows an object containing state information to be
passed in. This is passed to the exception listed in the cat ch clause. The object is avail-
able by accessing the Except i onSt at e property of Thr eadAbor t Except i on.

The ThreadInterruptedException class

Threads go through many states during their lives. When a thread is sleeping, it enters
Vi t Sl eepJoi n. Once in that state, it can leave it several ways; one way is that a
timeout on a sleep statement expires. That is what will happen in listing 13.2.

I nports System Threadi ng
Public O ass ForniThreadl nterruptedException
I nherits System W ndows. For ns. Form

Private Test Thread As Thread
Private ThreadSl eepTi ne As | nteger

Private Sub Start Test Thread()

Test Thread = New Thread(AddressO Thr eadMet hod) T Create a thread

associating it with
ThreadMethod

Test Thr ead. | sBackground = True
Test Thread. Nane = "Test Thr ead"

Test Thread. Start () Start the thread

End Sub executing
Private Sub ThreadMet hod()

Di m Sl eepTi me As | nteger

CHAPTER 13 EXCEPTIONS

Try
While True
Try
SyncLock Me
Sl eepTi me = ThreadSl eepTi me
End SynclLock
' Do processing here
Thr ead. Sl eep(Sl eepTi ne)
Catch ex As System Threadi ng. Threadl nt er rupt edExcepti on
Debug. WiteLine(ex. ToString(), "ThreadExceptions")
End Try catjq
End Wile ThreadIinterruptedException
Catch ex As ThreadAbort Exception
Debug. Wi teLi ne(ex. ToString(), "ThreadExceptions")
Catch ex As Exception
Debug. Wi teLi ne(ex. ToString(), "ThreadExceptions")
Event Log. Wi teEntry(Application. Product Name, ex. ToString())

End Try
End Sub
Private Sub Buttonlnterrupt_Click(. . .) Handles Buttonlinterrupt.dick
Test Thread. I nterrupt () Signal the thread to
End Sub T exit the WaitSleepJoin
state

Another way that a thread can exit Wi t Sl eepJoi n is that some resource that is being
waited upon becomes available. If some other thread had a lock on the current instance
of the object, Me/ t hi s in listing 13.2, the thread would enter the Wai t Sl eepJoi n
state when it encountered the SyncLock statement. Once the other thread released
the lock on the current instance, the thread executing Thr eadMet hod would exit
the VAi t Sl eepJoi n state.

The Joi n method is used to wait for a thread to terminate. The thread that calls
Joi n on some other thread’s object enters WAi t S| eepJoi n until a timeout expires
or the joined thread terminates.

A more direct way that a thread can leave the Wi t Sl eepJoi n state is by using
the | nt er rupt method. I nt er r upt is a way of forcing a thread to exit the Vi t -
Sl eepJoi n state. This is accomplished by using Except i on. When a thread has
I nterrupt called on it, if the thread is currently in the Wi t Sl eepJoi n state,
Thr eadl nt er r upt edExcept i on is raised on that thread. If the thread is not in the
Wi t Sl eepJoi n state, as soon as it enters the state Thr eadl nt er r upt edExcep-
ti on will be raised.

Thread- Thr eadl nt er r upt edExcept i on is raised when a thread is in the Wi t -
Interrupted- 5| eepJoi n state and some other thread calls | nt er r upt , or a thread has
Exception previously had I nt er r upt called on it and it enters Wi t Sl eepJoi n.
Thr eadl nt er r upt edExcept i on allows a thread to be awakened so

that it can resume its processing.

THREAD-RELATED EXCEPTIONS 227

13.2.3

228

A thread can call | nt er r upt on itself, causing Thr ead| nt er r upt edExcept i on
to be raised as soon as the thread enters a i t S| eepJoi n state. If | nt er r upt is
called numerous times before the thread enters Wi t SI eepJoi n, it will only cause
the thread to exit the state once. Think of it as a Boolean flag. When that flag is set to
true, the thread will exit the Wai t SI eepJoi n state and reset the flag to false. Con-
tinuing with the flag metaphor, calling | nt er r upt sets the flag to true.

TIP A thread can have | nt er r upt called at all times. The thread must either be
unstarted or currently executing for calling | nt er rupt to have any effect.
Calling | nt er r upt on a thread that has exited does not generate an error.

In listing 13.2 the only action we take when Thr ead| nt er r upt edExcepti on is
raised is to write out a debug statement. Generally speaking, there is no reason to log
an event to the event log, or take some other error-tracking steps, for things such as
thread interruptions. They are not an error; at most they may be a symptom of a
problem. Suppose that logic exists that keeps track of the last time an action was
taken. If that action did not happen in a timely manner, the watching thread could
call I nt er rupt on the tardy thread. Doing so should be logged as an informational
message for later analysis. It may well be that the tardy thread is hanging on some
errant logic.

In the example code, we also catch only Thr eadl nt er r upt edExcepti on at
the innermost level of the thread’s method. Other exceptions will propagate up to the
outer exception handler. This is a powerful feature of exception handling. Exception
handlers can choose which exceptions they will deal with, and allow another one to
deal with all other exceptions.

The ThreadStateException class

Threads transition from one state to another. As we saw in chapters 4 and 5, not all state
transitions are allowed. In table 13.1, Yes indicates that, if a thread is in the state in
the first column and a method or property along the top is called, a Thr eadSt at e-
Excepti on is raised.

Table 13.1 States and Methods/Properties That Raise the ThreadStateException

State Start Abort Suspend Resume Interrupt Priority IsBackground
Unstarted Yes Yes

Running Yes Yes

WaitSleepJoin Yes Yes

Suspended Yes

Stopped Yes Yes Yes Yes Yes

Notice that Abort and I nt errupt do not cause Thr eadSt at eExcepti on to
be raised regardless of the state of the thread. Other methods, such as Resune, cause
an exception to be raised unless they are called when the thread is in a certain state.

CHAPTER 13 EXCEPTIONS

The reason that some methods can be called without raising an exception and others
cannot revolves around race conditions.

ThreadState- Thr eadSt at eExcepti on is a thread-related exception that is raised
Exception \henever an illegal state transition is attempted.

Consider what would happen if Abor t could not be called on a thread in the St opped
state without Thr eadSt at eExcepti on being raised. Before Abort could be
called, the thread state would need to be inspected to determine if the thread were in
St opped. If it was not, Abor t could be called. The race condition occurs when the
state of the thread changes after the test has been performed.

I nterrupt canbe called at any time. Again, if | nt er r upt were restricted so that
it could only be called when a thread was in the Wi t SI eepJoi n state, the likelihood
of a race condition would be very high. Instead, calling | nt er r upt causes a thread
to exit Wai t Sl eepJoi n if it enters it. If the thread never enters the state, calling
I nt er rupt has no effect.

Why do some methods seem to care what state the thread is in and others do not?
If the thread can exit a state without the method of interest being called, Thr ead-
St at eExcept i on will not be raised. For example, if a thread is in the Unst ar t ed
state, the only way it can leave that state is if St ar t is called. Therefore, if the thread
is not in that state and St ar t is invoked, it is safe to assume an invalid state transition
is being attempted and the runtime raises an exception.

Impact Methods that rely on a thread being in a certain state raise Thr eadSt at e-
C ode.:.ce Except i on only if there is no way that the thread can exit the restricted
onditions

state. For example, a thread that is the Suspended state can only exit when
Resune is called. Thus, any time a thread is not in the Suspended state
and Resune is called it is an invalid state transition.

A counter example is if a thread is in the Wi t SI eepJoi n state it is possible, and
very likely, that the thread will exit without | nt er rupt being called. With that
knowledge, it is reasonable that | nt errupt cannot require the thread be in the
Wi t Sl eepJoi n state when it is called.

The terminal state for a thread is St opped. When a thread is in the St opped
state, only Abort and | nt errupt can be called without raising Thr eadSt at e-
Except i on. This makes a good deal of sense because you wouldn’t want to manip-
ulate a thread that is in the St opped state. Since Abor t generally causes a thread to
enter the St opped state, it would be too restrictive to raise an exception when Abor t
is called on a thread in the St opped state.

A Thr eadSt at eExcept i on can be raised when:

* The thread is in the terminal state, St opped.

* The thread is in a state that can only be exited by calling a method on the
thread object, such as Suspended and Unst ar t ed.

THREAD-RELATED EXCEPTIONS 229

13.24

230

A thread can enter the Suspended state only if Resurme is called.

Thr eadSt at eExcept i ons are not raised when the thread is in a state that it can
exit without a method, such as Wi t S| eepJoi n, being called on the thread object.
When a method is invoked that has no perceivable effect, such as calling Abort on
a thread in the St opped state, it doesn’t make sense to raise an exception.

Care should be taken to handle possible Thr eadSt at eExcept i ons. Thr ead-
Except i onEvent Handl er, covered in section 12.4, is an ideal way of dealing with
Thr eadSt at eExcept i ons if the application involved is a Windows Form.

In general, every interaction with a thread object should be wrapped with at ry/
cat ch block. Multiple catch clauses can be used to differentiate between the serious
exceptions and the less important ones. Something similar to the following can be used
to separate the catching of Thr eadSt at eExcept i on and other Except i ons:

cat ch(ThreadSt at eExcepti on ex)
{

}
catch (Exception ex)

{
.
The SynchronizationLockException class

We saw in chapter 7 how to acquire a lock using the Moni t or . Ent er method. We also
discussed the Synchr oni zat i onLockExcepti on class. Synchr oni zati on-
LockExcept i on is raised when a method that is intended to be invoked from within
a synchronized region is invoked from a region of code that is not synchronized. This
means that all methods except for Ent er and Tr yEnt er of the Moni t or class will
generate Synchroni zat i onLockExcepti on if invoked from a region of code
that is not synchronized.

Synchro- Synchroni zat i onLockExcept i on is an exception raised when a Moni -
nization- ¢t or method, other than Ent er and Tr yEnt er, is invoked from code that
LockException . . .
is not in a synchronization block.

An interesting aspect of the following code involves performance counters. Perfor-
mance counters are an easy way to expose metrics of the actions a program is taking.

I nports System Di agnostics
Di m Per f Counter As PerfornanceCount er

Per f Counter = New PerformanceCounter ("Dennis - Miltithreadi ng", "Lock-
Count", Fal se)

Private Sub EnterWitExit()
Moni t or . Ent er (LockQbj ect)

CHAPTER 13 EXCEPTIONS

Per f Count er. | ncremnent ()

Moni t or . Wi t (LockQhbj ect)

Moni t or . Exi t (LockQbj ect)

Per f Count er . Decr enent ()
End Sub

In this case we increase the counter when Ent er is called and decrease it when Exi t
is called. If the resulting value is greater than zero, it indicates that Ent er was called
more than EXi t . This means that a lock on the object is still in force.

TIP Performance counters are a good way to keep track of the number of times
a lock count has been incremented.

As with all methods that can raise exceptions, the Moni t or methods should be con-
tained within a t ry/ cat ch block. Failure to do so will likely result in an unhandled
exception, which causes the thread on which it was raised to be terminated.

Behavior Because of non-deterministic finalization in .NET, there may be times that
of Exit you can call Exi t more times than Ent er . You will be able to call Exi t
until the garbage collector collects the garbage. After the collection has oc-
curred, calls to Exi t will cause Synchr oni zat i onLockExcepti on to
be raised. Pul se, Pul seAl | , and Vi t always raise an exception if in-

voked from an unsynchronized block of code.

To avoid race conditions, no attempt should be made to determine if a lock is cur-
rently held. A more robust approach is to call TryEnt er. If the lock is acquired, a
synchronized method can then be invoked, such as Pul se. Since calls to Tr yEnt er
and Ent er are allowed when the current thread holds the lock, no harm will come
from attempting to acquire a lock.

When a lock is no longer required, the number of calls to Exi t should equal the
total of the number of calls to Ent er and Tr yEnt er . Calling Exi t more times than
Ent er after the lock has been collected will cause Synchr oni zat i onLockExcep-
tion to be raised. This should be viewed as a logic error.

TIP Exi t should be called as soon as possible after Pul se and Pul seAl | because
in order for a thread to exit the Wi t S| eepJoi n state it must reacquire a
lock on the object that it was waiting on. If the thread that calls Pul se does
not release that lock, the thread will not be allowed to exit the Wai t -
Sl eepJoi n state.

The example program for this section allows a user to interact with the Moni t or
locking mechanism to see the effects of invoking methods that require synchronization
without having first acquired the lock. The overall flow is described in figure 13.1.
When the user clicks a button (e.g., Wait), a string by the same name is added to a
queue that is an instruction for the thread that services that queue. A thread is running
with the sole purpose of keeping its instruction queue empty. When it sees an instruc-
tion is in the queue, it dequeues it and attempts to process it. This is accomplished by

THREAD-RELATED EXCEPTIONS 231

13.3

232

Thread

Instruction

(Enter)
Thread Method

Instruction
Queue

Main Form

OnClick Delegate

LockObject

OnClick Delegate

Instruction
Queue

Thread Method
Instruction /
(Enter)

Thread

Figure 13.1 The logical flow of the synchronization exception example

using a large switch statement, containing all of the instructions that the thread knows
how to process. In this case the thread executes the following statement:
Case "Wait"

Moni t or . Wi t (LockQhj ect)
Multiple threads are required because some methods of the Moni t or class, such as
Ent er, may not return. If a call were made to WAi t on the main thread of the appli-
cation, it would be impossible to call Pul se, since the thread would be blocked by
the Wai t. A queue is introduced because the thread servicing the queue may be
blocked by an instruction.

THE APPDoMAIN UNHANDLEDEXCEPTION EVENT

One of the most difficult things to track down is an unhandled exception in a pro-
duction system. The AppDonai n object provides an Event that is invoked when an
unhandled exception is encountered. Invoking the event does not handle the excep-
tion; it merely allows the information to be stored to help in diagnosing the problem
later. If an unhandled exception occurs on a thread other than the main thread, the
user is likely not going to notice. It might be possible to have the application create
another thread after having logged that a thread died in an unexpected way. If the
main thread encounters an unhandled exception, the application will terminate. It
would be appropriate to display a meaningful message to the user as well as log the
information to help the support staff diagnose the issue.

Unhandled- Unhand| edExcept i on isan event that allows a delegate of the application
Exception Jomain object to be invoked when an unhandled exception occurs.

CHAPTER 13 EXCEPTIONS

The following code example adds a handler to the Unhandl edExcepti on event
that logs the exception to the event log. This is a good start, but likely a more robust
logging mechanism would be needed in a production system.

private void AddUnhandl edExcepti onHandl er ()

{
Unhandl edExcepti onEvent Handl er MyHandl er;

MyHandl er = new Unhandl edExcepti onEvent Handl er (MyExcepti onHandl er) ;

/1 Add a handler to the Unhandl edExcepti on event.
Syst em AppDomai n. Cur r ent Dormai n. Unhandl edExcepti on += MyHandl er;

}
private voi d MyExcepti onHandl er (obj ect sender , Unhandl edExcepti onEvent Args e)
{
Exception TheException;
TheException = (Exception)e. Excepti onOoj ect;
if (!EventLog. Exi sts(Application. Product Nane))
{
Event Log. Cr eat eEvent Sour ce(Appl i cati on. Product Narme, "Application");
}
Event Log. WiteEntry(Application. Product Name, "Unhandl ed Exception: " +
TheException. ToString(), EventLogEntryType.Error);
}

Once a handler is in place it can be removed using the - = operator in C# and the
RenmoveHandl er statement in VB.NET.

It is important to understand what the user will likely see when an unhandled
exception occurs. The best you can hope for is shown in figure 13.2.

While developers find this information very useful, typical business users will not.
They likely will not click the Details button and will instead click Continue. After they
have clicked the Continue button, they will probably call the support personnel and

Exceptions: UnhandledException ﬁl

An unhandled exception has occurred in your applization.
If you click Continue, the application will ignare thi

and attempt to continue. If you click Quit, the application
will be shut down immediately.

Test.

Continue Quit |

See the end of this message for details on invoking -~
just-in-time [J1T) debugging instead of this dialog box.

Exception Text xsss
System.Exception: Test

at Exceptions_UnhandledE xception.Form1.ButtonT hrow_Click(0

at System.Windows.Forms. Contral. OnClick(E ventrgs &)

at System.Windows. Forms. Button. OnClick(E ventéigs e)

at System Windows Forms Button. OnMouseUp[MouseE ventirgs Figure 13.2
at System.Windows.Forms.Control. Wmbousel p[Messagek mi‘llll 9 y

»

4 A typical Unhandl| edExcept i on
dialog box

THE APPDOMAIN UNHANDLEDEXCEPTION EVENT 233

13.4

234

inform them that they just encountered an error. They will not be able to send any-
thing to the support staff to resolve the issue.

TIP Use the Unhandl edExcept i on event as a means of logging unhandled
exceptions to the event log.

Think about support issues during development. By planning for failure, you can pro-
duce a higher quality product. When an issue is encountered, a mechanism will be in
place to make resolving those issues much easier. In an ideal world there is no need
for error handling and logging, but we do not live in an ideal world. Software often
encounters environments that developers never imagined could exist. The software
must be prepared to record these events so that issues can be resolved.

SUMMARY

Exceptions provide a robust way of dealing with error conditions. Since an unhandled
exception terminates a thread, it is imperative that complete and thorough error handling
be in place. At the very least, an Unhandl edExcept i on handler should be put in
place to record the occurrence of an unhandled exception. If time is spent during the
early stages of development adding error handling, the overall quality of the product
will be much higher. Additionally, as errors are encountered it will be much easier to
correct them. The return on investment for adding error handling is very high.

CHAPTER 13 EXCEPTIONS

14.1

14.1.1

CHAPTEHR 1 4

Timers

14.1 Using Windows Forms timers 235
14.2 System.Timers. Timer 239

14.3 System.Threading. Timer 243
14.4 Summary 244

Timers, a reoccurring event that has a predefined interval, are a common construct, and
most Visual Basic programmers have used a timer at some point. Timers meet a com-
mon need of performing an operation after a ceratin amount of time has passed. This
chapter focuses on timers available in the .NET framework.

UsinG WINDOWS FORMS TIMERS

Windows Forms timers are one of the most common kinds of timers. They are simple
to use, and for Visual Basic developers the only viable way of seeming to do multiple
things at once. This section explores Windows Forms timers, first by examining their
background and then how they are implemented in the .NET framework.

How Windows Forms timers are implemented
Most Windows developers are familiar with Windows Forms timers. In Visual Basic
version 6.0, and previous versions, the timer was added to a form using a stopwatch
icon. The Visual Basic timer has a Nanme property, along with an Enabl ed property
that controls if the timer’s Ti mer method is invoked at the intervals specified in the
I nterval property.

The Visual Basic timer is implemented using the Win32 API call Set Ti mer . The
Set Ti mer API call causes a WM_TI MER message to be posted to the associated win-
dow’s message queue at the interval specified. This is an important characteristic of all

235

236

Windows Forms-based timers; they utilize the window’s message queue to indicate
when the timer’s method should be invoked. This means that all timer methods occur
on the same thread as the message queue processing method.

Without getting into too much detail of Windows API programming, each Windows
application that supports a user interface has a loop in it whose sole purpose is to pro-
cess messages. This is generally called the message loop. Communication is based on
a message being added to a queue that this loop services. When a message is processed,
an appropriate method is invoked. All of this is occurring on a single thread. That is
why Visual Basic applications that do not use the DoEvent s method often stop
updating the screen during long-running operations. This emphasizes the single-threaded
nature of Visual Basic applications.

Windows A Windows Forms timer is a mechanism for performing operations at regular

Forms Timers ;. cvals. It is based on entering a message in the window’s message queue.

DoEvent s is essentially a recursive call back to the message loop. Once the message
queue has been serviced, DoEvent s returns to the method that calls it. This brings us
to an issue with DOEvent s: If a message is processed during the DoEvent s call that
is long-running, it too will cause the application to become unresponsive. The key
point here is that Windows Forms timers are an ideal way of performing operations
of short duration that are related to the user interface. Any other use will eventually
result in a responsiveness issue.

To see that Windows Forms timers use the message queue, we can add a message filter
to our form that looks for the WM_TI MER message. Message filters are a way of restricting,
or monitoring, messages. If you wanted to keep an application from responding to an
event, one way to do so is to use a message filter. For our needs we simply want to know
that a particular message is about to be processed.

Message A message filter is a class that implements the | MessageFi | t er interface.
Filters The filters allow for detection and selective removal of the messages that the
loop processes.

To add a message filter, you must first create a class that supports | MessageFi | t er.
This class must provide a Boolean function named Pr eFi | t er Message that accepts
a reference to a message. The return value of Pr eFi | t er Message determines if a
message is processed or filtered. When the return value is true, the message will not be
processed; if it returns false, the message will be processed. To add a message filter we
simply pass an instance of the class that supports | MessageFi | t er to the Appl i -
cat i on object’s AddMessageFi | t er method, as seen in the following example code:
Filter = new d assTi ner MessageFi | t er (t ext BoxFeedback) ;

Application. AddMessageFilter(Filter);

A assTi mer MessageFi | t er supports | MessageFi | t er. The constructor accepts
an instance of a control object, and we use that instance to add a line to the textbox
indicating that a VWM _TI MER message is about to be processed.

CHAPTER 14 TIMERS

When a WM_TI MER message is processed, the Windows Forms timer invokes the
Ti ck delegate. This is a multicast delegate that can cause multiple methods to be exe-
cuted. To add a delegate, use the += operator in C# and the AddHandl er statement
in Visual Basic .NET. The following example adds an event handler:

timerl. Tick += new Event Handl er (Ti ckHandl er);

Since Visual Basic .NET does not currently support operator overloading, it cannot
use the += operator to add a handler.

14.1.2 Controlling Windows Forms timers

Creating a2 Windows Forms-based timer is very easy. The toolbox in Visual Studio

includes an easy-to-use Ti mer control. Figure 14.1 shows the location of the Windows
Forms timer in the toolbox.

Data
Components
Windows Forms | -
m MonthCalendar
41 ¥ HScrollBar
2 VscrolBar

. % Timer Figure 14.1
++ spliter Selecting the Windows Forms
General |

timer from the toolbox

Using the timer control from the toolbox is the easiest way to add a timer to the form.
This is basically the same as adding a timer in Visual Basic 6.

Dragging and dropping the timer icon onto a form will create the first two lines
of the code that follows:

Friend WthEvents Tinerl As System W ndows. Forns. Ti mer
Me. Timerl = New System W ndows. For ns. Ti ner (Me. conponent s)

Private Sub Tinerl_Tick(ByVal sender As System Object,
ByVal e As System Event Args) _
Handl es Timer1. Tick

Once a timer is added to a form we need to interact with it. A timer is a simple
device. It contains a switch that indicates whether or not it is active. This is exposed
as a property called Enabl ed. To turn on the timer, simply set Enabl ed to Tr ue:
Ti mer 1. Enabl ed = True

The frequency of the timer is important. A timer’s interval should be set to be frequent
enough so that an event of interest does not pass unnoticed, but it should not be set
so small as to flood the message queue with WM_TI MER messages. To control the fre-
quency of a timer, we use the | nt er val property, which accepts an integer value that
indicates the number of milliseconds to pause between raising the Ti ck event.

USING WINDOWS FORMS TIMERS 237

238

Interval I nterval is an integer property of the Ti mer class that controls the
amount of time, in milliseconds, before the raising of the Ti ck event.

The Ti ck event is how the timer makes its presence known. In the previous example
the method Ti mer 1_Ti ck is executed every time the Ti ck event is raised on the
Ti mer 1 instance of the timer class. Event handlers can be added and removed as
needed. To add a handler, you must first add a method with the same signature as
Ti mer 1_Ti ck in the example. That method will be invoked every time the Ti ck
event is raised. Since Ti ck is a multicast delegate, multiple methods can be associ-
ated with it. The same method can be associated and removed multiple times.

Tick The Ti ck event is raised whenever the timer object is enabled and the speci-
fied interval expires. Multiple event handlers can be associated with the same
Ti ck event.

To add a Ti ck event handler, declare an object of type Event Handl er and pass in
the address of the method to be invoked when the event becomes signaled. In Visual
Basic .NET use the AddHandl er keyword to associate Event Handl er with the
event it is to handle:

Di m Handl er As New Event Handl er (AddressOf MessageBoxHandl er)
AddHandl er Ti ner 1. Ti ck, Handl er

To disassociate a method from an event, use the RenbveHand! er keyword:

Di m Handl er As New Event Handl er (AddressOfF MessageBoxHandl er)
RermoveHandl er Timer 1. Ti ck, Handler

The Enabl ed property can be used to control if the Ti ck event is raised. Two
methods can alternatively be used to control the Enabl ed state of the timer object.
The Start method causes the Enabl ed property to be set to True. The St op
method causes the Enabl ed property to be set to Fal se. The following code demon-
strates using the St art method:

Tinmerl. Start()
Trace. Assert (Ti ner 1. Enabl ed = True)

Calling St ar t or setting Enabl ed to Tr ue when the timer is already in the Enabl ed
state has no effect. It does not cause the timer to start over. If the timer is switched
from enabled to disabled and then back to being enabled, the interval will start over.

Start Start is a method of the Ti mer class that ensures that the Enabl ed
property has a value of Tr ue.

This brings us to an important topic. Windows Forms-based timers should not be
viewed as high-precision timers. Just because the interval is in milliseconds, it is not safe
to assume that the precision of the timer is also in milliseconds. Since the timer is based
on entering a message into the message queue, the time for that message to be processed
may not be predictable. If some other message monopolizes the queue, the time
between the processing of the WM _TI MER message will not be the same as the interval.

CHAPTER 14 TIMERS

Stop St op is a method of the Ti mer class that ensures that the Enabl ed prop-
erty has a value of Fal se.

Windows Forms-based timers are an easy way to update the user interface. Since they
are message-based, the updates to the user interface are on the same thread as the con-
trols. This means the topics discussed in the next chapter, such as | nvokeRequi r ed
and | nvoke, are not necessary. If the task involved is about displaying information
to the user, then a Windows Forms-based timer is likely a good fit.

14.2 SYSTEM.TIMERS. TIMER

The System Ti nmers. Ti mer class, often referred to as a server-based timer, is
similar to the Windows Forms-based timer. Server timers offer all of the features that
message-based timers offer, along with features not available when using message-based
timers. While the two types of timers are very close in function, there are a few differ-
ences in how they are used. When a server-based timer becomes signaled, it raises the
El apsed event. Methods are associated with the event using an El apsedEvent -

Handl er object. Figure 14.2 shows how to select a server-based timer.

Data
Components -

72, DirectorySearcher
£ MessageQueue
[~/ PerformanceCounter

G Process

-'.?.g‘ ServiceController

.- Timer %J
[*] rReportDodument

Wiindows Forms ¥ Figure 14.2
Clipboard Ring Selecting the server-based
) timer from the toolbox

Server-based timers are added in the same way message-based timers are. Instead of
selecting the Windows Forms section of the toolbox, select the Components section.

14.2.1 Using System.Timers.Timer in Windows Forms

One major difference between a server-based and a message-based timer is the Syn-
chroni zi ngQbj ect property. Synchr oni zi ngQbj ect is used to automatically
handle thread-safety issues associated with Windows Forms. Recall that Windows
Forms are not thread-safe. This means that interacting with a control on a form must
occur on the same thread that created it.

If an object that implements | Synchr oni zel nvoke is associated with Syn-
chroni zi ngObj ect then the | nvoke method of the object is used. The end result
is that the delegate is invoked on the Synchroni zi ngQbj ect’s thread. This
removes any concern about thread-safety, but also means that the method associated
with El apsedEvent Handl er executes on the form’s main thread. Other messages

SYSTEM. TIMERS. TIMER 239

14.2.2

240

will not be processed while the method is being executed. This may result in poor
application performance. When a server-based timer is associated with Synchr o-
ni zi ngQbj ect, it suffers from the same shortcomings a message-based timer suffers
from. The power of server-based timers becomes evident when they are not associated
with a synchronization object.

System.Timers.Timer in Windows system services
One use of a server timer is in a system service, and .NET makes it very easy to create
system services. While this book is not focused on enterprise application development,
we will briefly go over the steps involved in creating a system service (figure 14.3),
mainly because services and threads are often closely related.

When creating a project, simply select Windows Service from the list of templates.

? &

ASP.MET \Web ASP.MET Web Web Control

Application Service Library
ﬁ_ N VB|
sl -‘ﬁ Figure 14.3
Console Windows Empty Project Choosing to create
Application Service a Windows service

This will create a shell of a system service. Next, change the name of the service to some-
thing other than the default Servicel. To do this, double-click on the file Servicel.vb
or Servicel.cs in the Solution Explorer window. The Properties window should now
contain something that looks like figure 14.4.

After changing the name of the service to something more meaningful, attempt to
recompile the solution. Often you will receive an error similar to “Sub Main was not
found in TimerWebMonitorService.Servicel.” This error indicates that the startup
object no longer exists in the project; to correct the error, right-click on the project
in the Solution Explorer window and select Properties. That should bring up a dialog
box that looks similar to the one shown in figure 14.5. Select the correct startup object,
in this case Ti mer WebMbni t or Ser vi ce.

B configurations

{DynamicProperties)

E Design
{MName) TimerWebMonitorService
AutolLog True
CanHandlePowerEvent False
CanPauseAndContinue True
CanShutdown False
CanStop True Figure 144
ServiceName TimerWebMonitorService

Service configuration screen

CHAPTER 14 TIMERS

TimerWebMonitorService Property Pages ﬂ

Configuration: IHN"* j Platfarm IHJ‘A L] Configuration Manaaer
‘- Common Properties Assembly name:
% General |TimerWebMonitarService
Build .
Imports Output bype: Startup object:

Reference Path IWindows Application 'I

Designer Defaults
(L1 Configuration Properties

Root namespace:
TimerWebMonitorService

Timer'WebMonitorService

Information

Project folder: D:\My Documents\books\threadinglchapter 14\ProjectsiVB) 14,5\ Timer
Project File: TimerWebMonitorService. vbproj

Qutput name: TimerwWebMonitorService.exe

oK I Cancel fpply Help

Figure 14.5 Visual Basic project Property page

You should then be able to compile the solution. If you receive an error, such as “Type
Servicel is not defined,” double-click the error message and change the incorrect line,
replacing Ser vi cel with the name of the class that contains the service. This is gener-
ally located at the top of the file that contains the error. In this case, replacing Ser vi cel
with Ti mer WebMoni t or Ser vi ce corrects the error.

Once the solution compiles, the next step is to add an installer, which makes it pos-
sible to install the service. The installer works with | nst al | Uti | . exe, located in the
Microsoft.NET directory under the Windows directory. The following command will
help in locating I nstal | Uil . exe:

cd % ndir% M crosoft. NET\ Fr anewor k

To add an installer, right-click on the design view of the service and select Add
Installer. Adding an installer adds a Projectlnstaller.vb or Projectlnstaller.cs to the
solution. Once the Projectlnstaller file has been added, it needs to be modified. The
following code modification must be made to indicate the type of account the service
should use to log in:

' Servi ceProcesslnstallerl

'

Me. Servi ceProcesslinstal |l er 1. Password = Not hi ng
Me. Servi ceProcesslnstal |l er1l. Usernane = Not hing
' Added to indicate that the service should use the | ocal system account
Servi ceProcesslnstallerl. Account =
Servi ceProcess. Servi ceAccount . Local System

SYSTEM. TIMERS. TIMER 241

242

This lets the installer know that the service should use the local system account. Once
the installer is added and the changes made, the service is ready to be compiled and
installed. The installation process uses a command similar to the following:

c:installutil TimerWbMonitorService. exe

The command will vary based upon the location of the InstallUtil.exe program.

At this point the service can be installed, although it doesn’t do anything useful.
To add functionality to the service, we modify OnSt art, OnSt op, and any other
virtual /Overri dabl e methods of interest in the Ser vi ceBase class.

Let us return to the web site monitor example we discussed in previous chapters.
Recall that the purpose of the web site monitor was to detect when a web server was in
an unhealthy state. This is accomplished by retrieving the contents of a dynamic page
that represents the health of the web server at the time when the page was produced. If
that page does not contain some expected string, such as OK, it is an indication that
something is wrong with the web server and that support personnel should be involved.

In our earlier examples we used a Windows Forms application to monitor a web site.
A system service is a much better vehicle for a monitoring application. Since system services
can be set to start as soon as the computer starts up, and can be configured to execute under
various types of accounts, they are a better way of containing a monitoring application.

System services provide a process in which code can execute. To perform some-
thing meaningful, the service must either respond to requests or have a thread of timers
that performs the desired actions. In our case we use the Ti mer, an instance of the
System Ti mers. Ti mer class.

Private MyTimer As System Ti mers. Ti mer

The MyTi mer member needs to be initialized and configured. This is best performed
in the I nitializeComponent method. Along with creating an instance of the
timer, we also need to create an instance of the web monitoring class. This class con-
tains all logic relating to retrieving information from a web server.

WEM = New WebSit eMoni t or ()

MyTimer = New Ti mer ()

AddHandl er MyTi ner. El apsed, New El apsedEvent Handl er (Addr essOf Check)

The OnStart method is invoked when the system service starts. This is where configura-
tion settings are read and the timer started.

Protected Overrides Sub OnStart(ByVal args() As String)
Try
' Read Configuration Settings

M/Tiner.Interval = WitTinelnMnutes * 60000
MyTimer. Start ()
Catch ex As Exception
Event Log. Wi teEntry(ex. Message, EventLogEntryType.Error)
End Try
End Sub

CHAPTER 14 TIMERS

The OnSt op method is invoked when the service is being stopped. Since our service
is timer-based, the only operation we must perform is to stop the timer.
Protected Overrides Sub OnStop()

My Ti mer . St op()
End Sub

Additionally, OnPause and OnCont i nue can be overridden to allow the service to
be paused and restarted at a later time.
Protected Overrides Sub OnPause()

My Ti mer . St op()
End Sub

Protected Overrides Sub OnConti nue()
MyTinmer. Start ()
End Sub

To support the OnPause and OnCont i nue functionally, ensure that the service’s
properties have CanPauseAndCont i nue set to true.

14.3 SYSTEM.THREADING. TIVER

The Thr eadi ng namespace also contains a Ti mer object. This timer is Thr ead-
Pool -based. A thread in the Thr eadPool invokes a supplied delegate at regular
intervals. In some ways it is less flexible than some of the other timers we have dis-
cussed in this chapter. Once the delegate associated with the timer is set, it cannot be
changed. The time period, or interval, of the timer is set during construction of the
timer, and can be changed later using the Change method. One feature the thread-
ing timer offers that other timers do not is the differentiation between the first time
period and all subsequent ones. When creating the timer object, keep in mind that the
constructor accepts four parameters:

* The delegate to invoke when the time period expires
* An object to pass to the delegate on each invocation

* A parameter to control the time span from instantiation to the first execution of

the delegate

* A parameter to control the time between the first execution of the delegate and
the second execution, and so on

To create Thr eadi ng Ti mer, first add a variable to be the instance of the timer:

static System Threadi ng. Ti mer Threadi ngTi mer;

Next add the logic to create an instance of the timer and associate it with the method
to be invoked during each interval:

SYSTEM. THREADING. TIMER 243

14.4

244

[STAThr ead]
static void Main(string[] args)
{
int FirstTine = 1000;
int TinmeBetween = 4000;
Ti mer Cal | back TheCal | back;
TheCal | back= new Ti nmer Cal | back(cal | back) ;
Thr eadi ngTi mer = new Ti ner (TheCal | back, nul I, Fi rst Ti me, Ti neBet ween) ;
Thr ead. Sl eep(System Threadi ng. Ti meout . I nfinite);

}
Next add the method that is associated with the callback delegate:

static void call back(object statelnfo)

{
int Wrker, Conpl et e;
Thr eadPool . Get Avai | abl eThr eads(out Worker, out Conplete);
Consol e. Wite(DateTime. Now. ToString());
Console. Wite(" ");
Consol e. Wite(Wrker. ToString());
Console. Wite(" ");
Consol e. Wi teLi ne(Conpl ete. ToString());

}

The Thr eadi ng. Ti mer class does not contain a St op or St art method. Nor
does it contain an Enabl ed property. To control the stopping and starting of the
timer, you must use the Change method. For example, calling Change with Ti ne-
out. I nfinite asa value for both parameters has the same effect as calling St op
on one of the other timers. To resume the timer, call Change with a value other than
Timeout.Infinite.

SUMMARY

Timers are an easy way of having an event occur at regular intervals. Choosing the right
timer for a given situation is important. In general, if the timer is to update a user inter-
face, the Windows Forms-based timer is likely the easiest and most familiar to deal with.
If the timer is not being used in a Windows Form, one of the server-based timers must
be used. Care should be taken to ensure that the work being performed is not greater
than the interval associated with the timer. If that is the case, and a server-based timer is
being used, multiple instances of the method associated with the timer will be executing.

CHAPTER 14 TIMERS

15.1

15.1.1

CHAPTEHR 15

Windows Forms and
multiple threads

15.1 Multithreaded-related issues 245

15.2 Using the Graphics object with threads 260

15.3 Thread-related application events and properties 264
15.4 Summary 266

Windows Forms provide for a rich user experience. They provide the next step in
Win32 application development. Unlike previous environments, .NET makes it rela-
tively easy to produce high-quality applications. One way that a Windows Forms
application can be enriched is through the use of multiple threads.

MULTITHREADED-RELATED ISSUES

The code wizards in Visual Studio do the majority of the work in creating the shell of
a Windows Form application. It is important to understand what they do and why
they do it. In this section we analyze the code that the wizard produces.

Introduction to the STAThread attribute

Listing 15.1 shows the essential parts of a simple Windows application. This applica-
tion doesn’t do much; it just displays a popup dialog box showing the apartment (dis-
cussed in-depth in chapter 16) state of the main thread.

245

246

/1] <summary>
/11 The main entry point for the application.
/1l </ sunmary>

[STAThr ead] @ Creates asingle-threaded
static void Main() apartment
{

Appl i cation. Run(new Forml());
}

private void Forml_Load(object sender, System EventArgs e)
{
string sAptState;
Apartnment State MySt at e;
My St at e=Thr ead. Cur r ent Thr ead. Apart ment St at e; 9 Returns the
sApt St at e=MySt at e. ToSt ri ng() ; ApartmentState of
MessageBox. Show(sApt St at e) ; the current thread

Notice the [STAThr ead] attribute. This ensures that the main thread uses a single-
threaded apartment (STA). The reason is that the controls that a Windows Forms
application uses require an apartment to restrict access. Chapter 16 discusses apart-
ments in detail; for now think of an apartment as a synchronization mechanism. When
one is marked as being an STA, access to things contained within that apartment are
serialized using a message queue.

We can determine what sort of apartment a thread is executing in by using the
Apar t ment St at e property which gets and sets a value of type Syst em Thr ead-
i ng. Apart nent St at e. The Apar t ment St at e enumeration contains three values:
MT'A, STA, and Unknown. If the value has not been set, using either the Apart -
ment St at e property or one of the apartment state attributes, the value defaults to
Unknown. When the message box in listing 15.1 is displayed, it will look something
like the image in figure 15.1.

While the output of the program
isn’t very interesting there’s a lot to
be learned here. When a Windows
Forms project is created, the
[STAThr ead] attribute is auto-
matically included because many of
the controls used on a Windows
Form are COM objects. When a Component Object Model (COM) object is used in
the .NET platform, the system takes care of the integration for you. However, since they
are COM objects and require an STA to execute correctly, the template of the Win-
dows Form application sets the apartment of the main thread to be an STA. We'll dis-
cuss COM integration in detail in chapter 16.

Figure 15.1

The dialog box that is displayed
when the code example in
listing 15.1 executes

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

VB.NET doesn’t include the STAThr ead attribute in the code, yet another example
of how VB.NET does many things for the developer behind the scenes. Listing 15.2 con-
tains the VB.NET code that also displays a dialog box very similar to that in figure 15.1.

Listing 15.2 A dialog box showing the current thread’s apartment state

(VB.NET)

Private Sub Fornil_Load(ByVal sender As System Object,
ByVal e As System Event Args) Handl es MyBase. Load
Dim sAptState As String
Dim MyState As Apartnment State
MySt ate = Thread. Current Thread. Apart nent St at e
sApt State = MyState. ToString()
MessageBox. Show(sApt St at e)
End Sub
|

When you look at the project, you’ll notice there is no Mai n method, as there is in
listing 15.1. However, if we open the produced executable with the MSIL disassembler
(listing 15.3) we'll see that one is produced.

Listing 15.3 The STAThreadAttribute constructor is called (MSIL)

.method public hidebysig static void Min() cil managed
{
. entrypoi nt
.custominstance void [nscorlib] System STAThreadAttribute::.ctor() = (
01 00 00 00)

/1 Code size 14 (Oxe) The MSIL call to the

. maxstack 8 STAThreadAttribute
I'L_0000: nop constructor
IL_0001: newobj i nstance voi d W ndowsFor nsShel | Program Forni: : . ctor ()
I L_0006: call void [

Syst em W ndows. For ms] Syst em W ndows. For ms. Application:: Run(class [
Syst em W ndows. For ns] Syst em W ndows. For ns. For)

I L_000b: nop
I'L_000c: nop
I L_000d: ret

} // end of method Fornmil:: Main
|

The code in listing 15.3 is essentially the same MSIL that’s produced by the Mai n
method of the C# program in listing 15.1. It’s not important that you understand all
of the MSIL in listing 15.3; the main thing to take away from this is that the main
thread of managed Windows applications developed using the .NET framework uses
an STA to control interaction with their controls.

MULTITHREADED-RELATED ISSUES 247

15.1.2

248

Threading-related issues

To see how these issues relate to using multiple threads with a Windows Form we’ll use
a simple example. The high-level flow is presented in figure 15.2. The example consists
of a user-controllable number of threads adding a selected number of elements to a
common list box. While those items are being added, a different thread is deleting items.

Removes

/ ltems
ListBox Delete Thread

Figure 15.2 High-level flow of the list box example

Add Thread '.'

A situation where this might occur would be having threads inform the user of their
action. The alternative would be to have a single thread tasked with monitoring the
status of the other threads. Figure 15.3 shows our example application.

The form contains several checkboxes, two numeric up/down controls, a Start but-
ton, a status bar, and a single list box. The Invoke checkbox controls if the list box’s
| nvoke method is used to pass messages to the control. The Keep Trying checkbox
tells the application to repeatedly invoke the method associated with the Start button.
The Add At Top checkbox controls the location where new items are inserted into the
list box control. The Delete At Top checkbox controls the location they are deleted
from. The numeric up/down controls control how many elements are inserted in the
list box. Each of these controls is discussed in greater detail in the following sections.

Delete-related elements

When the form loads, a single thread is created that is tasked with deleting entries
from the list box. Listing 15.4 shows the delete-related code elements.

™ wWin Forms Thread Safety Example =10 x|

™ Invoke

I~ Keep Trying
[~ AddAt Top
[Delete at Top

Items per Thread

—
o
3

Number Of Threads

Start

L

Alive= 0 ltems=0 Real Count=0 4

Figure 15.3 Our example application. The region on the right is a list box.

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Private Sub Forml_Load(. . .) Handl es MyBase. Load
Thr ead. Current Thread. Nane = "Mai n"
Ti mer 1. Enabl ed = True
Tinerl. Interval = 1000
Del et eThread = New Thr ead(AddressOf Del ThM DeleteThread is
Del et eThread. Nane = "Del ete Thread" created and started
Del et eThr ead. | sBackground = True
Del et eThread. Start ()
End Sub

) The delete delegate is
Private Del egate Sub Del El eDel eg() 9 created and invoked

Private Sub Del ThM) @) DelThM is the main
VWi le True method of DeleteThread
If ListBoxl.ltems. Count = O Then
Thr ead. Sl eep(10)
End | f
If ListBoxl.ltenms.Count > 0 Then
I f checkBoxl nvoke. Checked Then
Di m myDel egate As Del El eDel eg Thedeletede.legate is
nyDel egate = New Del El eDel eg(AddressCf Del El e) created and invoked
Li st Box1. | nvoke(myDel egat e)

El se
Del El e() (4] The DelEle method
End | f is called directly
End | f
End Wile
End Sub

) An element from
Private Sub DelEle() @ ListBoxl is deleted
Dimrnd As New Randon{ Syst em Envi ronnent. Ti ckCount)

Dim I tenToDel ete As Integer = -1
DimltenCount At Del ete As Integer = -1
I f ListBoxl.ltens.Count > 0 Then
I f checkBoxDel et eAt Top. Checked Then
ItenifoDel ete = 0
El se
| t enCount At Del ete = Li st Box1. | tens. Count
I tenifoDel et e = rnd. Next (|t enCount At Del et e)
End | f
If (ltenToDel ete >= 0) Then
Li st Box1.|tens. RenoveAt (|t enToDel et e)
End | f
End | f

End Sub
||

© To ensure there is always one, and only one, delete thread running at any given time,
we create the instance of Del et eThr ead when the form first loads. We begin by
creating a new instance of the Thr ead class, associating it with Del ThM We then set

MULTITHREADED-RELATED ISSUES 249

250

the thread to be a background thread and invoke its St ar t method. To help us keep
track of our threads, we set the main thread’s name to Main.

Del ThMserves as the main method for the delete thread. It is similar to most thread
methods we’ve used in that it contains a loop. Each iteration of the loop starts with a
check to see if there are any items in the Li st Box1’s | t emcollection. If there aren’,
the thread sleeps for 10 milliseconds. Next another check is performed to see if there
are items in the | t ens collection, if there are, an element is deleted from the list box.

If the Invoke checkbox is checked an instance of the Del El eDel eg delegate is created
and associated with the Del El e method. This instance of the delegate is then passed
to Li st Box1’s | nvoke method. This ensures that the delegate is executed on the
same thread as the thread that created Li st Box1.

If the Invoke checkbox is not checked the Del El e method is invoked directly. This
means that the deletion will occur on the Del et eThr ead rather than on the thread
on which Li st Box1 was originally created.

The Del El e method deletes one element from Li st Box1. If the Delete At Top
checkbox is checked, the first element in the list box will be deleted. Otherwise, a ran-
dom element will be deleted from the list box. By selecting Delete At Top and Add At
Top, you create a hot spot of activity.

Insert-related elements

Along with the deleting thread there are a user-controllable number of adding threads.
When the user clicks the Start button on the form the number of threads created is
based on the value in the Number Of Threads numeric up/down control. In figure 15.3
the number of threads is set to 50. Each thread in turn adds the number of items specified
in the Items Per Thread numeric up/down control. In figure 15.3 the value is 10 items.
This means that 500 (50 times 10) items will be added to the list box. Listing 15.5
contains the example code related to adding elements to the list box.

Private Sub Buttonl Click(. . .) Handles Buttonl.Cdick () Definesthe method
If (CountXDifferences > 0) Then that is invoked when
StatusBar 1. Text = "Differences Exist!" the user clicks Start
Exit Sub
End | f
Di m NuniThr eads As | nt eger Changes the size of

Nunirhr eads = numeri cUpDownNunirhr eads. Val ue the threads array

ReDi m Thr eads(Nunirhreads - 1) k

Dimi As |Integer

For i = 0 To Threads.Length — 1 Sets each element of
Threads(i) = New Thread(AddressOf ThreadMet hod) the threads array
Threads(i).Name = "Add Thread " + i.ToString()
Threads(i).|sBackground = True

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Next

For i = 0 To Threads.Length — 1 () Startsallinserting
Threads(i). Start() threads
Next

Thr ead. Sl eep(1000)

StatusBar1l. Text = "Started"
End Sub

Defines the Main method

Private Sub ThreadMet hod() o of the insert threads

Dimi As |nteger

Dimrnd As New Randon{ Syst em Envi ronment. Ti ckCount)

Thr ead. Sl eep(rnd. Next (5000))

Dim Numtens As |nteger = nunmericUpDownltensPer Thr ead. Val ue

For i = 0 To Numtens - 1

I f checkBoxl| nvoke. Checked Then
Di m nyDel egate As AddEl eDel

myDel egat e = New AddEl eDel (AddressOf AddEl enent) ::resg:te
Di m Parns As Cbject()
Parms = New Cbject() {i, Thread. Current Thread. Nane}
Li st Box1. | nvoke(myDel egate, Parns)

El se
AddEl enent (i, Thread. Current Thread. Nane) @@ Otherwise calls

End | f AddElement directly

Next
End Sub

Del egate Sub AddEl eDel (ByVal i As Integer, ByVal s As String) @ Uses a
Private Sub AddEl enent (ByVal i As Integer, ByvVal s As String) delegate
Dim TnpString As String
TpString = s
TpString += " " + Thread. Current Thread. Nane
TpString += " " + i.ToString()
I f checkBoxl nsert At Top. Checked Then
Li stBox1l.ltens. | nsert (0, TnpString)
El se
Li st Box1. |tens. Add(TnpStri ng)
End | f
End Sub
||

© When the user clicks the Start button the But t on1_Cl i ck method is invoked. The
parameters have been removed for readability’s sake. The method first examines the
value of Count Of Di f f er ences. If the value is greater than zero the method exits.
We discuss Count Of Di f f er ences in the next section.

@ The Thr eads variable is an array of Syst em Thr eadi ng. Thr ead objects. It is
resized based on the value in the Number Of Threads numeric up/down control. This
allows the user to control the number of threads that are created. An alternative would
have been to use the Thr eadPool class. The advantage of this approach is that the
user has a greater amount of control. The disadvantage is that the threads are created
and destroyed during each test.

MULTITHREADED-RELATED ISSUES 251

252

3]

o

(6]

Once the Thr eads array is resized to the desired size, each element of the array is
assigned an instance of the Thr ead class. Each instance of the Thr ead class is asso-
ciated with the Thr eadMet hod method. The instance is assigned a name to make it
easier to keep track of the thread, and the | sBackgr ound property is set to true.

After all of the instances of the Thr ead class have been created, each thread is then
started. Recall that the St art method is a request to start the thread. The actual
starting of the thread may happen at a later point. After all of the requests to start the
threads have been made, the main thread pauses for one second.

All threads share the same method, Thr eadMet hod. It follows the typical structure of
thread methods in that it contains a loop. Inside the loop is where the processing occurs.

If the user has checked Invoke before clicking Start, an instance of the AddEl eDel
delegate is created and associated with the AddElI ement method. The instance of
the delegate is then invoked using Li st Box1’s | nvoke method. This ensures that
the method associated with the delegate is executed on the thread that instantiated
the Li st Box1 control.

If the user has not checked Invoke, the AAJElI enent method is invoked directly.
This means that the method executes on the thread that calls it. In this example that
thread is not the same thread that instantiated the control.

At this point we have two groups of threads. One group contains those threads that
are populating the list box, the other contains a single thread that is attempting to keep
that same list box empty. In the next section we discuss the information- and diag-
nostic-related elements of the example.

Information- and diagnostic-related elements

To detect the state of the list box and threads, the form contains a timer with an interval
of one second. Listing 15.6 contains the code elements that relate to the gathering of
information about the state of the threads as well as detecting the data integrity issues
that we will discuss in the next section.

Dim Count O Di f ferences As Integer = 0
Dim Wit ToStart Again As Integer =5
Private Declare Function SendMessageA _
Lib "user32" Alias "SendMessageA" _ Makes SendMessageA
(ByVal hwnd As IntPtr, _ available
ByVal wivsg As | nteger,
ByVal wParam As | nteger, _
ByVal | Param As | nteger) As |nteger

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Private Sub Tinerl_Tick(. . .) Handles Tinerl. Tick

Const LB _GETCOUNT = 395 6 Retrieves the number

Di m Al i veCount As Integer = 0 of elements

Dimi As |nteger Retrieves the number

Di m Real Count As Long of elements j
Real Count = SendMessageA(Li st Box1. Handl e, LB_CGETCOUNT, 0, 0)

StatusBar1l. Text = "Alive= " + AliveCount.ToString()

StatusBar 1. Text += " ltens=" + ListBox1l.|tens. Count.ToString()
StatusBar1l. Text += " Real Count=" + Real Count. ToString()

I f (Real Count <> ListBoxl1.Itens.Count) Then

Count O Di fferences += 1 Sees if the ListBoxI
Return Items collection is
El se correct
CountO*Differences = 0
End |f

If Not Threads |s Nothing Then
For i = 0 To Threads.Length — 1

If Threads(i).lsAlive Then Counts the number
Ali veCount += 1 of threads that are
tvetount += still alive
End | f
Next
End | f

If AliveCount = 0 Then
Wait ToStartAgain -= 1
End |f

If CountOfDifferences > 5 Then
checkBoxKeepTryi ng. Checked = Fal se

End | f

I f checkBoxKeepTryi ng. Checked And Wit ToStart Again <= 0 Then
Wai t ToStartAgain = 5
Buttonl Click(sender, e)

End | f

End Sub

Invokes Buttonl_Click
method

@ The Decl ar e keyword is used to access functions that are contained in external DLLs,
such as user32. User32 contains functions relating to timers, message handling, win-
dows management, and menus. The method we’re concerned with is SendMessageA
which is used to enter a message in the message pump associated with a window.

@ The message we enter is LB_GETCOUNT, which returns the count of elements con-
tained within a list box. For more information on the SendMessageA method and the
LB_GETCOUNT constant, consult the Microsoft Windows Platform SDK. The impor-
tant thing to take away from this is that the value returned from SendMessageA
contains that number of elements actually contained within the list box.

© Once we've determined the number of elements contained within the list box, we
compare that value to the number of items contained within Li st Box1’s | t ens
collection. These numbers should be the same. The | t ens collection is added to the

MULTITHREADED-RELATED ISSUES 253

15.1.3

254

.NET framework to make it easier to determine what elements are contained within a
list box. It does this by adding and removing items for the collection when methods
are invoked on the instance of the list box class that causes an element to be added or
removed from the list box. We’ll talk about this more in the next section. For now, if
the number of elements in the | t ems collection is not the same as the number of
items actually being displayed, we can infer that there is a chance that a data integrity
issue has arisen.

Next we count the number for threads that are still alive. We then check to see if at least
one thread is still alive; if not, we decrement the i t ToSt ar t Agai n data element.

When Wai t ToSt ar t Agai n reaches zero and the Keep Trying checkbox is checked,
we invoke the Buttonl_Cick method. This allows us to keep invoking
Buttonl_Cl i ck until the user removes the check from the Keep Trying checkbox,
or until a data integrity error is encountered.

The idea is that an error will eventually happen and we will keep trying until it does.
This allows us to detect race condition-related issues such as data inconsistency and
stability. These issues will occur at some point if multiple threads are present in a Win-
dows Form-based application without preventative steps being taken. It’s a matter of
probability, and how often they will occur rather than if they will occur.

Race conditions

We discussed race conditions in detail in section 6.2.1. Windows Forms are also sus-
ceptible to race conditions. There are two basic kinds of issues relating to threads and
Windows Forms: data inconsistency and stability.

Data inconsistency

Any time that data is not what it is expected to be, it is a serious situation. An example
of a data consistency issue that happens with Windows Forms and multiple threads
revolves around the collections that are associated with controls. For example, the
Li st Box control contains an | t ens collection. This allows the control to keep
track of what items are in the list without posting a message to the message queue.

Since all access to the list box control is through the Li st BoX object, it is rea-
sonable to assume that it should know the contents of the control without having to
ask Windows. The problem is that the data structure used to contain the items is not
thread-safe. In section 7.1 we saw that objects in the Col | ect i on namespace are not
thread-safe unless their Synchr oni zed method is used. There is no way to tell a
Li st Box object that it should use synchronized access to its items.

To see an example of data inconsistency, in our example check the Keep Trying
checkbox. Eventually the form will enter a state similar to that of figure 15.4.

The Win32 portion of the list box contains one element. The | t ers collection does
not contain that element. The status bar at the bottom of the dialog box is populated
by the following code:

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

8 win Forms Thread Safety Example =[] x|

™ Invoke Add Thread 12 Add Thread 129

[AddAt Top
[~ Delete at Top

ltems per Thread
10 2

Number Of Threads
50 =

Start

Alive= 0 ltems=0 Real Count=1 4

Figure 15.4 Notice that Real Count is one and the ltems count is zero. The list box
contains one real entry that is not present in the | t ens collection.

Di m Real Count As Long

Real Count = SendMessageA(Li stBox1. Handl e, LB_GETCOUNT, 0, O0)
StatusBarl. Text = "Alive= " + AliveCount. ToString()
StatusBarl. Text += " |tems=" + ListBox1.|tens.Count.ToString()
StatusBarl. Text += " Real Count=" + Real Count. ToString()

Real Count contains the actual number of elements in the list box. The Count
property of the | t ens collection returns zero, indicating a data inconsistency has
occurred. This is a serious condition because conflicting results are being returned. In
section 15.1.5 we discuss how to make this not happen.

To understand what’s happening here consider figure 15.5. Normally there’s a
one-for-one correlation between the elements in the NET Li st Box object’s | t ens
collection and the items contained within the list box.

When data inconsistency occurs, the object contains a different number of items than
the Win32 list box control. Figure 15.6 shows a Win32 list box with one element and
a .NET Li st Box object with no elements in the | t ems collection.

.NET ListBox Object

Win32 List box

Iltem 1

Iltem 2

ltem 3

Iltem 4

Items Collection

Iltem 1

ltem 2

Iltem 3

KKK

Iltem 4

Figure 15.5 Under normal circumstances there is an object in the Li st Box
| t ens collection for every entry in the matching Win32 list box.

MULTITHREADED-RELATED ISSUES 255

15.1.4

256

.NET ListBox Object

Win32 List box Items Collection Figure 15.6
When the Li st Box object

Item 1 is not in sync with the Win32
control, the number of items
in the | t ens collection
does not match the number
of elements in the Win32
control.

This demonstrates that the .NET Windows Forms code is on top of the Win32 system,
which makes sense because the .NET Windows Forms applications are native Win32
applications. They must interact with the native Win32 controls. They do this by expos-
ing objects that correspond to those native controls, and provide extensions to make
development easier and more flexible. One example of this is that the | t ens collec-
tion of the Li st Box object allows you to determine if an element is in the collection.

Stability

Stability of an application is very important. Any time multiple threads are used with
Windows Forms without using the proper mechanisms, instability can be introduced.
Eventually the application will terminate unexpectedly. The stability issues will be more
pronounced on a multiple-processor machine. Instability will happen on a single-processor
machine, but much less frequently because of concurrency issues and having multiple
threads executing at exactly the same moment.

Related to the stability and inconsistency issues is the possibility of an event-related
deadlock occurring.

Event-related deadlocks

Deadlocks, discussed in detail in section 6.2.2, are one of the more difficult errors to
track down. Deadlocks can also happen in multithreaded Windows Forms applications.
Listing 15.7 demonstrates how a deadlock can occur in a Windows Forms application.

private void Forml_Load(object sender, System EventArgs e)

{
Thr ead. Current Thread. Nane="Mai n";

}

private void buttonl_Cick(object sender, System EventArgs e)

{
Thread novi ngThread = new Thread(new ThreadSt art (ThreadMet hod)) ;
nmovi ngThr ead. Nane="Movi ng Thr ead";
nmovi ngThread. Start () ;

}

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

private void ThreadMet hod()

{
| ock(textBoxl) @ Acquires a lock
{ on the text box
Poi nt newLocati on= new Poi nt (
t ext Box1. Locati on. X+1, t ext Box1. Locati on. Y+1); Moves the text box

Trace. Wit eLi ne(to the new location
"Before Location Assign : " + Thread. Current Thread. Nane) ;
t ext Box1. Locati on= newLocati on;
Trace. WiteLine("After Location Assign : " + Thread. Current Thread. Nane) ;
}
}
private void textBoxl_Locati onChanged(object sender, System EventArgs e)
{
Trace. WitelLi ne("LocationChanged's | ock:" + Thread. Current Thread. Nane) ;
| ock(t ext Box1) Q Attempts to acquire
{ a lock on textBoxI
Trace. WiteLine("WIIl not be reached : " + Thread. Current Thread. Nane) ;
t ext Box1. Text =Thr ead. Current Thr ead. Naneg;
}
}

@ This example uses a single textbox and a button. When the button is pressed, a thread
is created that acquires a lock on t ext Box1. As with all deadlocks, the acquisition of
a lock is the primary cause of the deadlock. This isn’t to say that locks shouldn’t be
used; instead, care should be taken any time a lock is used to ensure that deadlock
does not occur.

® The thread named Moving Thread next moves the textbox to the left and down one
pixel. At the point the assignment is made, the Locat i onChanged event is raised.
The important element here is that the Locat i onChanged event occurs before
Moving Thread releases its lock on t ext Box1.

© Thet ext Box1_Locat i onChanged method is invoked when the textbox is moved.
This invocation occurs, at the point the assignment is made to the Locat i on property.
The Tr ace output is as follows:

Bef ore Location Assign: Mving Thread
Locati onChanged' s | ock: Main

Notice that After Location Assign is not present in the output. Also notice that the
instructions that cause the output are executed on different threads.

At the point the deadlock occurs, the application freezes. To be precise, it blocks
on the lock statement in the t ext Box1_Locat i onChanged method. In the next
section we discuss how to resolve this issue using the | nvoke method.

MULTITHREADED-RELATED ISSUES 257

15.1.5

258

Making Windows Forms thread-safe

Because Windows Forms use native Win32 controls, the thread that creates those con-
trols should be the thread that communicates with them. This may seem a bit restric-
tive, but with the | nvoke method it is very easy to ensure that the correct thread
communicates with the thread.

The Invoke method

The | nvoke method ensures that a delegate is executed on the thread that created
the control. We'll start by correcting the event deadlock example from the previous
section. Listing 15.8 contains the updated Visual Basic .NET source code.

Private Sub Forml_Load(. . .) Handl es MyBase. Load
Thread. Current Thread. Name = " Mai n"

End Sub

Private Sub Buttonl_dick(. . .) Handles Buttonl.Cick

Di m novi ngThread As New Thread(AddressO Thr eadMet hod)
novi ngThr ead. Nane = "Movi ng Thread"

movi ngThr ead. Start () Used to execute on
End Sub a different thread j
Del egate Sub | ocati onDel egat e(ByVal newLocati on As Point)

Private Sub changelocationMet hod(ByVal newLocation As Point) @ Expectsasingle
SyncLock Text Box1 Point parameter
Trace. WitelLine("Before Location Assign: " + Thread. Current Thread. Nane)
Text Box1. Locati on = newLocation
Trace. WitelLine("After Location Assign: " + Thread. Current Thread. Nane)
End SyncLock
End Sub

Private Sub ThreadMet hod() Used to execute on
Di m newLocati on As Poi nt a different thread
newLocati on = New Poi nt (Text Box1. Location. X + 1, TextBox1.Location.Y + 1)
Di m myLocati onDel egate As | ocati onDel egate
nmyLocat i onDel egate = New | ocati onDel egat e(AddressO changelLocat i onMet hod)
Text Box1. | nvoke(myLocati onDel egate, New Object() {newLocation})

End Sub Expects a single
Point parameter
Private Sub Text Box1l_LocationChanged(. . .) Handl es TextBox1l. Locati onChanged

Trace. WitelLine("LocationChanged's |ock: " + Thread. Current Thr ead. Nane)
SyncLock Text Box1

Trace. WitelLine("ls now reached: " + Thread. Current Thread. Nane)

Text Box1. Text = Thread. Current Thr ead. Nanme
End SyncLock

End Sub
||

The most noticeable change in the example is the addition of | ocat i onDel egat e.
This delegate allows us to associate a method with the delegate that is passed to the
textbox control’s | nvoke method.

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

@ When the | nvoke method of Text Box1 is executed, the method associated with
| ocat i onDel egat e is executed on the thread that initially created Text Box1.
Since SyncLock is then acquired on the Main thread, it can be reacquired in
Text Box1_Locat i onChanged because both methods now execute on the same
thread. Here’s the output of the Tr ace statements:

Bef ore Location Assign: Miin
Locati onChanged' s | ock: Min

I's now reached: Min
After Location Assign: Miin

Notice that all of the Tr ace statements occur on the Mai n thread. The application no
longer freezes. The | nvoke method also solves the stability and consistency issues we dis-
cussed in section 15.1.3. You'll notice that in figure 15.4 there is an | nvoke checkbox.
By checking it, you ensure that the | nvoke method of the list box will be used. You will
notice that the consistency and stability issues no longer occur when | nvoke is checked.

The InvokeRequired property

The | nvokeRequi r ed property indicates if the | nvoke method should be used
when dealing with a control. If a control’s | nvokeRequi r ed property is true then
the | nvoke method should be used. Listing 15.9 contains an updated Thr ead-
Met hod that uses the | nvokeRequi r ed property.

private void ThreadMet hod()
{
Poi nt newLocat i on= new Poi nt (t ext Box1. Locati on. X+1, t ext Box1. Locati on. Y+1);
| ocati onDel egat e nyLocati onDel egat e;
nmyLocati onDel egate = new | ocati onDel egat e(changeLocat i onMet hod) ;
i f (textBoxl.|nvokeRequired)

{
t ext Box1. | nvoke(nyLocati onDel egate, new object[] {newLocation});
}
el se
{
changelLocat i onMet hod(newlLocati on);
}

}
|

Listing 15.9 shows how the | nvokeRequi r ed property can be used to determine if
| nvoke should be used. If | nvokeRequi r ed is true, an instance of the | ocat i on-

Del egat e is passed to the | nvoke method of the t ext Box1 control. Otherwise,
changelLocat i onMet hod is executed directly. Direct execution will be faster than
delegate invocation, but if | nvokeRequi r ed is true a delegate should be used.

MULTITHREADED-RELATED ISSUES 259

15.2

15.2.1

15.2.2

260

USING THE GRAPHICS OBJECT WITH THREADS

Dealing with graphics is relatively complex. This section is not intended to be a com-
plete survey of graphics programming in .NET but rather an introduction to using
the G aphi cs object with multiple threads. The Gr aphi ¢s object is thread-safe,
enabling multiple threads to interact with it without ill effects.

Introduction to the Graphics object

The Gr aphi cs class is used to render objects onto a graphics display. Windows Forms
are one of the most commonly used graphics displays used with the Gr aphi cs class.
The Gr aphi cs class is contained in the Syst em Dr awi ng namespace. It exposes
the GDI+ capabilities.

Acquiring by overriding the OnPaint method

The first issue you'll face when doing graphics programming is acquiring an instance of the
G aphi cs object. A common single-threaded way to do this is to overload the OnPai nt
method. Listing 15.10 contains an example of an overridden OnPai nt method.

Protected Overrides Sub OnPaint(ByVal e As Pai nt Event Ar gs)
Dimg As G aphics

g = e. G aphics Contains a reference to the
Dim stringToDraw As String form’s graphics context
stringToDraw = "OnPaint " + Now. ToLongTi neString()
stringToDraw += " " + Thread. Current Thr ead. Nanme

Di m f ont ToDrawWt h As Font
Di m brushToDrawWth As Brush

font ToDrawwth = New Font ("ti nmes New Ronan", 12) Renders the string
brushToDrawW th = New Sol i dBr ush(Col or. Bl ue) onto the form
g. Drawstring(stringToDraw, fontToDrawWth, brushToDrawWth, 40, 40)

brushToDr awW' t h. Di spose()
font ToDr awW t h. Di spose() Sees if the ListBoxI

g. Di spose() Items collection is
End Sub correct
|

When OnPai nt is called, it is passed a reference to a Pai nt Event Ar gs object that
contains a reference to a G aphi ¢s object. All graphics operations require a reference
to the object.

Once we have a Gr aphi ¢s object we can use the Dr awSt r i ng method to render a
string onto the device. The Dr awSt r i ng method accepts a reference to a Font object,
a reference to a Br ush object, and the location to render the string. The Font object
tells the Dr awSt r i ng method what font face should be used to render the string. Like-
wise the Br ush object tells the Dr awSt r i ng method how the font should be rendered.

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

@ After we have completed our drawing operations, it is important to release our graphics-
related objects. All drawing objects should be viewed as a scarce resource. As soon as
you have finished with them, you should release them using the Di spose method.
One exception is if you use an existing object, such as Brush from the Br ushes
collection. When determining whether or not you should call Di spose consider if
you allocated the object, using the new keyword. If you allocated the object, you
should Di spose of it.

15.2.3 Acquiring by using the FromHwnd method

There are several ways to acquire a & aphi ¢s object. When you’re doing multithreaded
Windows Forms development, the static Fr omHwnd method of the Gr aphi ¢s object
is a good choice. Listing 15.11 contains the method for a thread that draws the time
on the form.

private void DrawTi meMet hod()
{
Graphics g;
string stringToDraw ;
stringToDraw = ""
Font font ToDrawWth ;
Brush brushToDrawWth ;
while (true) Graphics object
{ associated with
g = Gaphics. FromHwnd(this. Handle);) the current form
stringToDraw = "OnPaint " + DateTi me. Now. ToLongTi neString();
stringToDraw += " " + Thread. Current Thread. Nane;
font ToDrawwth = new Font("ti mes New Roman", 12);
brushToDrawWth = new Sol i dBrush(Col or. Bl ue);
g. Drawstring(stringToDraw, fontToDrawWth, brushToDrawWth, 40, 80);
brushToDr awW t h. Di spose() ;
font ToDrawW t h. Di spose();

g. Di spose(); (2] Method that releases
Thr ead. Sl eep(1000) ; the Graphics object
}

@ The Fr onHwnd method returns a reference to a newly created Gr aphi cs object
associated with the handle to the window passed in. Hwnd is a handle to a window. A
discussion on window handles is beyond the scope of this book. All that you really
need to know is that Hwnd uniquely identifies a window.

@® Since the Fr omHwnd method causes a Gr aphi ¢s object to be created, we should
release that reference using the Di spose method. By calling Di spose as soon as
you have finished with a resource, you make that resource available for some other
thread or process. If Di spose isn’t called, the resource will be freed when the garbage

USING THE GRAPHICS OBJECT WITH THREADS 261

262

collector frees the unused references. Since you know when you have finished with a
resource, it is much better to decide when it is Di sposed than having the garbage
collector do it after you've finished.

Notice in this example that the current time is simply written over the previous
time. Figure 15.7 is typical of the output you will see.

MFormi [k

OnPaint 12:38:24 PM Main

OnPant 12:38:28 PM drawTimeThread

Figure 15.7

When Gr aphi cs operations are performed
without using OnPai nt , care must be taken
to erase what was previously painted.

This is something that must be dealt with when doing Gr aphi ¢s programming.
Listing 15.12 contains code that draws a progress bar using a filled rectangle. The brush
used is a gradient.

Listing 15.12 Filling a rectangle using a gradient brush to produce a progress

bar (VB.NET)

Private Sub DrawBar Thr eadMet hod()
Di m bar Hei ght As Long
Dim barWdth As Long
DimcurrentUnit As Integer
DimlastUnit As Integer
Di m counter As |nteger
Di m bgBrush As Sol i dBrush
bgBrush = New Sol i dBrush(For m Def aul t BackCol or)
Dim g As G aphics
Dmx, y As Long
Dimunits As |nteger
units = 100
Di m pi xel sPerUnit As |nteger
Di m pointl, point2 As Point
Di m wi dt hToDraw As | nt eger
Dimcl, c2 As Color
cl = Col or. Bl ack
c2 = Color.Wite
x =0
bar Hei ght = 20
counter = 0
DimfillBrush As LinearG adi entBrush

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Try
While True
counter += 1
If counter > units Then
counter =1
End | f
y = Me. Height - 50
barWdth = Me. Wdth
pointl = New Point(x, vy)
point2 = New Point(x + barWdth, y + barHeight)
fillBrush = New Linear Gradi entBrush(pointl, point2, cl, c2)
pi xel sPerUnit = barWdth / units
currentUnit = counter
g = Graphics. _Fr omHand(Hapdl e) Ensure the rectangle
If (currentUnit < lastUnit) Then © s visible
wi dt hToDraw = lastUnit * pixelsPerUnit - 1
g. Fill Rectangl e(bgBrush, x + 1, y + 1, w dthToDraw, barHei ght - 1)
End |f
wi dthToDraw = (currentUnit * pixelsPerUnit) - 1
g.Fill Rectangl e(fillBrush, x + 1, y + 1, widthToDraw, barHeight - 1)
fillBrush. Di spose()
g. Di spose()
lastUnit = currentUnit
Thr ead. Sl eep(20)
End Wi le
Catch ex As Exception
System Di agnostics. Trace. WitelLine(ex. ToString())
End Try

End Sub
||

@ When the bar reaches the right side of the dialog box, it starts over at the left. At that point

the area is filled with a rectangle that is the same color as the background of the form.

When the method in listing 15.12 is associated with a thread, it produces output
similar to that in figure 15.8.

=10| x|

OnPamnt 1:44:09 PM IMamn

OnPaint 1:44:10 PM drawTimeThread

Figure 15.8
The gradient bar at the bottom of the dialog

_ box is produced by the code in listing 15.12.

USING THE GRAPHICS OBJECT WITH THREADS 263

15.3

15.3.1

264

The association of the method in listing 15.12 to a thread should be very familiar by
now. The following code associates the method with an instance of the Thr ead class:

bar Thread = New Thr ead(AddressOf Dr awBar Thr eadMet hod)
bar Thr ead. | sBackground = True

bar Thr ead. Name = "bar Thr ead"

bar Thread. Start ()

Notice that we name the thread bar Thr ead so that we can keep track of it.
In the next section we’ll complete our discussion on multithreaded Windows Forms
development by examining the thread-related aspects of the Appl i cat i on object.

THREAD-RELATED APPLICATION
EVENTS AND PROPERTIES

Windows Forms applications have numerous events and properites. We're primarily
concerned with those events and properties that relate to multithreading,.

The ThreadException event

The Thr eadException event of the Applicati on object is very similar to
AppDomai n’s Unhandl edExcept i on event. Recall from chapter 13 that AppDo-
mai n’s Unhandl edExcept i on event is raised any time an unhandled exception
occurs on any thread in the application domain. Listing 15.13 sets up handlers for
AppDonai n’s Unhandl edExcept i on event as well as the Appl i cat i on object’s
Thr eadExcepti on event.

static void Main() Allows us to associate

{ event handlers with
Formi tnpForm = new Formi(); @ instance methods
Event Handl er ThreadExiting;
Thr eadExcepti onEvent Handl er ThreadExcepti on
Unhandl edExcept i onEvent Handl er AppHandl er;
Thr eadExi ti ng=new Event Handl er (t npFor m Thr eadExi t i ngMet hod) ;
ThreadExcepti on = new ThreadExcepti onEvent Handl er (
t npForm Ihr eadExcept i onMet hod? ; Adds a handler to
AppHandl er = new Unhfa\ndl edExcept i onEvent Handl er (the Application’s
t npFor m MyAppDonmai nUnhandl edHandl er) ; ThreadExit event
Application. ThreadExit += ThreadExiting ;
Appl i cation. ThreadException += ThreadException; (€ Addsahandlerto

AppDonai n domai n= AppDomai n. Cur r ent Donai n; the Application’s

domai n. Unhandl edExcept i on+= AppHandl er; ThreadException event

Application. Run(tmpForm) Adds a handler to AppDomain’s
} UnhandledException event

CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

15.3.2

15.3.3

@ In order to associate the event handlers with instance methods, rather than static

methods, we must first create an instance of the For mi class. We pass this instance to
the Appl i cati on. Run method at the end of the static Mai n method.

@® W first add a handler for the Thr eadExit event. We discuss the Thr eadExi t

event in the next section.

© After we've added the handler for the Thr eadEXi t event, we add a handler for the

Appl i cat i on object’s Thr eadExcept i on event. This event is invoked only when
the exception occurs on the main thread. If a thread is created that causes an unhandled
exception to be raised, this event will not be notified.

O e add an Unhandl edExcepti on event handler to the current domain. This

event handler will be invoked when any thread in the current domain experiences an
unhandled exception. If a Thr eadExcept i on event handler has been added to the
Appl i cati on object, it will handle any exceptions that occur on the main thread.
This means that AppDomai n’s Unhandl edExcept i on will not be invoked.

Each of these event handlers do slightly different handling. The AppDonai n handler
is a bit more flexible in that it catches all exceptions that occur. These events should
not be used in place of proper exception handling. Exceptions and exception handling
were discussed in-depth in chapter 13.

The ThreadExit event

The Thr eadEXxi t event is similar to the Thr eadExcept i on event in that it only
applies to the main thread. If a thread other than the main thread exits, this event will
not be raised. This event is raised when an application is terminating. The Thr ead-
Exi t event is invoked after the For mCl osi ng and Cl osed events are invoked.

The Appl i cati onExit event is invoked after the Thr eadExi t event. The
order of events during application termination is as follows: O osi ng, Cl osed,
ThreadExi t, ApplicationExit.

The MessagelLoop property

Early in this chapter we briefly discussed the concept of message pumps, also known as
message queues or message loops. The application object’s MessagelLoop property
allows us to determine if a thread contains a message loop. The following instruction
prints out true or false depending on whether the thread it is executed on contains a
message loop:

System Di agnosti cs. Debug. Wit eLi ne(Appl i cati on. MessagelLoop. ToString());

This is useful in determining how a thread will behave. For example, if the thread does
not contain a message loop, message-based timers will not work. In that circumstance,
one of the other timers will be required.

THREAD-RELATED APPLICATION EVENTS AND PROPERTIES 265

15.4 SUMMARY

In this chapter we’ve covered some of the issues related to multithreaded development
in Windows Forms applications. Combining Windows Forms with multiple threads
can lead to powerful applications. We discussed the problems relating to multithreaded
development and also covered the use of | nvoke to resolve those issues. We intro-
duced the Gr aphi cs object and saw how it can be used to render objects onto a form.
Finally, we discussed thread-related events and properties of the Appl i cat i on object.

266 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

16.1

CHAPTEHR 1 6

Unmanaged code and
managed threads

16.1 What is an apartment? 267
16.2 COM interoperability 268
16.3 Summary 274

Apartments are COM constructs used to resolve concurrency control issues. Rather
than forcing COM developers to use synchronization primitives, Microsoft introduced
the apartment concept. This allowed for easy development of reusable components
with minimal concern about concurrency control. This chapter is not intended to be
a primer on COM programming. Instead, it examines the interaction of .NET with
COM from a multithreaded perspective. An important thing to understand is that
.NET does not use apartments for concurrency control. However, they are used when
interacting with COM objects. Interaction with COM from .NET is generally referred
to as interop, short for interoperability.

WHAT IS AN APARTMENT?

Many developers’ introduction to multithreaded development involved the concept of
an apartment. An apartment is based on a building metaphor. The process is comparable
to a building that has one or more apartments. Restriction to an apartment is based on
the type of apartment it is. The most common apartments are single and multithreaded.

267

16.1.1

16.1.2

16.2

268

Single-threaded apartment model (STA)

The majority of COM objects produced are designed to execute inside an STA. The
primary reason for this is that most COM objects have been developed using Visual
Basic. Visual Basic produces COM objects that execute in an STA. In this text we will
refer to objects that are designed and marked to execute in an STA as an STA object.
Visual Basic makes it incredibly easy to produce COM objects and is partly responsible
for the wide acceptance of COM.

When an object is marked as an object that executes in an STA, it means that only
one thread can access that object. Additionally, when that object is executing in an
STA, if that object is accessed more than once, the same thread must access it each
time. This allows the developers of STA objects to make use of thread local storage as
a means of persisting state. Additionally, because only one thread is accessing the
objects, concurrency control is no longer a concern. Since these STA objects are rela-
tively simple, they are much easier to write than an object that executes in a multi-
threaded apartment (MTA).

To make things a little more complex, several names for the same thing are often
used. STA objects are often referred to as apartment threaded. This is somewhat mis-
leading since every object in COM executes in an apartment. The question is how
many threads can interact with an object contained within a certain apartment. If the
answer is one, the apartment is STA.

MTA

When an apartment allows more than one thread to interact with the objects contained
within it that apartment is known as an MTA. Just as STA is sometimes referred to as
apartment threaded, MTA is sometimes referred to as free threaded. Objects that are
marked as being free threaded will execute in an MTA. Additionally, objects can be
marked as “Both,” meaning that they can execute in both an STA and an MTA. A pro-
cess will contain at most one MTA. This means that all MTA objects within the process
will execute in a shared MTA.

COM INTEROPERABILITY

Organizations have invested large sums of money developing COM objects. When
Microsoft developed .NET, its engineers were aware of this and built .NET in such a
way that it can coexist with COM objects. It is very easy to work with COM using the
NET framework. To access a COM object from .NET, simply add a reference. One
way to do this is to select Add Reference from the Project menu to bring up a dialog
box similar to that in figure 16.1.

The COM tab displays COM objects that are registered. Once the desired component
is located, click Select, then OK. This will add a reference to the COM object to the project.

Figure 16.2 shows the Solution Explorer window after the reference was added.
Notice that DENNI SATLOBJECTLI b is listed in the References section.

CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

Add Reference x|
NET COM | projects |
Browse.
Component Name | Typelib Vers... | Path |‘ |
FPAPI 1.0 Type Library 1.0 CAWINNT\System \FP30WEC.... Select
VIFpAuto 1.0 Type Library 1.0 CAYWINNT \systemi VIZ0AUT.DLL
FpWwrap 3.0 Type Library 1.0 CAWINNT\System\VI30WRP.DLL
SwiftSoft COReader ActiveX Li... 2.0 CAWINNT| TempMMCDDAXZ. ...
SwiftSoft Multimedia Tools Act... 2.0 CAWINNT\ Temp\MMToolsX2.00x
1.0 CYWINNT \Wbox\Cornmony, .
e o t D: IMENT!
DennisSimpleObject 2.0 D:\My Documents\booksclassi. ..
VBComDLLTest 3.0 D:\My Docurmentsic++ stuffiv...
Microsoft Project 9.0 Object Li... 4.3 D:\Program Files\Microsoft Offi... —I
PiProts 1.0 Type Library 1.0 D:\Program Files\Microsoft Offi...
pisnool 1,0 Tvoe Library 1.0 D:\Proaram Files\Microsoft Offi... LI
Selected Components:
Component Name | Type | Source | Remave
DennisATLObject 1.0 Type Library ~ COM D:\MY DOCUMENTS\BOOKS\CLA. ..
OK I Cancel I Help |

Figure 16.1 The Add Reference dialog box allows a reference to a COM
object to be added, making the COM object available for use.

[& Solution ‘ConsoleTestInterop’ (1 project)
= E¥ consoleTestInterop
£ = References

= System
0 System.Data
. = System, XML
] App.ico .
[*] assemblyInfo.cs Figure 16'_2 .
[*] Class1.cs The Solution Explorer window after the

[#] Tester.cs reference was added to the COM object.

Just like when other references are added, the objects contained within the COM are
now available for use in the project. Listing 16.1 contains an example of using a method
contained in the DENNI SATLOBJECTLI b.

Listing 16.1 Invoking the Add method of the DennisAptClass object (C#)

usi ng DENNI SATLOBJECTLI b; 0 Merge the imported namespace
into the current namespace

Denni sApt O ass mySTAAdd= new Denni sApt Gl ass(); @ Createan instance

startTime = DateTi me. Now, of a class contained
for (int i=0;i< nunberCf PassesPerlteration;i++) in the COM object
{
int returnval ue = (int)nmySTAAdd. Add(i); © Invoke a method
} on the instance
st opTi me = Dat eTi ne. Now; of the class
my STAAdd=nul | ;
br eak;

COM INTEROPERABILITY 269

16.2.1

270

@ To increase the readability of the code we use the usi ng keyword so that we don’t

have to include DENNI SATLOBJECTLI b in each access to objects contained in that
namespace. There is sometimes confusion as to what the usi ng keyword does. The
usi ng keyword allows elements contained in the specified namespace to be accessed
without being fully qualified. This can greatly reduce the size of the source code, as
well as increase readability.

We must now declare an instance of an object contained within the COM object. In
this example we create an instance of Denni sApt O ass. Notice that the syntax is the
same as creating any other object. This simplifies development since the developers
don’t need to determine which way an object should be created.

Once the object has been created we can invoke its Add method. The invocation is
essentially the same as other invocations.

Interacting with COM is so simple that it can be referred to as COM integration rather
than interoperation. We’ve seen how to interact with COM in the simple case; now
we'll examine potential performance issues.

The ApartmentState property

COM objects are marked to indicate their threading model. .NET does not use apart-
ments when interacting solely with .NET elements. When .NET is interacting with COM,
it creates an apartment for the COM object. The Apar t nent St at e property of the
Thr ead class is used to determine if the apartment is an STA or an MTA. Listing 16.2
contains an example of setting a thread’s Apar t ment St at e.

I nports System Thr eadi ng
I nports DENNI SATLOBJECTLI b

Public d ass InteropExanple Create an STA when a
Public Sub Test() COM object is created j
Thread. Current Thread. Apart ment Stat e = Apart nent St at e. STA
Di m mySTAAdd As Denni sApt C ass
mySTAAdd = New Denni sApt Ol ass() @ (Create an instance
Di mreturnVal ue As I nteger ?fthe COM object
returnVal ue = nySTAAdd. Add(1) in an STA
mySTAAdd = Not hi ng
End Sub
End d ass

By setting the current thread’s apartment state we are telling the runtime that only one
thread should be allowed to access COM objects created on the current thread. Setting
Apar t ment St at e doesn’t have an impact unless a COM object is created. Once
Apar t ment St at e has been set, it cannot be changed. Attempting to reassign Apar t -
ment St at e does not result in an error; instead, the value simply does not change.

CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

Apar t ment St at e is set using the Apar t ment St at e enumeration. The values
for the enumeration are STA, MTA and Unknown. The default value for a thread’s
Apar t nent St at e is Unknown. Under the current implementation Unknown is
the same as MTA. This means that if no value is assigned to Apar t ment St at e COM
objects created on that thread, it would execute in an MTA.

In the previous chapter we discussed the STAThr ead attribute. It can be used to set
Apar t ment St at e. Additionally the MTAThr ead attribute can be used to indicate
that an MTA is desired. This attribute must be set on the Mai n thread of the application
to have an effect. The advantage of the attribute approach is that it occurs before exe-
cution of any code contained within the method. Attempting to set Apar t nent St at e
after a COM object has been created will have no effect.

@ At the point a COM object is created, the Apar t nent St at e property becomes impor-
tant. In the next section we’ll discuss the performance impact of apartment conflicts.

16.2.2 Apartment conflicts

The choice of Apar t ment St at e has a direct impact on performance. When a COM
object is created in an apartment that conflicts with the threading model of the object,
there is a substantial penalty in performance. This is caused by the need to create a
thread to serve as a proxy between the COM object and the calling .NET program.
Figure 16.3 shows the impact of apartment conflicts.

\ M STA in MTA

™ Free in STA

\ [Free in MTA

O Both in STA

Time

—_ N

S 8
.\

50 T . .

STA in STA O Both in MTA
0 Both in MTA
o Both in STA O .
8538¢ Free in MTA STAin STA
=2 © Free in STA
$8%30 STA in MTA
S5 & e n
Peray: S aasdE '

atjo SRS | 1902 1905 1913 1928 1954 2174

STAIn MTA | 3125 78.125 1875 343.75 343.75 3569.375
Free in STA | 31.25 62.5 166.25 296.8756 3125 312.5

Free in MTA 0 0 0 0 16.625 16.625
Both in STA 0 0 0 0 0 0
Bothin MTA[0 0 0 0 0 0
STAin STA 0 0 0 0 0 0

Figure 16.3 The selection of apartment state can result in a significant difference in performance.

COM INTEROPERABILITY 271

16.2.3

272

Notice that the difference between a STA object executing in an MTA and an STA object
executing in an STA is significant. When there are not apartment conflicts the time
required to perform the operation is essentially zero. This is because the COM method
can be invoked directly, rather than passing through a stub and proxy mechanism.

Discussion of the example

You may be wondering where the numbers in figure 16.3 came from. The process
started by creating an Active Template Library (ATL)-based COM object. Listing 16.3
contains a sampling of the code involved.

Listing 16.3 Implementation of the Add method of the COM objects (C++)

STDMETHODI MP CDenni sAdd: : Add(int nVal ue,int * nCQut)
{

*nQut = nVal ue+1;
return S_OK;

Listing 16.3 contains an example of the Add method contained in each of the COM
objects benchmarked. This method demonstrates the case where the frequency of
method invocation is high compared to the duration of method execution.

The threading model the COM object requires is controlled by its entry in the Registry.
Listing 16.4 contains the .rgs entries associated with the object in listing 16.3.

Listing 16.4 Registry entries associated with the dual-threaded COM object

(Registry file)

HKCR
{
Denni sATLObj ect . Denni sAdd. 1 = s ' Denni sAdd d ass'
{
CLSID = s ' {405592A3- B5A3- 4784- 8497- B5719D5D1C58} '
}
Denni sATLObj ect . Denni sAdd = s ' Denni sAdd d ass'
{

CLSID = s '{405592A3- B5A3- 4784- 8497- B5719D5D1C58} '
CurVer = s 'Denni sATLObj ect. Denni sAdd. 1'
}
NoRenmove CLSI D
{
For ceRenove {405592A3- B5A3- 4784-8497-B5719D5D1C58} = s ' Denni sAdd Cl ass'
{
Progl D = s ' Denni sATLObj ect . Denni sAdd. 1'
Ver si onl ndependent Progl D = s ' Denni sATLObj ect . Denni sAdd'
For ceRenpve ' Progranmabl e’
I nprocServer32 = s ' %VODULEY

CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

{
val ThreadingMbdel = s 'Both' @ Indicates that object can
} execute in both STA and MTA

' TypeLib' = s ' { C56DCEBC- FB08- 40BB- A79B- 18159013CACE}’

}
}

}
|

© The Thr eadi nghodel assignment designates the type of apartment the COM object
requires. The remainder of the .rgs file adds the appropriate entries to the Registry to
make the COM object available for consumption. Listing 16.5 contains the .NET code.

bj ect Thr eadi ngMbdel what ToTest ;

private double Onelteration()
{
GC. Col l ect ();
Dat eTi ne startTi nme, st opTi ne;
Ti meSpan howLong;
swi t ch(what ToTest)
{
case bj ect Threadi nghodel . STA:
Denni sApt Gl ass nmySTAAdd= new Denni sApt C ass();
startTime = DateTi me. Now,
for (int i=0;i< nunberOf PassesPerlteration;i++)

{
int returnValue = (int)nySTAAdd. Add(i);
}
stopTi ne = Dat eTi me. Now;
nmy STAAdd=nul | ;
br eak';) Test the Both
case bj ect Thr eadi nghbdel . Bot h: o COM object

Denni sAddCl ass nyBot hAdd= new Denni sAddC ass();
start Time = DateTi me. Now,
for (int i=0;i< nunmberOf PassesPerlteration;i++)
{
int returnval ue = (int)nyBothAdd. Add(i); @ Invoke the
} Add method
stopTi me = Dat eTi me. Now;
myBot hAdd=nul | ;
br eak;
case bj ect Threadi nghodel . Free:
Denni sFreeC ass nmyFreeAdd= new Denni sFreeC ass();
startTime = DateTi me. Now,

COM INTEROPERABILITY 273

16.3

274

for (int i=0;i< nunmberOf PassesPerlteration;i++)
{
int returnValue = (int)nyFreeAdd. Add(i);
}
stopTi me = DateTi me. Now,
nmyFr eeAdd=nul | ;
br eak;

}
howLong = stopTi me. Subtract (startTi nme);

return howLong. Total M| | i seconds;

}
|

Ifwhat ToTest contains the value Obj ect Thr eadi nghbdel . Bot h, then test the
object in listings 16.3 and 16.4. We then create an instance of the COM object. The
start time is recorded so we can determine how long the operations took to complete.

We then invoke the Add method of the object. If you're faced with a real-life situation
such as this, a solution would be to move the loop inside the COM object. This would
decrease the number of times the call would cross the apartment boundary.

SUMMARY

When you’re dealing with COM objects it’s important to match the threading model
of the object. If that isn’t possible be prepared for the performance penalty that’s asso-
ciated with incompatible apartments. There are several ways to resolve the apartment
conflict. One of the best ways may be to rewrite the COM object as a .NET class library.
Often a rewrite isn’t possible; in those cases the COM object may need to be modified
to be more efficient. If the COM object can’t be changed, an additional COM object
may be required to wrap the original COM object.

The fact that .NET does not require the use of apartments is a compelling reason
to use it. Instead of restricting entry to objects, it allows you to write efficient code that
manages access to shared resources using synchronization primitives such as locks, moni-
tors, and reader/writer locks.

CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

17.1

CHAPTEHR 1 7

Designing with threads

17.1 Using the asynchronous design pattern 275
17.2 Message Queue example 290

17.3 One Class One Thread 294

17.4 Performance issues 299

17.5 Summary 300

Multithreaded development provides a way to develop powerful applications. This chap-
ter focuses on how to use threads effectively to produce robust applications and reusable
class libraries. One of the major advantages of containing the logic involved with multi-
threaded development into a class library is that the consumers of that library can use
them without having to understand the internal workings of the object. This allows
experienced developers to produce libraries that less experienced developers can use.

In this chapter we’ll cover the asynchronous design pattern. It provides a uniform
way of dealing with objects to perform asynchronous execution. To better demon-
strate the concepts we’ll implement a class library that performs asynchronous file sort-
ing following the asynchronous design pattern.

USING THE ASYNCHRONOUS DESIGN PATTERN

Consistency is a good thing. One area where Microsoft has made tremendous gains is
consistency in the .NET framework, and one way this was accomplished was by using
design patterns. Design patterns are beyond the scope of this book, but if you view
them as a recipe for producing objects that behave similarly, that will suffice for our
purposes. The design pattern we’re concerned with here is asynchronous. It is intended
to give a standard way of interacting with asynchronous operations. For example, if
you want to do an asynchronous read of a file, you use the Begi nRead method. If

275

1711

276

you want to invoke a delegate in an asynchronous way, you use the Begi nl nvoke
method. These names start with the word “begin” and indicate the nature of the
operation that is being performed asynchronously.

This means that if a new method is introduced that follows the asynchronous design
pattern you’ll have a good idea of how to use it. This knowledge reuse is incredibly
valuable. In the next section we’ll go over the asynchronous design pattern by imple-
menting a class that follows it. We’ll then move on to a more generic solution where a
class encapsulates a thread that performs some operation. We'll highlight the differences
between this solution and the asynchronous design pattern.

A file-sorting example

There are times that the contents of a directory need to be arranged, moving them to
different subdirectories based on their name. Figure 17.1 shows an example of a direc-
tory containing two sets of files that need to be separated. One set of files contains the
word “Data” while the other contains the word “Log.”

Name | size | Type
=] 1 of 10 Data File 1KB File %:;}lempsg%ﬁaiqreq 7f
o f i older isting
rﬂl of 10 Log FIIE_ 1kB F!‘E Uolume serial number is BB8
[#]10 of 10 Data File 1KB File C:.
%) 10 of 10 Log File 1KB File _Dfdafaffi‘lfa Pata Fil
I . . 0 ata ilie
#]2 of 10 Data File 1KB File 1@ of 18 Data File
/=] 2 of 10 Log File 1KB File 2 of 18 Data File
/=] 3 of 10 Data File 1KB File g u: ig gaza }1:1%8
= " . o ata File
=]3 of 10 Log Fllg 1KB F!\e 5 of 1@ Data File
|=]4 of 10 Data File 1KB File 6 of 1@ Data File
|=]4 of 10 Log File 1KB File 7 of 10 Data File
=) . 8 of 18 Data File
|=]5 of 10 Data File 1KB File 9 of 18 Data File
|=]5 of 10 Log File 1KB File .
|#]6 of 10 Data File 1KB File —oflogfile .
[#]6 of 10 Log File 1KB File {;gg?;gg;;}ge
|=]7 of 10 Data File 1KB File 2 of 10 Log File
|#]7 of 10 Log File 1KB File g gg ig Egg ;i}g
[#]8 of 10 Data File 1KB File 5 of 1@ Log File
|=]8 of 10 Log File 1KB File 6 of 10 Log File
[#]9 of 10 Data File 1K File g of 12 Log File

} b of 18 Log File
=]9 of 10 Log File 1KB File 9 of 18 Log File
Figure 17.1 A directory containing two Figure 17.2 Sorted output of the contents of
sets of files the directory from Figure 17.1

Once our program finishes executing, the output will resemble that in Figure 17.2.
To make the sorting application more interactive we’ll make it a Windows Forms
application. The actual sorting of the files will be performed using a class library, encour-
aging reuse and also allowing the use of the Fri end and i nt er nal modifiers. As a
review, Fri end is a Visual Basic NET keyword that indicates that a variable or method
can be accessed by classes contained within the same assembly. This allows all elements
in a class library access to certain elements, while restricting access to those elements
from the outside. The idea is that classes contained within the class library understand

CHAPTER 17 DESIGNING WITH THREADS

the inner workings of the Fri end elements and can manipulate them in a safe way.
C#sinternal is roughly equivalent to Visual Basic NET’s Fri end.
In the next section we discuss the class library that performs the file sorting.

171.2 The Sorter class library

The Sor t er class library contains the code that performs the sorting and classification
of files in a directory. It contains several events that allow the consumer of the class to
be informed as to its processing. We'll start by examining an internal class that controls
the processing of a directory.

The WorkUnit class

The Wor kUni t class contains the instance-specific data values. It is used to provide
instruction to the Sor t er class regarding the source, destination, and manipulation of
the files to process. Listing 17.1 contains the Wor kUni t class.

Public dass WrkuUnit
" internal/Friend data el enents
Friend includePause As Bool ean
Friend nunmber Of Fi | esMbved As | nteger

Friend dir As String The source directory
Friend pattern As String and search pattern The destination
Friend outputdir As String directory

Fri end convert ToLower Case As Bool ean
Fri end ignoreExtensi on As Bool ean
Friend renmoveSpaces As Bool ean
Friend lettersOnly As Bool ean
Friend dupes As DupEntryProc
Friend history As Arrayli st
Friend Sub New() The constructor that

pattern = " *" initializes variables

dupes = DupEntryProc. Repl aceDest

nunber O Fi | esMoved = 0

hi story = Arraylist. Synchroni zed(New ArraylList())

convert ToLower Case = True

i gnor eExt ensi on = True

renmoveSpaces = True

lettersOnly = True
End Sub
Friend Sub AddToH story(ByVal formatString As String, _

ByVal ParamArray paraneters As Object())

Dimhistoryltem As String

historyltem = String. Fornat (fornmat String, paraneters)

hi story. Add(hi storyltem
End Sub
Friend Sub AddToH story(ByVal historyltem As String)

hi story. Add(hi storyltem
End Sub

Flags controlling
how a file matches

USING THE ASYNCHRONOUS DESIGN PATTERN 277

278

" public enuns
Publ i ¢ Enum DupEnt ryProc
Repl aceDest
RenmoveSour ce
DoNot hi ng
End Enum
"public properties
Public ReadOnly Property Fil esMved() As |nteger
Get
Ret urn nunber O Fi | esMoved
End Cet
End Property
Public ReadOnly Property Directory() As String
Get
Return dir
End Get
End Property
Public ReadOnly Property ProcessingHi story() As ArraylLi st
Get
Return CType(history.C one(), Arraylist)
End Get
End Property

End d ass
||

One of the most important values when sorting files is the directory to sort. This infor-
mation is stored in the di r member of the Wor kUni t class. The pat t er n member
of the Wor kUni t class allows us to specify filter criteria to determine what files are
processed. In the example in figure 17.1 we could specify a pat t er n of “*FILE.*” to
match only those files whose primary name ends in FILE. The Wor kUni t class con-
tains the state information required for processing. This allows the processing to be
similar to message-processing systems.

Knowing where to put the sorted files is as important as knowing the source directory.
The out put di r member of the Wor kUni t class contains the root destination path.
Under the directory specified in out put di r subdirectories will be created based on
set flags that govern processing.

To make the file sorting class more flexible, processing is controlled by four Boolean
values. When the convert ToLower Case Boolean is true, the directory that a file
will be moved into will be made up of lowercase letters. The original file name is not
modified. The Boolean i gnor eExt ensi on determines if the directory created will
contain the extension of the input file(s). If r enbveSpaces is true, all spaces con-
tained in the file name are not considered when determining the name of the directory
to move a file to. The | et t er sOnl y Boolean determines if the target directory should
contain numbers or only letters from the input file. For the example in Figure 17.1
this is one of the most important values since the numbers are the only variation in
the file names within one group. Table 17.1 outlines the impact of each of these flags.

CHAPTER 17 DESIGNING WITH THREADS

Table 171 Processing Flags and Their Impact

Source File Name:

1 of 10 Data File.dat Resulting Directory Name

convertToLowerCase = true 1 of 10 data file.dat
IgnoreExtension = true 1 of 10 Data File
removeSpaces = true 10f10DataFile.dat
lettersOnly ofDataFile.dat

All flags true ofdatafile

O In previous chapters we've discussed Visual Basic .NET’s New method. Recall that it is
how VB.NET implements constructors. One thing that makes Newa little different is
the Fri end keyword. In section 17.1.1 we discussed the Fri end/i nt er nal key-
words. When Fri end is applied to a constructor it has the result of creating a class
that can be accessed external to the assembly but cannot be created. This is similar to
setting the | nst anci ng property in Visual Basic to Publ i cNot Cr eat abl e when
creating COM objects. The New method ensures that the class is in a known state before
processing begins. It sets reasonable defaults for properties and ensures that any needed
objects are created.

The Sorter class

The Sor t er class performs sorting of files. It examines the value in an instance of the
Wor kUni t class to determine what manipulation should be performed in determining
which directory to move the files from the input directory to. Listing 17.2 contains
the general class declaration and the events and delegates.

Public Event Start(ByVal num As Integer, when processing starts

Public Class Sorter W The Start event is raised
ByVal work As WrkUnit) in a new directory

Public Event Entry(ByVal num As Integer, _ ﬂ Each file processed causes
Byval work As Vorkunit, _ the Entry event to be raised
ByVal nanme As String)

When all files are processed

Public Event Finished(ByVal work As WrkUnit) e the Finished event is raised

Friend Del egate Sub ProcessCB(ByRef work As Workunit) @@ TheProcessCBiskey
to the asynchronous

. design pattern
(WorkUnit C ass See Listing 17.1)

(Menmber Functions See Listing 17.3)

End d ass

USING THE ASYNCHRONOUS DESIGN PATTERN 279

280

@ The Sorter class performs the sorting of a directory. To keep the user informed about

the progress of the sorting, we utilize three events. St ar t is raised when a directory is
about to be sorted. It passes back the number of elements in the directory, the num
parameter, along with a reference to the related VWr kUni t object. This allows the
client to set up any status indicating facilities, such as progress bars, to give an indica-
tion of percentage complete.

Ent ry is raised when a file is processed. The num parameter indicates the index in
the current directory. This allows for a determination of the percentage complete. A
reference to the related WOr kUni t object is passed back along with the nane of the
file being processed.

Fi ni shed is raised when all files in the directory are processed. This allows the progress
indication mechanism to indicate completion. The only parameter passed is a reference
to the related Wor kUni t object.

The ProcessCB is an internal delegate that is used to perform the asynchronous
processing. We'll discuss Pr ocessCB in more detail in the next section.

The heart of the Sorter class

So far we've discussed the supporting elements of the Sor t er class. Now we’ll take a
look at the methods that perform the majority of the work. The asynchronous design
pattern is based on having a method that is named Begi n followed by the operation
it performs. In our case we have a Begi nSort method that starts the asynchronous
sorting operation. Listing 17.3 contains the Begi nSort and EndSor t methods.

Public Function BeginSort(_
ByVal dir As String,
ByVval pattern As String, _ /o Is used to start
ByVal outputDirectory As String, asynchronous
ByVal cb As AsyncCal |l back, _ processing
ByVal includePause As Bool ean) _

As | AsyncResul t
/0 Declares a delegate

Di m pdcb As ProcessCB that is passed to

pdcb = New ProcessCB(AddressOf ProcessDirectory) BeginInvoke
Di m wor kunit As New wor kuni t () X
wor kuni t . i ncl udePause = i ncl udePause /9 Creates a WorkUnit

and set with supplied

workunit.dir = dir
values

wor kuni t.outputdir = outputDirectory
wor kuni t. pattern = pattern
Dimar As | AsyncResult

Saves a pointer

ar = pdchb. Begi nl nvoke(wor kunit, cb, null) o to the results
Return ar Returns the instance
End Function of the I1ASyncResult

CHAPTER 17 DESIGNING WITH THREADS

Public Sub EndSort(_ /@ Retrieves values
ByVal ar As |AsyncResult, _ from the completed
ByRef work As WorkuUnit) processing
Di m pdcb As ProcessCB
Dimarr As AsyncResult .
arr = CType(ar, AsyncResult) /o Blocks until the
_ associated delegate
pdcb = CType(arr. AsyncDel egate(), ProcessCB) completes execution
pdcb. Endl nvoke(work, ar)
End Sub

@ Begi nSort is called to start the file-sorting process. It accepts several parameters
and returns an instance of an object that implements the | AsyncResul t interface.
The object that implements | AsyncResul t will be passed to the EndSor t method
to retrieve any information produced by the asynchronous execution.

@ In listing 17.2 we discussed the Pr ocessCB delegate. We create an instance of the
Pr ocessCB delegate and call it pdcb. This delegate is associated with the Pr ocess-
Di r ect ory method, which we cover in listing 17.4.

© We discussed the Wor kUni t object earlier. It is used to pass processing information
to the ProcessDi r ect or y method. The parameters passed into the Begi nSor t
method are transferred to the instance of the Wor kUni t object.

O The Begi nl nvoke method of the pdcb delegate is used to begin the asynchronous
delegate execution. It returns an instance of an object that supports | AsyncResul t .
We covered asynchronous execution of delegates in section 12.5. Notice that we pass in
an instance of the AsyncCal | back object, cb, as the second parameter to Begi n-
I nvoke. If cb is set to an instance of the AsyncCal | back it will be invoked when
the asynchronous operation completes.

© We then return the instance of the object that supports | AsyncResul t to the call-
ing method.

@ EndSort is invoked to retrieve the instance of the Wor kUni t class after processing is
complete. The Wor kUni t class could be used to store information regarding which
files it sorted, where it put them, how long the operations took, and so on. Notice that
we pass in an instance of an object that supports | AsyncResul t to the EndSor t
method. This object serves as a token for retrieving the correct results.

@ In order to invoke the Endl nvoke method of the asynchronously executed delegate,
we must first cast the instance of the object supporting | AsyncResult to an
instance of the AsyncResul t object. This is accomplished using VB.NET’s CType
method. Once we've converted ar to arr, we can retrieve the Pr ocessCB delegate
and invoke the Endl nvoke method. This populates the work variable with a refer-
ence to the work variable passed into the Begi nl nvoke method earlier.

USING THE ASYNCHRONOUS DESIGN PATTERN 281

282

There are times that we don’t need to perform asynchronous processing. Listing 17.4
contains the Sort method. Sort, unlike Begi nSor t , blocks until it completes.

Public Sub Sort(_ o Processes
Byval dir As String, _ asynchronously
ByVal pattern As String,
ByVal outputDirectory As String,
ByVal includePause As Bool ean)
Di m wor kunit As New wor kuni t ()

wor kuni t . i ncl udePause = i ncl udePause @ (Createsa

workunit.dir = dir WorlkUnit

wor kuni t. outputdir = outputDirectory

wor kuni t.pattern = pattern

ProcessDi rect ory(workunit) 9 Calls the ProcessDirectory
End Sub method directly

@ Notice that the Sort method is considerably simpler than Begi nSor t and EndSort .
The signature of the method is very similar. Since invocation is synchronous there is
no reason to pass in a delegate to invoke when the method completes.

@ We need to create an instance of the Wor kUni t class in which to store the supplied
parameters. These are the same steps from listing 17.3.

© Since Sort isa synchronous method we can call the Pr ocessDi r ect ory method
directly. This differs from the asynchronous approach that requires the creation of a
delegate. The ProcessDi r ect or y method is contained in listing 17.5.

Private Sub ProcessDirectory(ByRef work As WrkuUnit) @ Sorts the filesin
wor k. AddToH story("Process Directory {0}", work.dir) the directory in
Dimfiles As String() the WorkUnit
Dimi As |nteger
files = Directory. GetFiles(work.dir, work.pattern) @@ Returns an array of

Rai seEvent Start(files.Length, work) @ Raises the the file names
Start event matching the pattern
For i = 0 To files.Length - 1
ProcessFil e(work, files(i)) o Proces.ses eaqh
Rai seEvent Entry(i, work, files(i)) (@ Signals matching file in
If (work.includePause) Then a file was the directory
processed
Thr ead. Sl eep(1000)
End I f
Next . .
Signals processin
Rai seEvent Fi ni shed(wor k) (6] isgcompil)ete &
wor k. AddToHi story("Fini shed Directory {0}", work.dir)
End Sub

CHAPTER 17 DESIGNING WITH THREADS

Private Sub ProcessFile(_ Determines what
ByVal work As WorkUnit, _ directory a file
ByVal filenanme As String) should be in
wor k. AddToHi story("Process {0}", filenane)
DimoutputDirectory As String = work. outputdir
DimdirectoryToSort As String = work.dir
Di m nane, currentFileName As String

currentFil eName = fil enane Calculates the directory

name = fil ename that a file should be
name = Det er mi neConpar eName(work, name) @ moved to

Di m newDi rectory As String
newDi rectory = Pat h. Conbi ne(out putDi rectory, nane)
If Not Directory. Exi sts(newDirectory) Then
Directory. CreateDirectory(newDirectory)
End | f
Di m newPath As String
Di m t mpName As String
tnpNanme = Pat h. Get Fi | eNane(current Fi | eNane)
newPat h = Pat h. Conbi ne(newDi rectory, tnpNane)
If File.Exists(newPath) Then
Sel ect Case wor k. dupes
Case Wor kUni t. DupEnt ryProc. Repl aceDest
Fi | e. Del et e(newPat h)
Fil e. Move(current Fi |l eName, newPat h)
wor k. AddToHi story("Mved {0} to {1}", currentFileName, newPath)
wor k. number O Fi | esMoved += 1
Case WorkUnit. DupEnt ryProc. RenoveSour ce
wor k. AddToHi story("Del eted {0}", currentFil eNane)
Fil e. Del et e(currentFil eNane)
Case Wor kUni t. DupEnt ryProc. DoNot hi ng
' Do not hing
End Sel ect
El se
Fi | e. Move(current Fi | eNane, newPat h)
wor k. AddToHi story("Mved {0} to {1}", currentFileNanme, newPath)
wor k. nunber O Fi | esMoved += 1
End |f
End Sub

Private Function Determ neConpar eNanme(ByVal work As WorkUnit, _
ByVal inname As String) _
As String
Di mnane As String = innane
I f (work.ignoreExtension) Then
name = Pat h. Get Fi | eNameW t hout Ext ensi on(nane)

El se

nanme = Pat h. Get Fi | eNane(nane)
End I f
I f work.renmoveSpaces Then

name = nane. Repl ace(" ", "")
End | f

USING THE ASYNCHRONOUS DESIGN PATTERN 283

I f work.convert ToLower Case Then
nane = nane. ToLower ()

End | f

If (work.lettersOnly) Then
Di m curC As | nteger
Dimc As Char

Di m naneChars As Char () = nane. ToCharArray()
DimtnmpStringBuilder As New StringBuil der()
For curC = 0 To naneChars. Length - 1
¢ = naneChars(curC)
If Char.lsLetter(c) Then
t npSt ri ngBui | der . Append(naneChar s(cur C))

End I f
Next
nane = tnpStringBuilder. ToString()
End | f

Ret urn nane

End Function
||

@ ProcessDirectory accepts an instance of the Wor kUni t class as its only param-
eter. This is the starting point for the actual file sorting. So far we've talked about the
elements in the Sorter class that support the asynchronous design pattern. The
ProcessDi r ect or y method performs the actual work.

@ One of the first things Pr ocessDi r ect or y does is retrieve the files from the direc-
tory named in the instance of the Wor kUni t class into an array of strings. In order
for a file name to be included in this array, it must match the pattern specified in the
instance of the Wor kUni t .

© To inform the user of the class that processing of the directory is beginning, the St ar t
event is raised. The number of files matching the pattern in the specified directory along
with a reference to the instance of the Wor kUni t is passed back to any St art event
handlers. This allows the user of the class to set up any feedback mechanisms, such as
progress bars, with a maximum value.

O ProcessFi | e is then invoked on each file name in the array of files. Pr ocessFi | e
is passed a reference to WOr kUni t along with the name of the file to process. The
Wor kUni t reference is needed since it contains the destination directory, along with
the Boolean values governing the processing of the file name to produce the corre-
sponding directory name.

O After the file is processed, the Ent ry event is raised, signaling the user of the class that
a file has been processed. The index of the file in the file list array, along with its name,
and a reference to the Wor kUni t item are passed to any Ent r y event handlers. This
allows the user of the class to update a progress indicator.

O After all files are processed the Fi ni shed event is raised. This allows the user of the
class to indicate that processing has completed.

284 CHAPTER 17 DESIGNING WITH THREADS

171.3

@ ProcessFil e calls Det er mi neConpar eNane to determine the name of the direc-

tory a file should be placed in. It then checks to see if that directory exists; if it does
not, it is created. Next it checks to see if a file exists in that directory with the same name
as the current file. If it does, the dupes data member of the Wor kUni t object is
inspected to see how processing should proceed. If there is no file name collision, the
current file is moved to the specified directory.

The Det er mi neConpar eName method applies the Boolean values governing direc-
tory name to the specified file name to produce the name of the directory the file should
be moved to. This method contains common name manipulation methods such as
removing spaces, nonletter characters, and file extensions.

Using the Sorter class library

So far we've covered the Sorter class in isolation. In this section we’ll see how
another class can use it. We'll start by examining the synchronous use of the Sort er
class. We'll then explore the event handlers required. We'll finish by exploring asyn-
chronous execution.

Synchronous execution of Sort

The simplest way to use the Sor t er class is to use the Sor t method. Sort does not
return until processing of the directory has completed. Listing 17.6 contains an
example of using the Sort method of the Sort er class.

Di mi ncl udePause As Bool ean

i ncl udePause = checkBoxI| ncl udePause. Checked

Dimsrc As String = textBoxSrc. Text

Dimpattern As String = textBoxPattern. Text

Di mdest As String = textBoxDest. Text

|'i stBox1l.Itens.d ear() Invoke the
fileSorter.Sort(src, pattern, dest, includePause) Sort method

The Sort method accepts four parameters:

* A string that specifies the directory to be sorted.

* A string that contains a pattern used to determine which files in the source
directory are sorted.

* A string containing the destination folder. All folders that are created will be
placed under the destination folder.

* A Boolean that determines if there is a one-second pause between processing
each file. This helps demonstrate the need for asynchronous processing without
requiring a large number of files. This would only be used during testing.

USING THE ASYNCHRONOUS DESIGN PATTERN 285

286

ST
Dir IC:\Temp\dala GenelaleDatal

™ Include 1 second pause between processing

Souice |C:\T emphdata Pattemn | [

Dest |C:\Temp\data

Figure 17.3

The Windows Forms
application that
allows synchronous
and asynchronous
sorting

statusBarl 4

Figure 17.3 shows the Windows Forms application that is used to call the Sor t method
of the Sor t er class. The code in listing 17.6 is executed when the user clicks Sort.

The form will not respond to user interaction when the synchronous sort is execut-
ing. For example, if you attempt to resize the form the action will not occur until after
the sorting has completed. This is because the Sor t is occurring on the main thread
of the application, the same thread that is processing messages.

While the form sort is occurring the user interface will be updated with feedback
information. Figure 17.4 shows the program approximately 30 percent completed.

The next section discusses the event handlers that handle the events that are raised
in listing 17.5.

™ Form1 - O] x|
Dir IE:\Temp\dala e | Finished Producing Data

¥ Include 1 second pause between processing
Source IC:\Tamp\dala Pattern |"." Start |

Dest |E:\T emphdata

Started Processing C:A\Temp'data containing 20 entries

Processed entiy number0(C:\Temp'data\1 of 10 Data File] in C:ATemphdata
Processed entiy number1[C:\Temp'datak1 of 10 Log File) in C:\Temp\data
Processed entry number2(C:\Temp'datat 10 of 10 Data File) in C:\Temp\data
Processed entry number3(C:\Temp'data'10 of 10 Log File] in C:\Temp\data
Processed entiy numberd[C:\Temp'data\2 of 10 Data File] in C:\Temp'data)
Processed entry numberS(C:A\Temphdatat2 of 10 Log File] in C:\T emp\data Figure 17.4

Feedback indicating
the program has

l sorted approximately

30 percent of the files

in the directory

Processed entiy numberB[C:\Temphdata'3 of 10 Data File) in C:\Temphdata

Processed entry number[C:ATemphdatat3 of 10 Data File) in C:ATempidata 7

CHAPTER 17 DESIGNING WITH THREADS

Event handlers

During processing three events are raised. The first event is the St art event. St ar t
is raised when a directory is starting to be processed. The next event is the Entry
event. The Ent ry event is raised every time a file in the source directory is processed.
The final event raised is the Fi ni shed event. Listing 17.7 contains example handlers
for each of these events.

Handles the

Sub ProcessingStarted(ByVal nunberEntries As Integer,
Start event

ByVal work As Sorter.WrkUnit) _

Handl es fileSorter. Start
Dims As String
s = "Started Processing "
s += work.Directory + " containing
s += nunberEntries. ToString()
s += " entries"
Dimi As |nteger
i = listBoxl.|tens. Add(s)
|'i st Box1. Sel ect edl ndex = i
statusBar1l. Text = "Processing " + work.Directory
progressBar 1. Maxi num = nunberEntri es
progressBar1l. M ni num= 0
progressBarl.Value = 0

End Sub

Sub ProcessedEntry(ByVal index As |nteger, _ Handles the
ByVal work As Sorter.WrkUnit, _ Entry event
ByVal name As String) _
Handl es fileSorter.Entry
Dims As String
s = "Processed entry nunber”
s += index. ToString()
s += "(" + name + ") in
s += work.Directory
Dimi As |Integer
i = listBoxl.|tens. Add(s)
statusBarl. Text = s
I'i st Box1. Sel ect edl ndex = i
progressBar 1. Val ue = index
End Sub

Handles the
Private Sub Finished(ByVal work As Sorter.WrkUnit) _ Finished event
Handl es fil eSorter.Finished k
statusBar 1. Text = ""
progressBarl. Value = 0
Di m history As ArrayList = work. ProcessingHi story

End Sub

USING THE ASYNCHRONOUS DESIGN PATTERN 287

288

@ Visual Basic .NET makes it very easy to consume events. The keyword Handl es indi-

cates which events the method consumes. The signature of the event handler should
match the signature of the event. The Pr ocessi ngSt ar t ed method initializes the
progress bar and adds a line to the feedback list box.

When each file matching the pattern is processed, the Entry event is raised. The
ProcessedEnt ry method handles the Ent ry event. It sets the value of the progress
bar to the index of the processed file, and adds a line to the feedback list box indicating
the file was processed.

The Fi ni shed event is raised after all processing is complete. The Fi ni shed
method sets the progress bar’s value to zero, indicating that processing is complete.

One way to improve the responsiveness of the application would be to add calls to
the Appl i cati on. DoEvent s method in the event handlers. However, the respon-
siveness would still be very jerky if the processing between events is significant. The
next section discusses the use of asynchronous execution of the Sort method, using
Begi nSort . This results in a highly usable interface.

Asynchronous execution of Sort

Listing 17.8 shows the code that is executing when Start in figure 17.4 is clicked. The
code is very similar to that in listing 17.6 with the one notable exception of the Async-
Cal | back and the invocation of the Begi nSort method.

Di mincl udePause As Bool ean

i ncl udePause = checkBoxl! ncl udePause. Checked Signals when
Dimsrc As String = textBoxSrc. Text processing is
Dimpattern As String = textBoxPattern. Text complete

Di mdest As String = textBoxDest. Text
|'i stBoxl.ltens. d ear ()

'Set up Call back for Async Processing
Dimcb As AsyncCal | back

cb = New AsyncCal | back(Addr essOf Fi ni shedProcessi ng)
fileSorter.BeginSort(src, pattern, dest, ch, includePause) <

Creates an instance
of AsyncCallback

Notice the declaration and creation of an instance of AsyncCal | back. Async-
Cal | back allows the Fi ni shedProcessi ng method to be invoked when the
asynchronous execution is complete. This is different from the Fi ni shed event,
which is raised in the ProcessDi rect ory method. See listing 17.5 for more on
ProcessDirectory.

Begi nSort has the same parameters as Sor t , with the addition of the reference to
instance of AsyncCal | back. This callback is passed to the Begi nl nvoke method,
and is invoked when the delegate that Begi nl nvoke is invoked on completes execu-
tion. Listing 17.3 contains the code where Begi nl nvoke is called.

CHAPTER 17 DESIGNING WITH THREADS

1714

Once all asynchronous processing has completed, the Fi ni shedPr ocessi ng
method (listing 17.9) is invoked.

Private Sub Fini shedProcessing(ByVal ar As | AsyncResult)
Dimwork As Sorter.WrkUnit = Nothing EndSort allows for the
fileSorter.EndSort(ar, work) o retrieval of results
MessageBox. Show(" Moved " + work. Fil esMoved. ToString() + " files")

End Sub

|

@ When asynchronous processing completes, we often want to retrieve a resulting value.

Methods that are associated with AsyncCal | back must accept a single parameter.
That parameter is an object that implements | AsyncResul t . That object can then be
passed to the Endl nvoke method on the original delegate. Listing 17.3 contains the
code of EndSor t , which simply passes the object that implements | AsyncResul t
to the Endl nvoke method. When the EndSor t method returns, the work variable
contains the Wor kUni t object that was originally passed into the Begi nSort
method. This allows for easy retrieval of results, in this case the number of files that
were moved.

Steps to implement the asynchronous design pattern

To implement the asynchronous design pattern, the following steps should be followed:

1 Create a method to be invoked, marking any parameters that should be returned
by the Endl nvoke method as being ByRef in Visual Basic .NET, r ef in C#.
This method should perform all of the processing that will be required, or call
other methods to perform the processing.

2 Define a delegate that matches the signature of the method that performs the
top-level work.

3 Create a method named Begin<action>, such as Begi nSort, which accepts
any required parameters, along with a reference to an AsyncCal | back. This
method will create an instance of the delegate associating it with the work method
and call Begi nl nvoke. The results of Begi nl nvoke should be returned to
the caller.

4 Create a method named End<action>, such as EndSor t , which accepts an object
that implements | AsyncResul t along with any needed reference parameters.
The signature of this method will look like the delegate defined earlier, with the
addition of the | AsyncResul t object before any parameters. The return value
may differ, if a single result value can be returned.

5 For completeness create a method that invokes an instance of the delegate
directly, providing for synchronous processing. This method should be named
<action>, such as Sort .

USING THE ASYNCHRONOUS DESIGN PATTERN 289

17.2

17.2.1

290

Following these steps produces an object that follows the asynchronous design pattern.
There are two choices in how to interact with the object in an asynchronous way.
One involves passing a callback to the Begin<action> method that is invoked when
execution completes.

The alternative is to call End<action>. Calling it causes execution on that thread
to block until the asynchronous execution completes. This allows the caller to start
processing, continue executing some other task, and then call End<action> to wait for
the asynchronous operation.

The examples in this section have been presented in Visual Basic .NET. The C#
version of the examples are available from the publisher’s web site.

MESSAGE QUEUE EXAMPLE

Microsoft Message Queue (MSMQ) is a messaging system that ensures delivery of
messages and provides security, routing, and priority. In this section we’ll examine
NET’s support for MSMQ and an implementation of the asynchronous design pattern.

MSMQ can be viewed as a consumer/producer model. The idea is that messages are
added to a queue and processed at some later point. MSMQ ensures that the message will
not be lost along the way. This simplifies development considerably, removing a large
amount of “plumbing” from application development. In this section we’ll examine
a very simple MSMQ application.

The message producer

To demonstrate .NET’s asynchronous implementation of receiving a message we must
first have a message to receive. Figure 17.5 shows of a program that produces a very
simple message.

“igixi| The slider can be moved from right o
One Hosssgs l left to change the frequency of message

W Produce M . .
e generation. The status bar displays the

M — L text of the last message generated. The
P S One Message button produces a single
Test 33215 P | message. The Produce Messages check-

box controls if messages are produced at
Figure 17.5 The message producer aregular interval. Listing 17.10 contains
the most important element of the mes-
sage-producing application.

Listing 17.10 The AddMessage method adds a single message to the message

queue (C#).

voi d AddMessage()

{
try
{

string nessage;

CHAPTER 17 DESIGNING WITH THREADS

message = "Test " + DateTi me. Now. ToLongTi meString();

thi s. messageQueuel. Send(message); Adds an entry to
this.statusBarl. Text = nessage; the message queue
}
cat ch(Excepti on ex)
{
MessageBox. Show(ex. ToString());
}
}
|

@ The Send method of the MessageQueue class is used to enter a new message into
a queue. Since entering a message in a queue is not a time-consuming activity, it is
performed synchronously. There are several different versions of the Send method.
The one we are using here is the simplest; it accepts a single object that becomes the
body of the message.

In order to execute this example you must have MSMQ installed. When the form
loads initially, it attempts to create a message queue named.\Private$\ManningThreads.
This is a local queue and should work on most installations. The following code creates
the message queue if it does not exist:

if (!MessageQueue. Exi st s(queueNane))

{
MessageQueue. Cr eat e(queueNane);

}

17.2.2 The message consumer

Now that we have a producer of messages, we need something to consume them. There
are several ways that messages can be consumed using the MessageQueue object.

Synchronous receive

The simplest way to consume a message is to use the MessageQueue’s synchronous
Recei ve method. Recei ve blocks the calling thread until a message can be received.
If no messages are in the queue, the method waits until either a message arrives, or, if a
timeout is specified, the timeout expires. Listing 17.11 shows the Recei ve method
being used with no specified timeout.

Syst em Messagi ng. Message nsg = nessageQueuel. Receive();
string s="(null)";

if (msg !'= null & nmsg.Body != null)

{

Blocks until a
message is received

s = msg. Body. ToString();

}
Updat eMessageDi spl ay(s);

MESSAGE QUEUE EXAMPLE 291

292

In the case of a Windows Forms application, while the main thread of the application
is waiting on Recei ve to return it is unable to process any Win32 messages. This
causes the application to hang and be unresponsive. When a message is received, the
application will resume processing the messages.

Asynchronous processing using BeginReceive

A more desirable way of interacting with a message queue is to use the asynchronous
processing support built into the MessageQueue object. Listing 17.12 shows the
use of Begi nRecei ve and Recei veConpl et edEvent Handl er.

private void buttonl_Cick(object sender, System EventArgs e)

{

try
{ . .
messageQueuel. Begi nRecei ve(); BeginReceive returns
} before the message is
cat ch(Exception ex) received
{
Updat eMessageDi spl ay(ex. ToString());
}

}

private void messageQueuel_Recei veConpl et ed(
obj ect sender,
Recei veConpl et edEvent Args e)

ReceivedCompleted
event is raised

{
string s="(null)";
if (e.Message != null & e.Message.Body != null)
{
s=e. Message. Body. ToStri ng();
}
Updat eMessageDi spl ay(s);
}

The MessageQueue object follows the asynchronous design pattern. The Begi n-
Recei ve method returns instantly, allowing the calling thread to continue processing.
In the case of a Windows Forms application, this processing is servicing the Win32
message pump. Using Begi nRecei ve allows the application to respond to user
interaction while it is waiting for an MSMQ message to arrive.

Once a message arrives, the messageQueuel_Recei veConpl et ed method is
invoked. This is because the method is associated with the Recei veConpl et ed event.
It is important to understand that the messageQueuel_Recei veConpl et ed
method will execute on the main thread.

CHAPTER 17 DESIGNING WITH THREADS

The messageQueuel_Recei veConpl et ed method is associated with the
Recei veConpl et ed event during the application initialization. The following
associates the method with the event:

Recei veConpl et edEvent Handl er handl er;

handl er =new Recei veConpl et edEvent Handl er (messageQueuel_Recei veConpl et ed) ;
messageQueuel. Recei veConpl et ed += handl er;

The handler variable is introduced to improve readability. The key element is the +=
operator being applied to the Recei veConpl et ed event. When a Begi nRecei ve
operation completes, and no callback has been passed to Begi nRecei ve, the
Recei veConpl et ed event will be raised.

Using BeginReceive with a callback

Another way of receiving messages asynchronously is to pass a callback to Begi n-
Recei ve. Listing 17.13 contains an example showing the use of a callback with the
Begi nRecei ve method.

private void button3_Cick(object sender, System EventArgs e)

{
AsyncCal | back cal | back = new AsyncCal | back(cal | backMet hod) ;
messageQueuel. Begi nRecei ve(MessageQueue. | nfi ni t eTi neout, nul |, cal | back) ;

} The callback obj
t
private void cal | backMet hod(1 AsyncResult ar) ¢ catihack objec

is passed to

{ BeginReceive

Syst em Messagi ng. Message nsg;

msg = messageQueuel. EndReceive(ar); @ EndReceiveisused

string s="(null)"; to re.trieve the

if (msg !'= null & nmeg.Body != null) received message

{

s = msg. Body. ToString();

}

Updat eMessageDi spl ay(s);
}

||

@ Begi nRecei ve can accept an instance of the AsyncCal | back class. The method
associated with the callback is invoked when a message is received. In this case cal | -
backMet hod is invoked when a message is received and Begi nRecei ve has been
previously executed. At most one message will be received.

@® EndRecei ve accepts an instance of an object that supports | AsyncResul t as its
only parameter. It returns the message that was received and triggered the invocation
of the callback. The message we received in this case is a very simple one; it contains a
single string.

MESSAGE QUEUE EXAMPLE 293

17.3

294

A variation on this approach is to have the callback method begin the next read. This

allows for a lightweight way of keeping a message queue empty. Listing 17.14 contains
a modified callback method.

Listing 17.14 Method that continually processes messages in a queue (C#)

private void cal |l backMet hodQueued ean(| AsyncResult ar)
{

Syst em Messagi ng. Message nsg;

msg= nessageQueuel. EndRecei ve(ar);

string s="(null)";

if (meg !'= null & nsg.Body != null)

{

s = meg. Body. ToString();

}
Updat eMessageDi spl ay(s);

AsyncCal | back cal | back = new AsynccCal | back(cal | backMet hodQueued ean) ;
nmessageQueuel. Begi nRecei ve(MessageQueue. | nfini t eTi neout, nul I, cal | back) ;

In this section we’ve examined the MessageQueue object and its support for asyn-
chronous processing. By emulating this and other objects in the .NET framework, you
can develop an easy-to-reuse object. This is one of the biggest benefits of using design
patterns: They allow users of an object to have a baseline level of understanding once
they know which pattern an object follows.

ONE CLASS ONE THREAD

There are times that we want to perform asynchronous execution without caring about
the results. An example is error logging. When an error occurs, often one of the first
things needed is to record that error for later analysis. Once the request to record the
information is made, the next order of business is recovering from the error. Since future
processing is not dependent upon the outcome of the error logging routine, it can con-
tinue while the error is being recorded. To demonstrate a different approach to asyn-
chronous design this section discusses a multithreaded logging class. Figure 17.6 shows
the test harness for the logging class.

We'll start by examining the code that executes when Initialize Logger button is
clicked. Listing 17.15 contains the relevant code.

Listing 17.15 Logger initialization code (VB.NET)

Try

If Not log Is Nothing Then Clean up any previous

| 0g. Shut down() instances of the logger
End If

| og = New Logger ()

CHAPTER 17 DESIGNING WITH THREADS

| 0g. LogFi | e = text BoxLogFi | enane. Text

| 0g. MessageQueuePat h = t ext BoxMQPat h. Text

| 0og. Event LogSour ce = t ext BoxEvent LogSour ce
| 0g. URL = text BoxURL. Text

/@ Set the logging
destination

parameters

. Text

| 0g. SQLConnectionString = textBoxConnect. Text

| 0g. SQLCommandText For mat = t ext BoxCommand.
Di m t npWhere As Logger. WereTolLog
tnpWhere = 0
I f checkBoxDat abase. Checked Then
tnpWhere = tnmpWhere Or Logger. WhereTolLog
End If
I f checkBoxEvent Log. Checked Then
tnpWhere = tnpWhere Or Logger. WhereTolLog
End | f
I f (checkBoxMQ Checked) Then
tnpWhere = tnmpWhere Or Logger. WhereTolLog
End If
I f (checkBoxText Fil e. Checked) Then
tnpWhere = tnmpWhere Or Logger. WhereTolLog
End If
I f (checkBoxTrace. Checked) Then
tnpWhere = tnmpWhere Or Logger. Wher eTolLog
End If
I f (checkBoxWeb. Checked) Then
tnpWhere = tnpWhere Or Logger. WhereTolLog
End | f

Text

. Dat abase

. Event Log

. MessageQueue

.File

. Trace

. WebPage

| og. LogTo = tnpWere © Set the logging
Catch ex As Exception destination flag

MessageBox. Show ex. Message)
End Try

™ Error Logging Tester =1

vV Trace

[TestFile IC:\temp\Iugfile.txl

[~ MessageQueue I,\F'rivaleﬂ;\M anningT hreads

[~ EventlLog ITeleogger

[~ Wweb Ihtlp:Hlocalhoslr’testupInadftestuplnad.aspx

[~ Database Iuser id=sa:password=;initial catalog=LoggerT est;data source=.

Iexel: AddMessage "{0}'

Initialize Logger Log Exception

|
Log Message |
|

Log Message and Exception

ONE CLASS ONE THREAD

Figure 17.6
Logging class test harness

295

2]

First we check to see if an instance of the Logger class has been previously created. If
it has, the Shut down method is called, cleaning up the background thread. Next an
instance of the Logger class is created and assigned to the log member variable.

Depending on the destination we select, there are several values that are required.
For instance, if we select that we want the logging to go to a text file we must supply
a file name.

The logging destination is a product of using binary on an enumeration. The Wher e-
ToLog enumeration is assigned powers of two. This allows a single value to determine if
content is sent to multiple locations. The following is the definition of the enumeration:

Publ'i ¢ Enum Wher eTolLog
Trace =1
File = 2
WebPage = 4
EventLog = 8
MessageQueue = 16
Dat abase = 32

End Enum

As you can see the Logger class provides support, albeit limited, for logging to text
files, web pages, the Windows NT event log, and MSMQ. The idea here is to demon-
strate the concept, not produce an enterprise-quality logging component.

When the Log Message button is clicked the string that is contained in the textbox
beside it is sent to the logging component. The following instructions execute:
If log I's Nothing Then

MessageBox. Show("Log not initialized")

El se

| 0g. LogMessage(t ext BoxMessage. Text)
End |f

At this point we’ve discussed the test program enough to dive into the actual Loggi ng
class. Listing 17.16 contains the most relevant code elements. The attempt here is to
focus on the more interesting aspects of the class. The full source for this, and all
examples, is available from the publisher’s web site.

Publ'ic O ass Logger

. . Used to control the
Private stopRunni ng As Bool ean

) : thread’s processing
Private sonet hingToDo As Manual Reset Event
Private nessagesToLog As System Col | ecti ons. Queue
Private workerThread As Thread 1

.) . Preserves the messages
Private destination As WhereTolLog

until they can be logged

CHAPTER 17 DESIGNING WITH THREADS

Public Sub New()
st opRunni ng = Fal se
sonet hi ngToDo = New Manual Reset Event (Fal se)
messagesToLog = System Col | ecti ons. Queue. Synchroni zed(
New System Col | ecti ons. Queue())
filename = ""
destination = WhereToLog. Trace Or WereTolLog. Event Log
wor ker Thread = New Thread(AddressOf Thr eadMet hod) /e Creates an

wor ker Thr ead. Nane = "Loggi ng worker thread" instance of the
wor ker Thr ead. | sBackground = True Thread class
wor ker Thread. Start ()

End Sub

Publ i c Sub Shut down() Terminates the
st opRunni ng = True /o working thread
sonet hi ngToDo. Set ()

End Sub

Public Sub LogMessage(ByVal message As String) Returns before
messagesTolLog. Enqueue(nessage) /e the message has
sonet hi ngToDo. Set () been processed

End Sub

Private Sub LogToFile(ByVal message As String)
If (filename.Length = 0) Then
Throw New Exception("Filename not set and File is target to log to")
End |f
Dim stream As Fil eStream
stream = Fil e. Open(
fil enane, Fil eMbde. Append, Fil eAccess. Wite, FileShare. Read)
stream Seek(0, SeekOrigin. End)
Di mcontents() As Byte
contents = System Text.Encodi ng. ASCI | . Get Byt es(nmessage)
stream Wite(contents, 0, contents.Length)
stream C ose()
End Sub

Private Sub LogString(ByVal message As String)

If ((destination And WereTolLog. Trace) > 0) Then
Trace. Wi teLi ne(nessage)

End I f

If ((destination And WhereTolLog. File) > 0) Then
LogToFi | e(rmessage + "\r\n")

End I f

If ((destination And WereTolLog. WebPage) > 0) Then
LogToWebPage(nessage)

End |f

If ((destination And WereTolLog. MessageQueue) > 0) Then
LogToM) nessage)

End | f

If ((destination And WereTolLog. EventLog) > 0) Then
LogToEvent Log(nessage)

End I f

ONE CLASS ONE THREAD 297

298

If ((destination And WereTolLog. Dat abase) > 0) Then
LogToDB(nessage)
End | f
End Sub
Private Sub ThreadMet hod()
Whi | e (Not stopRunning)
Whi | e (nessagesTolLog. Count > 0)
Try
Di m nessage As String
nmessage = CType(nmessagesTolLog. Dequeue(), String)
LogSt ri ng(message) Rem?"es
Catch ex As Exception entries from
. the queue and
System Di agnosti cs. Trace. Wi teLi ne(ex. ToString())
End Try processes them
End Wile
sonet hi ngToDo. Reset ()
sonet hi ngToDo. Wi t One(1000, Fal se)
End Wile
End Sub
End d ass

@ The majority of the time the logging component will not be processing any messages;

that is, assuming that it’s running with relatively high-quality code. So it doesn’t con-
sume unneeded resources, we use a Manual Reset Event to signal the thread that
there’s something to do.

@ As we've done in past examples we use a queue to act as the connection point between

the calling threads and the worker thread. To ensure that there are no concurrency
issues, we use the Shar ed/ st at i ¢ Synchr oni zed method of the Queue class to
convert the Queue to a thread-safe queue.

© The next step is to create an instance of the Thr ead class to be associated with the

thread’s method. This should look very familiar. The last step in the New/const r uct or
is to start the newly created thread.

O The Shut down method terminates the thread. This is accomplished by setting the

st opRunni ng data member to true. The thread’s method contains a main loop that
checks the value of st opRunni ng. If this code was going into a production environ-
ment, St opRunni ng should be protected with a synchronization lock. Any time a
class data member can be manipulated by different threads it should be protected with
a synchronization lock or be thread-safe. The frequency of Shut down execution
should be very low, if at all.

LogMessage enters a string into the queue that the thread processes and sets the
Manual Reset Event to being signaled. This has the effect of waking up the thread
and starting the processing.

CHAPTER 17 DESIGNING WITH THREADS

@ The thread’s job is to keep the queue empty. To ensure a message doesn’t get “stuck” in
the queue, we set a one-second timeout on the Wai t One method of Manual Reset -
Event . This will ensure that the thread will check the queue for work once a second
or when it is signaled.

This example demonstrates a class that is multithreaded and does not require the code
that uses the class to know anything about the multithreaded implementation. If processing
is not dependent on the outcome of a task, asynchronous execution should be considered.

174 PERFORMANCE ISSUES

When designing multithreaded applications, you must to consider the performance
implications of each design decision. A common mistake when learning a new technol-
ogy is to apply it to every problem. This is a natural tendency, but should be restrained
as much as possible. Instead, take the new concepts and apply them to situations where
they provide value. Otherwise, the result will be solutions that are difficult to maintain
and cumbersome to use.

In this section we'll briefly cover the cost of multithreaded development, the concept
of concurrency, and the implication of multiple processors in a system.

1741 Multithreading overhead

Threads aren’t free. This is a simple statement, but it should be in the back of your
mind at all times when designing a multithreaded solution. The creation of threads is
relatively inexpensive, compared to creation of a process under Windows OS. This
doesn’t mean that large numbers of threads should be created, but rather that the cost
of using a thread is not as high as some of the alternatives.

Thread pools take much of the difficulty out of multithreaded development. If a
task is short in duration, and relatively frequently occurring, it is a likely candidate for
a thread pool. If a task is longer lived it may require the creation of a thread.

A key element with multithreaded design is balancing the need for independent
components that are self-contained with the minimization of the number of threads
required. Any time there is the possibility that a large number of threads can be created,
such as servicing a large number of requests, the architecture should be revisited and
most likely redesigned.

174.2 Increasing concurrency

Concurrency is a measure of the number of activities that occur at roughly the same
time. If high performance is a design goal then general concurrency should be maxi-
mized. Concurrency must be balanced against creating a large number of threads. This
isn’t an exact science, but rather a skill that is developed over time.

One approach is to develop a working, low-concurrency solution initially and increase
concurrency to meet throughput requirements. This approach allows for optimization
in areas that are known to be performance bottlenecks. It is much easier to improve on
working code than it is to attempt to predict where the improvements will add value.

PERFORMANCE ISSUES 299

174.3

17.5

300

The nature of the work being performed will influence the design. As with all designs
the tasks being performed will impact the decisions made. There is no magic formula
for multithreaded applications. There are design patterns than can be followed that work
for a certain class of problems, but there is no general solution. Experience, benchmark-
ing, and patience are the best tools for becoming a seasoned multithreaded developer.

Implications of multiple processors

Multiple processors allow multiple threads to execute simultaneously. This is a tremen-
dous benefit for high-performance systems. The cost of the parallelism comes in the
form of shared memory. Anytime values must be shared between threads there is a
considerable performance penalty if multiple processors are involved. The basic problem
is that all involved threads must reach a state when the value is certain to be correct.
The impact of shared values among threads should motivate designers to minimize
sharing of data as much as possible.

As mentioned earlier, testing should always be done on a system that is similar to
production. There are concurrency issues that will not occur, or occur very infrequently,
on a single-processor system that will occur with a high degree of regularity on a multiple-
processor system. The result of this sort of situation is generally reflected in a developer
saying “It works on my machine,” which does little to solve the production issue.

SUMMARY

This chapter has revisited the design considerations that have been covered throughout
this book. The most important concept to take away from this chapter is that there is no
single correct way of using multiple threads. As with many things, there are wrong ways
of solving the problem, but there is no magical algorithm that will solve all design issues.

We have covered the asynchronous design pattern and seen how it is implemented
in various .NET objects. The asynchronous design pattern is an ideal approach to use
for many situations. One of the key advantages it has over other approaches is that
developers will become very familiar with it as they do .NET development. By creating
custom libraries that follow this pattern, developers will have a pretty good idea of how
to use your library without having it explained to them.

We also covered the concept of associating a class with a single working thread.
This generally involves a queue, and the thread’s job is to keep that queue empty. A
one-class one-thread approach works well for situations where the caller of a method
does not care about the result of the processing of that method. Additionally, classes
that contain multiple threads appear to the users of those classes as though they were
any other class. An example of such a class in the .NET framework is WebCl i ent . It
is multithreaded, but the users of the class aren’t required to know that fact to use it.

It is important when dealing with a new topic to not forget the lessons learned with
previous technologies. All too often when faced with an unfamiliar task we forget the
discipline, structure, and procedures that have served us well in the past.

CHAPTER 17 DESIGNING WITH THREADS

18.1

18.1.1

CHAPTEHR 1 8

Multithreading in [#

18.1 J#’s Thread class 301

18.2 The Runnable interface 314
18.3 Concurrency control in J# 317
18.4 Summary 328

J# is very similar to Microsoft J++ and Java programming language. It is intended to
provide a way for developers familiar with Java to utilize the .NET platform.

J#'S THREAD CLASS

J# contains a Thr ead class that is very similar to the Syst em Thr eadi ng. Thr ead
class. One fundamental difference is that the NET Syst em Thr eadi ng. Thr ead
class is sealed. This means that it cannot be inherited from. In J# it’s possible, and
often desirable, to subclass the Thr ead class.

Extending the Thread class

One way that J# allows for threads to be created is by inheriting from the Thr ead class.
In C# and VB.NET the Thr ead class is a sealed class. It contains methods and proper-
ties relating to threads and their creation. J# takes an older approach where a class can
be created that contains an overridden method named r un that is the entry point for
the new thread. Listing 18.1 contains a class that was created by subclassing Thr ead.

301

18.1.2

302

package Subcl assi ngThr ead;
public class ThreadedC ass extends Thread

{
public void run()
{
for (int i=0;i< 100;i++)
{
try
{
String s;
s =System Convert. ToString(i);
System Di agnosti cs. Debug. Wit eLi ne(s);
t hi s. sl eep(1000);
}
catch(I nterruptedException ex)
{
/1 Someone cal |l ed interupt
System Di agnosti cs. Debug. WiteLine(ex.toString());
}
}
}
}

Notice the only method contained in the Thr eadedC ass is r un. This example
prints out 0 to 99, pausing one second between each iteration. The following is an
example of using the Thr eadedd ass:

Thr eadedd ass c;
¢ = new Threadedd ass();
c.start();

Notice that we don’t call run directly but instead call the start method. The
st art method invokes r un on a different thread. The st op method is used to halt
a thread’s execution. This is similar to the Abort method used in C# and VB.NET.
The following causes the thread to stop executing:

c.stop();

The J# Thr ead class is similar to the Syst em Thr eadi ng. Thr ead class. In the
next section we compare and contrast the two classes.

Comparing the Thread class to System.Threading.Thread

The Thread class and the Syst em Thr eadi ng. Thread class are similar in
many ways.

CHAPTER 18 MULTITHREADING IN J#

Setting a thread’s name

We've discussed the advantages of assigning a name to a thread. J# uses functions to
manipulate a thread’s name instead of properties. Listing 18.2 contains the J# version
of listing 5.2.

Listing 18.2 Setting a thread’s name in J# using the setName function (J#)

package ThreadNang; The setName function is used to
public class \bSiteMnitorConsol e assign a new name to a thread
{
/** @ttribute System STAThread() */ .
public static void main(String[] args) The getName function returns
{ the name of the thread
Syst em Consol e. Wit eLi ne(Thread. current Thread(). get Nanme());

Thread. current Thread() . set Name(" Mai n"); <
System Consol e. Wi teLi ne(Thread. current Thread(). get Nane());

WebSi t eMoni tor Sitelnitor;

SiteMnitor = new WebSiteMnitor("http://|ocal host/test. htni, 1000);
SiteMonitor. Start();

try
{
Thread. current Thread() . sl eep(15000);
}
catch(l nterruptedException ex)
{
System Consol e. Wi teLi ne(ex. get Message());
}

SiteMonitor. Abort();
SiteMonitor.Join();

Notice the addition of the initial Wi t eLi ne to the console. It displays the name of the
main thread before the call to set Nan®e is made. In J# the main thread’s name is set to
main when the thread is created. Additionally, the name of the thread can be changed
any number of times. This is different from the Syst em Thr eadi ng. Thr ead
class, which does not allow the name of a thread to be changed once it has been set.

Listing 18.2 uses the WebSi t eMoni t or class. Listing 18.3 contains the J# version
of that class.

Listing 18.3 The J# version of the WebSiteMonitor class from chapter 5 (J#)

package ThreadNane;
public class WebSiteMnitor extends Thread (@ Utilizes the
{ Thread class
String URL;
I ong startMs;
| ong st opMs;

J#°S THREAD CLASS 303

304

| ong | ast Request HowLong;
I ong sl eepTi ne;

public WebSiteMnitor(String URL, int sleepTine)

{

t hi s. sl eepTi me=sl| eepTi ne;
this. URL = URL;

}

public void Start()

{ . .) . . Controls the name
t hi s. set Nare(" WebSi tel\/bry_t or"); 0 of the thread
this.start(); @ Utilizes the

} Thread class

public void Abort()

{
this.stop(); (1] Utilizes the

} Thread class

public void Join()

{
try
{

this.join(); Utilizesthe
} Thread class
catch (InterruptedException e)
{
}

}

public void run() @ Utilizes the

{ Thread class

System Consol e. Wi teLi ne(Thread. current Thread(). get Name());
bool ean notify ;

while (true)

{
notify = fal se; Uses the
System Net. WebClient client; framework’s
client= new System Net.WbCient(); Ve WebClient class

ubyte[] data ;

start Ms= SystemcurrentTimeM I lis();
data = client. Downl oadDat a(URL) ;
stopMs= SystemcurrentTimeM I lis();

| ast Request HowLong = stopMs - startMs;

String results ;

results = System Text. Encodi ng. get _ASCI | (). CGet String(data);
if (results.indexOf("OK') < 0)

{ notify = true;
}
if (notify)
{
/'l Let someone know
}

CHAPTER 18 MULTITHREADING IN J#

try

{
Thr ead. current Thread() . sl eep(sl eepTi ne);
}
catch(l nterruptedException e)
{
}

@ Notice that VVebSi t eMbni t or inherits from the Thr ead class. When you’re extending
the Thr ead class it is necessary to include an overridden version of the r un method.
The run method replaces the Thr eadMet hod of chapter 5. Notice that the class
utilizes the st art , st op, and j oi N methods. These methods are inherited from the
Thr ead class. We’ll discuss these methods in the next section.

@® J# uses a function approach to setting values of a class. The set Nane function per-
forms the same operation as the set portion of the Name property of the framework’s
Thr ead class. As mentioned earlier, the set Name function is less restrictive than the
Name property in that it allows multiple assignments.

© One reason that people use J# is to have access to the .NET framework. Notice that
we're using the framework’s WebCl i ent class. This sort of migration is a powerful
tool for developers coming from the Java platform because it allows them to use the lan-
guage they are familiar with while taking advantage of the extensive library support
that .NET offers.

Starting, stopping, and joining a thread

In chapter 4 we spent a great deal of time discussing the creation, termination, and
coordination of threads. Since .NET has many of its roots in the Java world, it’s not
surprising that J# contains very similar methods. Other than the obvious capitaliza-
tion changes the most major difference is the absence of an Abort method. Instead,
J# uses a st op method. Recall from chapter 4 that the Abort method causes
Thr eadAbor t Excepti on to be raised on the thread. This allows the thread the
alternative of calling Reset Abort and ignoring the termination request. In J# the
st op method causes the thread to terminate without allowing the thread the oppor-
tunity to decline the request.

The st op method is deprecated, which means that it may be removed in future
releases of J#. Rather than using the st op method it’s recommended to have a Boolean
control the thread’s execution. Generally threads contain a main loop, which should
test the value of a Boolean that indicates when it’s time to terminate.

J#’S THREAD CLASS 305

306

The start and j oi n methods behave as we’d expect. Listing 18.4 contains a
simple class that extends the J# Thr ead class.

Listing 18.4 A class derived from Thread that outputs four asterisks, one per

second (J#)

package StartJoin;
i nport System Consol e;
public class OQther extends Thread

{
public void run()
{
Console. WiteLine("Starting other thread");
for (int i=0;i<4;i++)
{
Consol e. WitelLine("*");
try
{
Thr ead. sl eep(1000) ;
}
catch (InterruptedException ex)
{
}
}
Consol e. WiteLine("Exiting other thread");
}
}

The Ot her class is derived from the J# Thr ead class. It contains a single overridden
version of the r un method. This method is the entry point for the thread. The console
application that creates an instance of this class and starts it is included in listing 18.5.

Listing 18.5 The main class of the console application (J#)

package StartJoin;
i nport System Consol e;
public class C assMin
{
[** @ttribute System STAThread() */
public static void main(String[] args)
{
Consol e. WiteLine("Starting main thread");
O her ot her Thread;

C th

ot her Thr ead=new O her () ; ota:es::hreead to
ot her Thread. start(); begin executing
Thread. yield(); (2] Releafes the
Consol e. Wi teLi ne("Joi ning other thread"); :;m:‘.'“de"le

e time slice
try Pauses until the
{ other thread

otherThread.join(); @ terminates

CHAPTER 18 MULTITHREADING IN J#

}
catch (InterruptedException ex)
{

}
Consol e. WitelLine("Joined other thread");

Consol e. WiteLine("Exiting nmain thread");

@ Thestart method causes ot her Thr ead to begin executing the r un method on a
different thread. This is identical to the framework version of the r un method.

@ Theyi el d method causes the current thread to surrender the remainder of its time to
the OS. This allows other threads the chance to run. It is used here to allow the other
thread time to start before signaling the main thread to j 0i n. This isn’t required, but
it makes the output look more logical.

© The J# j 0i n method causes the current thread to wait until the thread associated
with the instance of the J# Thr ead class terminates. This is the same behavior that

we saw with the Syst em Thr eadi ng. Thr ead Joi n method.
The following output is generated when the code from listings 18.4 and 18.5 executes:

Starting main thread
Starting other thread

*

Joi ning other thread

*
*

*

Exiting other thread
Joi ned ot her thread
Exiting main thread

Notice that the main thread starts and then the other thread starts. Next the main
thread j 0i ns to the other thread, waiting for its termination. When the other thread
terminates the main thread resumes processing, displaying the “Joined other thread”
message and then terminating.

Controlling thread priority

In chapter 5 we discussed changing a thread’s priority. Recall that a thread was assigned
a priority from the Thr eadPri ori t y enumeration. J# takes a different approach. A
thread is assigned a priority from between the M N_PRI ORI TY and MAX_PRI ORI TY
constants. Under the current implementation of J#, these map to 1 and 10 respectively.
You'll notice that produces ten possible priority settings compared to the five enumera-
tion values in the ThreadPriority class: Lowest, Bel owNor mal , Nor nal ,
AboveNor nal , and H ghest . Listing 18.6 helps us map J#’s ten values to each of
the ThreadPri ori ty values.

J#°S THREAD CLASS 307

308

Thread j sThread;
jsThread = Thread. current Thread();

System Threadi ng. Thread framewor kThr ead;
f ramewor kThread =Syst em Thr eadi ng. Thr ead. get _Current Thread();

for (int i= Thread. MN_PRICRITY; i <= Thread. MAX_PRI ORI TY; i ++)
{

Console. Wite(i);

Console. Wite("\t");

jsThread. setPriority(i);

Consol e. Wi teLi ne(franmeworkThread. get_Priority());

Listing 18.6 produces the following output:

Lowest
Lowest

Bel owNor nal
Bel owNor nal
Nor ma

Nor ma
AboveNor ma
AboveNor nal
Hi ghest

Hi ghest

© oo ~NO O~ WNEPRE

=
o

The first column is the J# thread priority while the second column is the corresponding
ThreadPri ority enumeration value. The reason for the ten values is compatibility
with other implementations of Java. Under the Windows OS there are only five priority
values that a thread can be assigned. By mapping two J# values to one Thr eadPr i -
or i t y enumeration value an even distribution is achieved.

Inspecting a thread’s state

The .NET framework allows for exhaustive inspection of a thread’s state. J# provides
limited facilities for determining a thread’s state. The two methods available in J# are
i sAliveandislnterrupted. Thei sAl i ve method is functionally equivalent
to the framework thread’s | SAl i ve property. There isn’t a method in the framework
Thr ead class that is comparable to the i s| nt er r upt ed function. Inidally, i sl n-
t er r upt ed returns false. After the i nt er r upt method is called on a J# thread the
function returns true until the thread enters a sleep state. An example that demon-
strates this behavior will help shine a little light on the concept. Listing 18.7 contains
a class that extends the J# Thr ead class.

CHAPTER 18 MULTITHREADING IN J#

Listing 18.7 A thread that loops printing out asterisks (J#)

package ThreadSt at e;
i nport System Consol e;
public class O herThread extends Thread

{
private int iterations=0;
public G herThread(int iterations)
{
this.iterations=iterations;
}
public void run()
{
for (int i=0;i<iterations;i++)
{
try
{
Consol e. WitelLine("*");
Thr ead. sl eep(1000) ;
}
catch(I nterruptedException ex)
{
Console. WiteLine("!");
}
}
}
}

The thread in listing 18.7 doesn’t do much. The thread loops for a configurable num-
ber of times, printing an asterisk to the console. When some other thread causes an
interrupt to occur, an exclamation mark is displayed. The mai n portion of this example
is contained in listing 18.8.

Listing 18.8 The main class of the console application (J#)

package ThreadSt at e;
public class C assMin
{
private static void displayStatus(CQ herThread t, String nessage)
{
String status = nessage + " ";
status +=t.isAlive() + " "
status += t.islnterrupted() + " “;
System Consol e. Wi telLi ne(status);
}
/** @ttribute System STAThread() */
public static void main(String[] args) throws Exception
{

System Consol e. Wi teLi ne("Message isAlive islnterrupted");

J#’S THREAD CLASS 309

310

O herThread t;
t=new O her Thread(5);

di spl ayStatus(t,"Before Start ");
t.start();

Thr ead. sl eep(1000) ;

di splayStatus(t,"After Start ");

t.interrupt();
di splayStatus(t,"After Interrupt ");
for (int i=0;i< 6 ;i++)
{
Thr ead. sl eep(1000) ;
di splayStatus(t," ")
}
Syst em Consol e. Read() ;

The main function starts off by writing a header to the console. Next it creates an
instance of the Ot her Thr ead class from listing 18.7. The main function calls di s-
pl ay St at us, which calls both i SAl'i ve and i sl nt errupt ed on the supplied
instance of Gt her Thr ead and displays their return values on the console. Next the
main thread sleeps for a second to give the instance of the &t her Thr ead time to
start. Next display status is called again. To see the behavior of the i sl nt er r upt ed
function we call i nt er r upt on the instance of the & her Thr ead. This forces the
thread to exit the sleep state and resume processing. The code in listing 18.8 produces
the following output:

Message isAlive islnterrupted
Before Start fal se fal se

*

After Start true fal se

After Interrupt true true
!

*

true fal se
true fal se
true fal se

true fal se
fal se fal se
fal se fal se

Notice that the i sI nt er r upt ed value switches from false to true and then back to
false. When the instance of & her Thr ead invokes the sl eep function, it clears the
i sl nterrupt ed flag. After the instance of & her Thr ead has completed execution,
you can see the value for i SAl i ve switch from true to false.

CHAPTER 18 MULTITHREADING IN J#

Background threads

In chapter 5 we discussed foreground and background threads. Recall that all back-
ground threads are terminated at the point all foreground threads exit. J# refers to
background threads as daemon threads. The word daemon as used here is from ancient
Greek. Often it is confused with demon from Judaism and Christianity, which refers to
an unclean spirit. As used here it refers to an entity that keeps watch on things, some-
thing background threads are often tasked with.

To control if a thread is a background thread in J# we use the set Daenon
method. The i sDaenon method returns a Boolean that indicates if the associated
thread is a background thread. Listing 18.9 is a console application that uses the &t her -
Thr ead class from listing 18.7 and demonstrates background threads.

package BackgroundThread;
i mport System Consol e;
public class C assMin
{
[** @ttribute System STAThread() */
public static void main(String[] args) throws Exception
{
System Consol e. Wit eLi ne(" Message isAlive isDaenon");
Q herThread t;
t=new O her Thread(5);
di spl ayStatus(t,"Before Start ");

Consol e. WiteLine("OQther thread is Daemon? [Y/N");
String i nput = Consol e. ReadLi ne();

if (input.toLowerCase().charAt(0) == "'y")

{

t.set Daenon(true);

}

t.start();

Thr ead. sl eep(1000) ;

di splayStatus(t,"After Start ")

Consol e. WiteLine("Main thread exiting");
}

private static void displayStatus(QherThread t, String nmessage)
{

String status = nmessage + " ",

status +=t.isAlive() + " "

status += t.isDaenon();

Consol e. Wi teLi ne(status);

J#°S THREAD CLASS 311

312

This program asks the user if he or she wishes the other thread to be a daemon
thread. The user types in a string. If that string starts with a ¥ the other thread is set
to be a daemon thread. Here’s an example of the output when the user types a -

Message isAlive isDaenon
Before Start fal se fal se

O her thread is Daenmon? [Y/ N

Y

*

After Start true true

Main thread exiting

*

Because of timing issues the main thread exits first. The key element is that when the
main thread terminates the background thread is stopped. The following shows what
happens when the user types in /V:

Message i sAlive isDaenpn
Before Start false false

O her thread is Daenon? [Y/ N

N

After Start true false

Main thread exiting

*
*
*

*

Notice that the other thread continues to execute after the main thread has exited.
The reason is that both the main thread and the other thread are foreground threads.

Suspending and resuming a thread

In chapter 5 we discussed suspending and resuming threads. J#’s versions of suspend
and r esune function much like their Syst em Thr eadi ng. Thr ead counterparts.
The only noticeable difference is that the J# methods do not raise exceptions when they
are called from an incorrect state. For example, if a thread is not in the suspended state
and the framework’s r esune is called, a Thr eadSt at eExcept i on is raised. The J#
methods do not raise exceptions based on thread state. Listing 18.10 contains the listing
of a console application that allows the user to suspend and resume the other thread.

Listing 18.10 Allowing the user to suspend and resume the other thread

interactively (J#)

package PauseAndResune;
i nport System Consol e;
public class ClassMain

{
/** @ttribute System STAThread() */

CHAPTER 18 MULTITHREADING IN J#

public static void main(String[] args) throws Exception
{
Q herThread t;
t=new O her Thr ead(100);
t.set Daenon(true);
t.start();
Console. WiteLine("q Qit");
Consol e. WitelLine("s = Suspend");
Consol e. WiteLine("r = Resune");
bool ean keepGoi ng = true;
whi | e (keepGoi ng)
{

String input = Consol e. ReadLi ne();
char inputChar = input.toLowerCase().charAt(0);
swi t ch(i nput Char)
{
case '(':
keepCGoi ng =f al se;
br eak;
case 's':
t.suspend();
br eak;
case 'r':
t.resune();
br eak;

The following output shows that an exception isn’t raised when the thread is running
and r esune is called:

g = Qit

s = Suspend
r = Resune
*

*

*
r*

*

*

Notice that the other thread is executing and r esume is signaled. The suspend and
resune methods are deprecated, meaning they will likely be removed from J# in
future releases. Rather than having an external thread control the execution of a thread,
it’s better to have the thread itself control it using the wai t and sl eep statements.
This removes the possibility that the thread is suspended at a point where it has a
resource allocated, such as a synchronized region of code.

J#°S THREAD CLASS 313

18.2 THE RUNNABLE INTERFACE

314

J#, along with C# and VB.NET, allows for inheritance from only one class. This single
inheritance restriction greatly simplifies object-oriented development. There are times that
it is desirable for a class to contain multiple types of reusable functionality. This is where the
concept of an interface comes in. An interface is nothing more than a way of stating what
methods and properties an object must implement if it claims to support an interface.

The Runnabl e interface in J# is used to create threads without deriving from the
Thr ead class. If an object implements the Runnabl e interface it must contain a
method named run that accepts no parameters and does not return a value. The
instance of the object that supports the Runnabl e interface is passed to the constructor
of the Thr ead class. The instance of the Thr ead class can then be used to start the
thread, which will begin executing the r un method. Listing 18.11 contains a base class
that provides an Qut put method. This is intended to serve as an example of the need
for interfaces, not to demonstrate object-oriented design. This class is overly simple in
the hope that it will make the concepts clearer.

Listing 18.11 A very simple base class (J#)

package Si npl eRunnabl e;
i nport System Consol e;
public class BaseCd ass

{
protected void Qutput(String nmessage)
{
Consol e. Wi telLi ne(nmessage);
}
}

Listing 18.12 contains a class that is derived from the Based ass class. Since the
Deri vedC ass class extends the BaseCd ass class, it cannot also extend the
Thr ead class. Instead, it implements the Runnabl e interface.

Listing 18.12 The DerivedClass implements the Runnable interface (J#).

package Si npl eRunnabl e;

public class DerivedC ass extends BaseC ass inplenments Runnable

{

public void run()

{
Qut put ("Enter Second thread");
try
{
Qut put (Thread. current Thread() . get Narme());
}
cat ch(Exception ex)
{

CHAPTER 18 MULTITHREADING IN J#

Qut put (ex. get Message());

}
for (int i=0;i<4;i++)
{
Qutput ("*");
}

Qutput ("Exit Second thread");

Because the Der i vedC ass claims to implement the Runnabl e interface it must
contain a function named run. The r un function is the entry point for the new
thread, just as it is when the class is derived from the Thr ead class. The r un function
is not called directly, but is invoked as a result of the st art method being invoked
on an instance of the Thr ead class.

Listing 18.13 contains the source code of a console application that creates an
instance of the Deri vedd ass, associates it with an instance of the Thr ead class,
and starts the new thread using the st art method.

Listing 18.13 Allocates an instance of the Thread class and starts the new

thread (J#)

package Si npl eRunnabl e;
i nport System Consol e;
public class ClassMain

{

/** @ttribute System STAThread() */

public static void main(String[] args)

{
Consol e. WiteLine("Enter main thread"); Implements
Derivedd ass deri ved; Runnable
derived = new DerivedC ass();
Thread theNewThr ead; I;““d tohstar;
t heNewThr ead= new Thread(derived); the new threa
t heNewThr ead. set Name(" SecondThr ead") ;
Console. WiteLine("Starting second thread");
theNewThread. start(); @© Starts the
try new thread
{

Console. WiteLine("Main thread is joining second thread");
t heNewThr ead. j oi n(); Waits until the run

} method terminates
catch(l nterruptedExcepti on ex)
{
}
Console. WiteLine("Exit Main thread");

}

}

THE RUNNABLE INTERFACE 315

@ The main class starts by declaring an instance of Deri vedCl ass named derived.
Next we allocate a new instance of Der i vedC ass. Der i vedC ass does not sup-
port the start, st op, orj oi n methods. To access those methods we must have an
instance of the Thr ead class.

® The t heNewThr ead class is an instance of the Thr ead class. Once an instance is
allocated using the newstatement, we can assign it a name, in this case Second Thread.
Notice that we pass in the instance of Deri vedd ass to the thread. This is very
similar to the use of the ThreadStart delegate in the Syst em Thr eadi ng
namespace in that it determines which method is invoked when the thread starts.

© SccondThread is now ready to start execution. As we’ve discussed previously, the st ar t
method is used to start a new thread. The entry point for the new thread is the r un
method of the instance of the object that was passed into the Thr ead’s constructor.

O The main thread pauses until SecondThread terminates, at the j 0i n statement. As
we've discussed previously the j 0i n method puts the calling thread into a wait state
until the thread associated with the instance of the Thr ead class terminates.

You’re probably noticing that this is very similar to the way we create threads using
the Syst em Thr eadi ng. Thr ead class. Listing 18.14 shows the similarities between
the C# implementation and the J# implementation using the Runnabl e interface.

Listing 18.14 Similarities between the Runnable interface and a ThreadStart

delegate (C#)

usi ng System
usi ng System Thr eadi ng;
nanespace NoThreadl nst anceExanpl e

{
cl ass Cl assMain
{
[STAThr ead]
static void Main(string[] args)
{
Thread t;
t =new Thr ead(new ThreadStart (run));
t.Start();
t.Join();
}
static void run()
{
for (int i=0;i< 4;i++)
{
Consol e. WitelLine("*");
}
}
}
}

316 CHAPTER 18 MULTITHREADING IN J#

18.3

18.3.1

The Thr eadSt ar t delegate performs a duty similar to that of the Runnabl e inter-
face. Recall that the Thr eadSt art delegate is used to associate a method with an
instance of the Thr ead class. That method can be static, belong to the current instance
of the class, or belong to some other class.

The r un method of the instance of the class that supports the Runnabl e interface
cannot be static. This means it must be an instance method. To state the obvious, that
method must belong to the class that supports the Runnabl e interface. All this means
is that the J# approach is slightly more restrictive than the delegate-based approach
used by the framework. Since J# is a .NET language, there’s no reason that the Sys-
t em Thr eadi ng. Thr ead class can’t be used. Most likely the Runnabl e approach
will be used when porting Java source code to the .NET environment.

CONCURRENCY CONTROL IN J#

Because of the nature of multithreaded development, concurrency control is a key in
any language. J# contains a robust set of synchronization mechanisms to ensure that
access to data elements is performed in a controlled fashion.

Synchronized regions

In chapter 7 we discussed creating regions of code that were protected by a lock. In C#
we used the | ock keyword and in Visual Basic .NET we used SyncLock. In J# the
same operation is performed using the synchr oni zed keyword. To see an example
of why locks should be performed, consider the class contained in listing 18.15.

package SyncTest;
i mport System Consol e;
public class UnSyncPrinter extends Thread
{
private String what ToPrint;
private int howvanyTi nes;
public UnSyncPrinter (String whatToPrint,int howvanyTi mes)
{
this. what ToPri nt = what ToPrint;
t hi s. howvanyTi nes = howvanyTi nes;
}
public void run()
{
int strlLength;
strLengt h=what ToPrint. | ength();
for (int i=0;i< howvanyTi nes;i ++)
{
for (int c=0;c< strlLength;c++)

{
Consol e. Wite(what ToPrint.charAt(c));

CONCURRENCY CONTROL IN J# 317

318

try

{
Thr ead. sl eep(100);
}
catch(l nterruptedException ex)
{
}

}
Console. Wite("\r\n");

This class prints the string that’s passed into the constructor onto the console one
character at a time. Between each character the thread pauses for one tenth of a second.
The number of lines printed is based on the value passed in to the constructor in the
howiviny Ti nmes parameter.

This class contains no synchronization. When more than one instance of this class
is created, the output of the two classes will be intertwined. Listing 18.16 contains a
version of the class from listing 18.15 that provides synchronization.

Listing 18.16 SyncPrinter protects the output of each line with a synchronized

region of code (J#).

package SyncTest;
i nport System Consol e;
public class SyncPrinter extends Thread
{
private String what ToPrint;
private int howMvanyTi nes;
private Object |ock;
public SyncPrinter(Object |ock, String whatToPrint,int howvanyTi nes)
{
t his. | ock=l ock;
this. what ToPrint = what ToPrint;
t hi s. howivanyTi nes = howvanyTi nes;
}
public void run()
{
int strlLength;
strLengt h=what ToPrint. | ength();
for (int i=0;i< howManyTines;i ++)
{
synchroni zed(| ock)
{
for (int c=0;c< strlLength;c++)
{
Consol e. Wite(what ToPrint.charAt(c));
try

CHAPTER 18 MULTITHREADING IN J#

{
}

catch(l nterruptedException ex)

{
}

Thr ead. sl eep(100);

}
Console. Wite("\r\n");

Notice that listing 18.16 has an additional parameter passed to the constructor. Access
to the synchronized region is controlled by the use of this object. Listing 18.17 contains
the main class from a console application that demonstrates the importance of having
synchronized regions.

Listing 18.17 Demonstrates the need for synchronized regions of code (J#)

package SyncTest;
i nport System Consol e;

public class Cl assSyncTest
{
/** @ttribute System STAThread() */
public static void main(String[] args)
{
Consol e. Wi teLi ne("Unsynchroni zed");
UnSyncPrinter one;
UnSyncPrinter two;
SyncPrinter three;
SyncPrinter four;
Obj ect | ocki ngOhj ect =new Obj ect ();

one=new UnSyncPri nt er ("abcdef ghij kl mopgrst",5);

t wo=new UnSyncPri nt er (" ABCDEFGH JKLMNOPQRST", 5) ;

t hree=new SyncPri nter (| ocki nglbj ect, "abcdef ghi j kl mopqgrst"”, 5);
four=new SyncPrinter (| ocki nglbj ect, " ABCDEFCGHI JKLMNOPQRST", 5) ;

one. set Nane("one");
two. set Nanme("two");
three. set Name("t hree");
four.setName("four");

one.start();
two.start();

Consol e. WiteLine("Press Enter to Continue");
Consol e. ReadLi ne();
Consol e. Wi telLi ne("Synchroni zed");

CONCURRENCY CONTROL IN J# 319

320

three.start();
four.start();

Consol e. WitelLine("Press Enter to Continue");
Consol e. ReadLi ne();

Notice that the same instance of the Qbj ect is passed to each of the SyncPri nt er
constructors. This causes the access by both threads to be restricted by the common
object. When the console application from listing 18.17 is executed, the following
output is produced:

Unsynchroni zed

Press Enter to Continue

aAbBc CdDeEf FgGhHi | j JkKI LmviNoCpPqQr RsSt T
a

AbBc CdDeEf FgGhHi | j JKKI LmviNoOpPgQ RsSt T
a

AbBc CdDeEf FgGhHi | j JkKI LmvhNoOpPgQr RSs Tt
A

aBbCcDdEeFf gGhHi | j JkKI LmvnNoOpPgQ RsSt T
a

AbBc CdDEeFf GgHhl i Jj KkLI MNnQoPpQRr Ss Tt

Synchroni zed

Press Enter to Continue
abcdef ghi j kl mopqgr st
ABCDEFGHI JKLMNOPQRST
abcdef ghi j kl mopqr st
ABCDEFGHI JKLMNOPQRST
abcdef ghi j kl mopqgr st
ABCDEFGHI JKLMNOPQRST
abcdef ghi j kl mopqr st
ABCDEFGHI JKLMNOPQRST
abcdef ghi j kl mopqgr st
ABCDEFGHI JKLMNOPQRST

The first portion of the output contains mixed upper- and lowercase characters. This
occurs because each thread pauses before completing a line, allowing the other an
opportunity to output its characters. Notice that the second portion of the output
contains lines of only upper- or lowercase characters. This is because the synchronization
block forces a thread to wait until the other has completed its output of a line before
it can enter the region and begin outputting its line.

There are times that an entire method should be guarded by a synchronization
mechanism. In the next section we discuss how to do that in J# and how it is accom-
plished in general in the framework.

CHAPTER 18 MULTITHREADING IN J#

18.3.2

Synchronized methods

There are times that access to an entire method should be synchronized. One way to
accomplish this is to wrap the entire method body in a synchronized block, using t hi s
as the object to synchronize on. While this may function as desired it doesn’t necessarily
convey the programmer’s intent. During maintenance some unsuspecting developer
might mistakenly place one or more instructions outside the synchronized block only
to introduce a bug that will be difficult to detect and repair.

Recall from section 7.1.1 that collections are not generally thread-safe. This means

that if more than one thread interacts with a collection the odds are pretty high that
some negative event will occur. J# contains numerous collections; for our example we’ll
use ArrayLi st . Listing 18.18 is a class that contains an instance of the Ar r ayLi st

class. It serves as the recipient for data produced by multiple worker threads.

package SyncMet hods;
i mport System Consol e;
public class Data extends java.util.ArraylList

{

private java.util.ArrayList |ist;
public Data()

{
list = new java.util.ArrayList();
}
public void put(String data) @ Defines a method
{ that is susceptible
try to race conditions
{
list.add(data);
}
cat ch(Exception ex)
{
Consol e. Wi telLi ne(ex. get Message());
}
}
public void putSyncAll (String data) (@ Definesamethod that
{ uses a synchronized
synchroni zed(t hi s) region
{
try
{
l'ist.add(data);
}
cat ch(Exception ex)
{
Consol e. Wi telLi ne(ex. get Message());
}
}

CONCURRENCY CONTROL IN J#

321

public synchronized void putSyncMethod(String data) @ Definesa

{ synchronized
try method
{
|'ist.add(data);
}
cat ch(Exception ex)
{
Consol e. Wi teLi ne(ex. get Message());
}
}
public int length()
{
return |list.size();
}

@ In chapter 7 we discussed the impact of having shared collections manipulated by mul-
tiple threads without proper synchronization control. J# is no different. When multiple
threads call the put function concurrently, eventually an Arrayl ndexQut Of -
BoundsExcept i on will be raised. The reason for this is the same as in other collec-
tions; one thread caused an area of memory to be allocated and another took it.

@ Wrapping the entire function with a synchronized region will keep Ar rayl ndex-
CQut O BoundsExcept i on from being raised. This approach doesn’t convey the
fact that the entire method must be protected with a synchronized region. Over time
it’s possible that other instructions will be added to the method, but not within the
synchronized region. Perhaps some of those instructions don’t need to be protected
with the synchronized region, but eventually one that should be will be placed outside
the region. When that occurs it will likely be very difficult to track down the cause of
the new anomaly.

© When the synchroni zed keyword is applied to a method, invocation of the entire
method is synchronized. This prevents other threads from accessing the method while
another thread is in it. Not only does this successfully cause all invocations to be syn-
chronized, but also it tells future developers that the method should be synchronized.
While this could be accomplished using documentation, many developers don’t doc-
ument their code, and many don’t read existing documentation until a problem has
already occurred.

The .NET framework contains support for synchronizing access to an entire method.
It is accomplished using Met hodl npl Opt i ons from the Syst em Runt i me. Com
pi | er Servi ces namespace. The following is a C# implementation of the J# put -
SyncMet hod from listing 18.19:

322 CHAPTER 18 MULTITHREADING IN J#

18.3.3

[Met hodl npl (Met hodl npl Opt i ons. Synchr oni zed)]
public void putSyncMethod(String data)

{
try
{
|'ist.Add(data);
}
cat ch(Exception ex)
{
Consol e. Wi telLi ne(ex. Message);
}
}

Attributes are a powerful way of extending .NET languages. They allow for future
expansion to languages. J# supports the use of attributes by using the @t tri bute
statement within a comment block. For an example of using the @t t ri but e state-
ment look at listing 18.17. Prior to the st ati ¢ mai n method notice the line con-
taining STAThr ead. This is equivalent to the [STAThr ead] attribute found in C#
console applications.

The wait, notify, and notifyAll methods

The coordination of multiple threads is one of the more challenging elements of mul-
tithreaded development. In chapter 7 we discussed the .NET framework’s Moni t or
class. Recall that the Moni t or class allows a thread to enter a WAi t state by calling
the WAi t method, until some other thread signals it using the Pul se and Pul seAl |
methods or a timeout occurs.

J# includes similar functionality in thewai t ,not i fy,and noti f yAl | methods.
Listing 18.19 contains a J# class that creates a worker thread that calls the wai t method
on an object that’s passed to the constructor. The thread’s processing suspends until
some other thread calls noti fy ornoti fyAll.

Listing 18.19 Pauses until some other thread calls notify or notifyAll on the same

key object (J#)

package Wit Notify;
i mport System Consol e;
public class Wrker extends Thread
{
private Object key;
public Worker (Ooj ect key)

{

t hi s. key=key;
}
public void run()
{

String nane;
nane=Thr ead. current Thread() . get Nane();
Consol e. WiteLine("Wait:" + nane);

CONCURRENCY CONTROL IN J# 323

324

try
{

}

catch(l nterruptedException ex)

{
}

synchroni zed(key)

{
}

key.wait();

Consol e. Wi telLi ne(ex. get Message());

cat ch(Exception ex)

{
}

Consol e. WiteLine(ex.toString());

Consol e. WiteLine("Exit:" + nane);

Notice that the wai t method is invoked inside a synchronized region of code. The
reason for this is the same as the reason that Moni t or . Wai t must be invoked from
within a synchronized region of code: to avoid race conditions. Listing 18.20 contains
the main class that utilizes the Wor ker class.

Listing 18.20 Creates three instances all sharing the same key (J#)

package Wit Notify;
i nport System Consol e;
public class C assMin

{

[** @ttribute System STAThread()

*/

public static void main(String[] args)

{

bj ect key= new Object();
Wor ker one = new Wor ker (key);

one.
one.

set Nanme("one");
start();

Worker two = new Worker (key);

t wo.
t wo.

Wor ker three= new Worker (key);

set Name("two");
start();

three. set Nanme("t hree");
three.start();

try
{

Consol e. WiteLine("Waiting one second\r\n");

Thr ead. sl eep(1000) ;
Consol e. WiteLine("");

CHAPTER 18 MULTITHREADING IN J#

synchroni zed(key)

{
Console. WiteLine("Calling notify");
key. notify();

}

Consol e. WiteLine("Waiting one second\r\n");
Thr ead. sl eep(1000);

Consol e. WiteLine("");

synchroni zed(key)

{
Console. WiteLine("Calling notifyAl");
key. notifyAll();
}
}
cat ch(Exception ex)
{
Consol e. Wit eLi ne(ex. get Message());
}

Consol e. ReadLi ne();

The output from listing 18.20 is as follows:
Wi ti ng one second

Wi t: one

Vait:two

Wait:three

Calling notify
Wai ting one second

Exit:one

Calling notifyAll

Exit:two

Exit:three

Notice that when not i f y is invoked, only one thread, in this case the thread named

“one,” exits the wait state and terminates. When the not i f yAl | method is invoked the

threads named “two” and “three” exit the wait state and terminate. This behavior is iden-

tical to that of the Pul se and Pul seAl | methods of the framework’s Moni t or class.
Sometimes it’s helpful to compare something new to something familiar. Listing 18.21

is a C# version of the Worker class from listing 18.20.

Listing 18.21 The C# version of the Worker class is very similar to the J# version.

usi ng System
usi ng System Thr eadi ng;
nanespace WaitNotify

CONCURRENCY CONTROL IN J# 325

326

public class Wrker

{

}

private Thread theThread;
private object key;
private string naneg;

publ i c Worker (obj ect key)

{
t hi s. key= key;
}
public void run()
{
String naneg;
nane=Thr ead. Curr ent Thr ead. Nan®;
Consol e. WiteLine("Wait:" + nane);
try
{
| ock(key)
{
Moni t or . Wi t (key) ;
}
}
cat ch(Exception ex)
{
Consol e. WiteLine(ex. ToString());
}
Console. WiteLine("Exit:" + nane);
}
public void start()
{
theThread = new Thread(new ThreadStart(run));
t heThr ead. Name=nane;
theThread. Start();
}
public void setNane(string nane)
{
t hi s. nane = nane;
}

Notice that the C# version of the Wor ker class contains the st art and set Name
functions. Since C# doesn’t allow subclassing the Thr ead class we must provide a
means for starting a thread in the Wor ker class. These methods could have been
named anything, but for consistency with the J# version of the Wor ker class the
names St art and set Nane were chosen. Listing 18.22 contains the C# version of

the Mai n class.

CHAPTER 18 MULTITHREADING IN J#

Listing 18.22 The Main class is virtually identical to that of listing 18.21 (C#).

usi ng System
usi ng System Thr eadi ng;

nanespace WaitNotify

{

class O assl

{

[STAThr ead]
static void Main(string[] args)

{

obj ect key= new object();

Wor ker one = new Wor ker (key);
one. set Nane("one");
one.start();

Worker two = new Worker (key);
two. set Name("two");
two.start();

Wor ker three= new Wrker (key);
three. set Nanme("three");
three.start();
try
{
Consol e. WiteLine("Waiting one second\r\n");
Thr ead. Sl eep(1000) ;
Consol e. WiteLine("");
I ock(key)
{
Consol e. WiteLine("Calling Pulse");
Moni t or . Pul se(key);

}

Consol e. WiteLine("Waiting one second\r\n");
Thread. Sl eep(1000) ;
Consol e. WiteLine("");
I ock(key)
{
Console. WiteLine("Calling PulseAll");
Moni t or . Pul seAl | (key);

}
}
cat ch(Exception ex)
{
Consol e. WitelLine(ex. ToString());
}

Consol e. ReadLi ne();

CONCURRENCY CONTROL IN J# 327

18.4

328

The output produced by the C# version of the program is virtually identical to that
produced by the J# version.

SUMMARY

J# is a .NET implementation of the Java language. It is based on the Java Development
Kit (JDK) version 1.1.4. The J# language supports multithreaded development. J#
allows two means of creating threads: implementing the Runnabl e interface and
subclassing the Thr ead class. This is a departure from the Thr eadSt art delegate-
based approach used by C# and VB.NET.

J# provides a means to leverage existing code, while taking advantage of functionality
available under the .NET runtime. This allows applications to be ported to the envi-
ronment without requiring a total rewrite. This includes multithreaded applications.

In this chapter we've seen that the majority of J# methods have a framework equiv-
alent. The methods do not behave the same, but are similar enough to make the tran-
sition from J# to other framework languages relatively easy.

CHAPTER 18 MULTITHREADING IN J#

index

Symbols
__declspec 196

A

Abort 65, 85, 214, 224, 228-229, 302, 305
called on thread 85,214
defined 56

Aborted 85

AbortRequested 65

AboveNormal 88, 307

AcquireReaderLock 163-164

AcquireReadLock 162, 167

AcquireWriteLock 167, 172

AcquireWriterLock 172, 178

AddHandler 237-238

AddMessageFilter 236

AddressOf 46, 52-53, 207-208
defined 53

AllocateDataSlot 197

AllocateNamedDataSlot 199, 202

AnyWritersSince 177-179, 181

apartment 246, 267-268

apartment conflict 271

ApartmentState 246, 270-271

AppDomain 37, 232, 264-265
CreateDomain 38
CurrentDomain 37
GetData 37
SetData 37

AppDomain.GetCurrentThreadld 92

329

Application 214, 236, 264

Application Closing 81

application domain 36, 73-74

application program interface 25

Application.DoEvents 11, 288

ApplicationException 164, 168

ApplicationExit 265

ArgumentException 128, 199

ArgumentNullException 128

ArrayIndexOutOfBoundsException 322

ArrayList 12, 116, 321

ASP NET 26

assemblies 2

AsyncCallback 217-218, 281

asynchronous 192

asynchronous delegates 192, 204, 216

asynchronous design pattern 275, 289

asynchronous execution 275, 285

AsyncResule 219

ATL 272

atomic operations 110, 120

AutoResetEvent 142-147, 150-151, 153, 187
compared to ManualResetEvent 155

AutoResetObject 146

Background 85

background thread 311-312

begin 276

Beginlnvoke 46, 192, 204, 217-218
BeginRead 275

BeginReceive 292-293
BelowNormal 307
bitmasked 63
blocking 61

Brush 261

bubble sort 50

C

C+
ATL-based COM object 272
delete statement removing leak 28
leaking program 27

C# 1,43
asynchronous delegate execution 192
creating thread-safe queue 116
context switches 19-20
deadlock examples 171-172, 256-257
defining thread’s entry point 50
delegates, using 206
exiting current context 148
Finalize example 31
FreeNamedDataSlot example 201-202
GetAvailableThreads example 187
GetMaxThreads example 187
Hello World with a loop 4
ideal processor, setting 92
Interrupt method example 77
leaking program 28
modeling a cat 6
multitasking controlling class 11
naming a thread example 72
preemptive multitasking 15
read lock, improved way to acquire 164
read lock, releasing 172
RegisterWaitForSingleObject 212
ReleaseLock 179, 180
RestoreLock 179, 180
retrieving a Graphics object 261
sending SMTP mail using queue example 103
sharing example 14
single message, adding to queue 290
SMTP mail notification thread 96
testing COM object threading model 273
ThreadAbortException flow 225
ThreadPool example 183

330

tracking down a problem 129

unnamed data slot example 197-198

using Mutex to guard shared text file 156
volatile keyword 137-139

Windows Forms execution 246

write lock, acquiring after read lock release 172

CallbackMethod 198
callbacks 7, 208
CanPauseAndContinue 243
catch 57

Change 244

circular references 29

class libraries 25
ClassParaMatrix 189
ClassTestStatic 195
ClassVariable 195

clean shutdown 81

COM 246, 267-268, 270-272, 274, 279
COM interoperability 268
COM+ 111, 139, 148
concurrency 127, 194, 299
context switch 18

detecting 21

ContextBoundObject 139, 149
CreateDelegate 219-220
CreateDomain example 38
critical section 126, 130

D

daemon 311

data inconsistancy 254

data slots 197, 199

deadlock 107-109, 111, 172, 256257

avoidance 109
defined 108

minimizing 109

debugging 74

Declare 253

DeclaringType 212

delegate 7, 43, 45, 53, 204-205, 208, 219,

221, 258
asynchronous execution 46

deprecated 313
design 275
design patterns 275, 300

INDEX

Diagnostics.Process.GetCurrentProcess 92

Diagnostics.ProcessThread 92
Dispose 261

DoEvents 236
DowngradeFromWriterLock 172-174
DownloadData 193

DrawString 260

dynamic delegates 219

dynamic link library 2, 34
Dynamiclnvoke 220

E

Elapsed 239
ElapsedEventHandler 239
email 97
encapsulation 95
EndInvoke 204, 217-219
enqueue 116
EnterCriticalSection 130
entry point 2, 39, 50, 301
entrypoint directive 4
error code 223
error handling 223-224, 234
error logging 234
event 232

handler 10, 238
evidence 191
exception 57, 222, 225, 227

ExceptionState 58, 226
exception conditions 223
exitContext 148
ExitCriticalSection 130

F

file handle 9

Finalize 31

finally 57-58, 60

Font 260

foreground threads 311
free threaded 268
FreeNamedDataSlot 201-202
freeze tag 82

Friend 276, 279
FromHwnd 261
function pointers 7, 205

INDEX

G

garbage collector 27-34, 262
GC.Collect() 31

GDI+ 260
GetAvailableThreads 187-188
GetCurrentProcess 43
GetData 199, 202
GetHashCode 74
GetlnvocationList 211
GetMaxThreads 187-189
GetNamedDataSlot 199, 202
Graphical Device Interface 9
graphics 260-261

H

Hashtable 116, 213, 200-201
Hwnd 261

I/0 bound 188
[AsyncResult 217-219, 281
ideal processor 91
IdealProcessor 93
ILDASM 121-122
IMessageFilter 236
InfoCallbackMethod 210
InitializeComponent 242
InitializeCriticalSection 130
initiallyOwned 158
InstallUtil.exe 241
instance variables 194
Interlocked 33, 121-122
CompareExchange 125
Decrement 122
Exchange 123
Increment 122
internal 276
interoperability 267
interrupt 74, 227-229, 308
Invoke 78,209, 217, 239, 258-259
InvokeRequired 259
IOException 157
isAlive 308, 310
IsBackground 252

331

isDaemon 311

isInterrupted 308, 310
IsReaderLockHeld 163-164
IsThreadPoolThread 189-190
IsWriterLockHeld 168, 178-179
ISynchronizelnvoke 239

Items 253

J

J# 301-328
Threaded class example 302
instances sharing a key 324
outputting asterisks 306
priorities 308
setting a thread’s name 303
WebSiteMonitor version 303

Java 305

Join 60
defined 61

join 227, 305-307, 316

L

late binding 204, 220
LB_GETCOUNT 253
library

custom 26
LocalDataStoreSlot 197
lock 110, 126-128, 317
LockCookie 172, 179-180
lowest 307

M

MailMessage 102
managed applications 26
ManualResetEvent 142—144,

154-155, 298

compared to AutoResetEvent 155

Reset 144

Set 144

VB.NET example 154
matrix multiplication 143
MAX_PRIORITY 307
memory

management 27

332

message filter 236

message pump 10
MessageLoop 265
MessageQueue 291-292, 294
method 208, 212
MethodInfo 208, 212

Microsoft Intermediate Language. See MSIL

Microsoft Internet Information Server 24

Microsoft Message Queue 290
Microsoft Visual Basic 1, 46
circular reference example 29

Microsoft Windows 24, 118, 235-230,

240, 245
Microsoft Windows 2000 21
Microsoft Windows 3 x 10
Microsoft Windows Task Manager 9
Microsoft Word 26
MIN_PRIORITY 307
Monitor 142, 195, 325
Compared to Mutex 158
Enter 110, 128, 134, 136, 230
Exit 110, 128-129, 134, 136, 231
Pulse 133-134, 136, 232
PulseAll 134, 136-137, 144
TryEnter 131, 134, 230
Wait 133-134, 136, 324
MSIL 3, 100-102, 120, 128

calling STAThreadAttribute constructor 247

Hello World example 3
TimeToSendNotification examples
100, 101
MSMQ 290
MTA 246, 268, 270-272
MulticastDelegate 211
multiple processors 91, 300
multiple-processor machine 256
multiplication, matrix 143
multitasking 10
cooperative 10, 12-15
preemptive 15-16
multithreaded apartment 268
multithreaded application
debugging 54
Mutex 142-144, 157, 162
compared to Monitor 158

INDEX

N

Name 72, 189

named data slots 199

namespace 25

network socket 192

New 112, 124, 279
nondeterministic environment 201
nondeterministic finalization 30
Normal 87, 307

notify 323, 325

notifyAll 323, 325

o)

object-oriented 45, 49
OnContinue 243
OnPaint 260
OnPause 243
OnStart 242

OnStop 242-243

P

PaintEventArgs 260
Performance Monitoring 21
polling 204
PreFilterMessage 236
priority 9
priority level 87
PriorityClass 88
process 2,9, 36

class 43

priority 9, 88

termination 79
processor affinity 72, 89
processor bound 87, 188
ProcessThread 43, 92
program 2
progress bar 262
properties 78, 100
proxy 140, 272
public field 96
public field communication 98
Public Properties 99
PublicNotCreatable 279
Pulse 323, 325
PulseAll 323, 325

INDEX

Q

quantum 16

queue 102, 105, 112-113, 115, 117, 152,
193, 231
sending SMTP mail example (C#) 103
using with threads 105
why use? 102

QueueUserWorkltem 182-183, 190-191

R

race condition 107, 110-111, 156, 254
defined 105

ReaderWriterLock 160-162, 167, 177, 179-181

Receive 291

ReceiveCompleted 292

ReceiveCompletedEventHandler 292

ReceivedSignal 148

reference 268

RegisterWaitForSingleObject 184-186, 212-213

ReleaseLock 179-180

ReleaseMutex 144

ReleaseReaderLock 172, 179

ReleaseReadLock 162

ReleaseWriterLock 177

RemoveHandler 233

Reset 144, 154

ResetAbort 59, 225-226, 305

ResetldealProcessor 93

RestoreLock 179-180

resume 70, 215, 228-230, 313

run 301, 305, 307, 314-316

runnable 314-315, 317

running 65, 83, 85

S

safe point 57, 82

scheduler 89

scheduling 16

sealed 301

security 34, 190
evidence-based 34, 38

Send 291

SendMessageA 253

server-based timers 192—193

ServiceBase 242

333

Set 146
setDaemon 311
SetData 199
setName 305, 326
SetTimer 235
shutdown, clean 81
signaled 186
single-processor machine 256
single-threaded apartment 246, 268
single-threaded application (VB.NET) 3
Sleep
defined 56
sleep 19,77, 310
SleepWaitJoin 77
SmtpMail 96
STA 246, 268, 270-272
stability 256
stack 195
Start
defined 53
start 229, 305-306, 315-316, 326
STAThread 245-246, 323
stop 302, 305, 316
stopped 65
stub 272
suspend 70, 313
Suspended 70, 83-84
symmetric multiprocessing 91
synchronization 148-149, 267
management 106
mechanisms 317
Synchronization Attribute 140
SynchronizationLockException 129, 230-231
synchronized 116-117, 126
synchronized methods 321
SynchronizingObject 239
SyncLock 110, 126-128, 227, 317
System.Collections.Queue 102
System.Drawing 260
System.Reflection.MethodInfo 208
System.Text.Encoding. ASCII 71
System.Threading 40
namespace classes 40—41
System.Threading.ApartmentState 246
System.Threading. Thread 251, 301, 303

334

System.Threading. Thread Join 307
System.Threading. Timer 243
System.Timers. Timer 239, 242
System.Web.Mail 96, 102

T

Target 208, 212
thrashing 19
Thread 189, 208, 197, 199, 224-225, 252,
301, 314-315
Abort 55-56, 60, 77-78, 81, 84-85
class 41, 45, 51
creating instance of class 51
properties and methods 42-43
Interrupt 72, 77-79, 82
IsAlive 63-66
IsBackground 65,79
Join 60-61, 77, 81
Name 72, 74, 100, 303
Priority 73
ResetAbort 62
Resume 72, 82-84
Sleep 56, 69,71, 73-75,77, 82,111
Start 53, 63, 82
Suspend 72-73, 82-84
ThreadState 64, 83
thread 2
background 54, 80
defined 39
ending 55
foreground 54, 80
logical 25, 38-39
main 3, 54
physical 24, 39, 43
priority 87
scheduling 87-88
stopping 54
thread boundaries 100, 119
thread local storage 194
thread local storage and multicast delegates 213
thread pool 16, 47, 193
Thread.Sleep 76
ThreadAbortException 57, 68, 214,
224-226, 305
VB.NET example 55

INDEX

ThreadException 214-216, 264-265

ThreadExceptionEventArgs 215

ThreadExceptionEventHandler 214—
215, 230

ThreadExit 265

Threading
classes in namespace 40-41

threading timer 243

Threading. Timer 244

ThreadlInterruptedException 77, 79,
227-228

ThreadLocal 203

ThreadMethod 227, 259

ThreadPool 150, 183—-184, 187-190, 192—-193,
209-210, 197-198, 243, 251

ThreadPriority 88, 307

thread-safe 26, 110-111, 117-118, 121,
210, 260

ThreadStart 43, 51-52, 68, 207-208, 210
defined 51

ThreadState 66-67

ThreadStateException 84, 229-230, 312

ThreadStatic 194, 196-197, 199-200

tick 76, 237

time slice 16, 76

Timeout.Infinite 77, 162, 210, 244

Timer 41, 209, 243

timer 252, 265. See also Windows Forms

TimerCallback 209-210

timers 193

TimeSpan 62,76, 131, 148, 164

Trace 225,259

transactions 106

try 57,60

U

UnhandledException 222, 232-234,
264-265

unknown 246, 271

unnamed data slots 197

UnsafeQueueUserWorkItem 190-191

UnsafeRegisterWaitForSingleObject 190

unstarted 65, 83, 229

UpgradeToWriterLock 169-170, 172

using 270

INDEX

\'

VB.NET

adding elements to a list box
250-251
ApartmentState 270
assigning a variable in thread-safe way 124
asynchronous processing 280
asynchronous sorting 288
avoiding deadlocks using Invoke 258
bidding examples 166, 168-169
circular reference 30
cooperative greeter 13
creating reading thread 113
creating two writing threads 113
delete-related methods and delegates 249
detecting threads sharing processor 17
ending a thread 55
list box, adding elements to
250-251
logger initialization code 294
ManualResetEvent 154
named slot example 200
populating queue 112
progress bar 262
read lock, acquiring and releasing 163
RegisterWaitForSingleObject example
185, 186
releasing locks, importance of 131
single-threaded application 3
Sleep examples 75
Sorter delegates and events 279
synchronous processing 282
ThreadAbort Exception 57
ThreadInterruptedException 226
ThreatStatic example 196
ThreadStart delegate 207
updating a display with WaitOne and Set 146
UnsafeQueueUserWorkItem 190
using CompareExchange 124
using WebClient 70
utilizing BeginInvoke method 45
WaitAll 150
WorkUnit 278
WriterSeqNum 177

volatile 137

335

w

wait 313, 323

WaitAll 142, 144, 147, 149-151, 155
restrictions 151
VB.NET example 150

WaitAny 144, 147, 152, 155

WaitCallback 211, 197

WaitHandle 142-143, 145, 147, 149,
184-186, 213

WaitOne 144-145, 147-148, 154-155

WaitOrTimerCallback 184-185, 213

WaitSleepJoin 65, 67, 74, 76-77, 82,
85, 126, 133134, 146-147, 226227,
229, 231

WaitTimeout 144, 152, 155

web pages 193

INDEX

web site monitor 70, 96, 242

WebClient 71, 73, 79, 81, 193, 300, 305
DownloadData 71

WebSiteMonitor 303

Win32 258, 292

Windows. See Microsoft Windows

Windows Forms 78,214-216,245-266,276, 286
not thread-safe 16, 118
deadlock example 256
timers 193, 235-240

WM_TIMER 209, 235-238

Workltem 211

WriterSeqNum 177-179

X
XML Web Service 26

336

MANNING PUBLICATIONS CO.
.NET Developer’s Library

The entire NET, presented simply and concisely using (# examples

Ferqal Grimes

MNANNING

Microsoft .NET for Programmers
BY FERGAL GRIMES
January 2002, Softbound, 386 pp.
ISBN 1930110-19-7
Price: $39.95 ¢ Ebook $17.47

A programmer’s guide to .NET

For ordering information visit www.manning.com

MANNING PUBLICATIONS CO.
.NET Developer’s Library

de o Windows application developmentin NET s
5

Erik Brown

N \D
D)J D
0L R A MING

wiri (#

OWS

MHAHHIIE

Windows Forms Programming with C#
By ERIK BROWN
April 2002, Softbound, 752 pp.
ISBN 1930110-28-6
Price: $49.95 * Ebook $24.97

A practical guide to creating Windows applications with .NET

For ordering information visit www.manning.com

MANNING PUBLICATIONS CO.
.NET Developer’s Library

S ADONET

PROGRAMMING

Arfen S. Feldman
F“ MANNING

ADO.NET Programming
By ARLEN FELDMAN

July 2002, Softbound, 592 pages
ISBN 1930110-29-4
Price: $39.95 ¢ Ebook $22.47

A practical guide to ADO.NET

For ordering information visit www.manning.com

MANNING PUBLICATIONS CO.
.NET Developer’s Library

Aquide to NET's powerful and elegant distributed applications framework

b A REMOTING

Don W. Browning

Wl wannine

NET Remoting
By DON W. BROWNING
January 2003
Softbound, 350 pp.
ISBN 1930110-57-X
Price: $44.95 * Ebook $22.47

A guide to .NET's powerful and elegant distributed applications framework.

For ordering information visit www.manning.com

	preface
	about this book
	acknowledgments
	about the cover illustration
	Process and thread basics
	1.1 Background
	1.1.1 What is a process?
	1.1.2 What are threads and why should we care?
	1.1.3 The cat project
	1.1.4 Task Manager

	1.2 Multitasking
	1.2.1 Cooperative multitasking
	1.2.2 Preemptive

	1.3 Preemptive multitasking
	1.3.1 Time slice, or quantum
	1.3.2 Context and context switching
	1.3.3 Detecting context switching

	1.4 Summary

	.NET from a threading�perspective
	2.1 .NET architecture overview
	2.1.1 Framework runtime
	2.1.2 .NET class libraries
	2.1.3 ASP .NET
	2.1.4 Developing custom libraries
	2.1.5 Managed applications

	2.2 Garbage collection
	2.2.1 Finalization

	2.3 Security
	2.4 Summary

	Multithreading in .NET
	3.1 Application domain
	3.1.1 An application domain vs. a process
	3.1.2 The AppDomain class
	3.1.3 CreateDomain

	3.2 Threads
	3.2.1 Logical threads
	3.2.2 Physical threads

	3.3 Benefits of .NET to multithreading
	3.3.1 Advantages of objects
	3.3.2 Asynchronous execution of delegates

	3.4 Summary

	Thread life cycle
	4.1 Creating a thread
	4.1.1 Defining the thread’s entry point
	4.1.2 Creating an instance of the ThreadStart delegate
	4.1.3 Creating an instance of the Thread class

	4.2 Starting threads
	4.3 Ending threads
	4.3.1 Introducing the ThreadAbortException exception
	4.3.2 The ResetAbort method
	4.3.3 The Join method

	4.4 Determining a thread’s status
	4.4.1 The IsAlive property
	4.4.2 The ThreadState property

	4.5 Summary

	Controlling threads
	5.1 Example: web site monitoring
	5.2 Naming threads
	5.3 Using Sleep and Interrupt
	5.3.1 The Sleep method
	5.3.2 The Interrupt method

	5.4 Using background and foreground�threads
	5.5 Using Suspend and Resume
	5.5.1 The Suspend method
	5.5.2 The Resume method

	5.6 Exploring thread states
	5.7 Digging deeper into thread control
	5.7.1 Controlling thread priority
	5.7.2 Setting processor affinity
	5.7.3 Specifying an ideal processor

	5.8 Summary

	Communicating with�threads
	6.1 Using data to communicate
	6.1.1 Public fields
	6.1.2 Public properties
	6.1.3 Queues and threads

	6.2 When things go badly
	6.2.1 Race conditions
	6.2.2 Deadlock

	6.3 Summary

	Concurrency control
	7.1 What does thread-safe mean?
	7.1.1 Race conditions in collections
	7.1.2 Making collections thread-safe using Synchronized
	7.1.3 Thread safety in libraries
	7.1.4 Understanding and detecting thread boundaries

	7.2 Atomic operations
	7.2.1 The Interlocked class

	7.3 The Lock and SyncLock keywords
	7.4 The Monitor class
	7.4.1 The Enter and Exit methods
	7.4.2 The TryEnter method
	7.4.3 Wait and Pulse
	7.4.4 The PulseAll method

	7.5 Digging deeper into concurrency�control
	7.5.1 C#’s volatile keyword
	7.5.2 COM+-based synchronization

	7.6 Summary

	WaitHandle classes
	8.1 The WaitHandle class
	8.2 The AutoResetEvent class
	8.2.1 Using the Set method
	8.2.2 Using the Reset method

	8.3 WaitHandle
	8.3.1 WaitOne
	8.3.2 WaitAll
	8.3.3 WaitAny

	8.4 ManualResetEvent
	8.5 Mutex class: WaitOne and ReleaseMutex
	8.6 Summary

	Reader/Writer lock
	9.1 Acquiring a read lock from a�ReaderWriterLock
	9.1.1 Acquiring and releasing a reader lock
	9.1.2 IsReaderLockHeld

	9.2 Acquiring a writer lock from a�ReaderWriterLock
	9.2.1 Acquire, release, and IsLockHeld
	9.2.2 UpgradeToWriterLock
	9.2.3 DowngradeFromWriterLock
	9.2.4 WriterSeqNum and AnyWritersSince

	9.3 ReleaseLock and RestoreLock
	9.4 Summary

	The ThreadPool class
	10.1 ThreadPool class and QueueUserWorkItem
	10.2 The RegisterWaitForSingleObject method
	10.3 Informational methods and properties
	10.3.1 GetMaxThreads and GetAvailableThreads
	10.3.2 The IsThreadPoolThread property

	10.4 Two unsafe methods
	10.5 The use of ThreadPools in .NET
	10.6 Summary

	ThreadStatic and thread�local storage
	11.1 Using ThreadStatic variables
	11.2 Using unnamed data slots
	11.3 Using named data slots
	11.4 Freeing named data slots
	11.5 Summary

	Delegates
	12.1 Delegates revisited
	12.2 The ThreadStart delegate
	12.3 Callbacks
	12.3.1 TimerCallback
	12.3.2 WaitCallback
	12.3.3 WaitOrTimerCallback

	12.4 Handling thread exceptions in Windows�Forms
	12.5 Asynchronous delegates
	12.5.1 EndInvoke
	12.5.2 AsyncCallback

	12.6 Creating and invoking dynamic�delegates
	12.7 Summary

	Exceptions
	13.1 Exceptions revisited
	13.2 Thread-related exceptions
	13.2.1 The ThreadAbortException class
	13.2.2 The ThreadInterruptedException class
	13.2.3 The ThreadStateException class
	13.2.4 The SynchronizationLockException class

	13.3 The AppDomain UnhandledException event
	13.4 Summary

	Timers
	14.1 Using Windows Forms timers
	14.1.1 How Windows Forms timers are implemented
	14.1.2 Controlling Windows Forms timers

	14.2 System.Timers.Timer
	14.2.1 Using System.Timers.Timer in Windows Forms
	14.2.2 System.Timers.Timer in Windows system services

	14.3 System.Threading.Timer
	14.4 Summary

	Windows Forms and multiple�threads
	15.1 Multithreaded-related issues
	15.1.1 Introduction to the STAThread attribute
	15.1.2 Threading-related issues
	15.1.3 Race conditions
	15.1.4 Event-related deadlocks
	15.1.5 Making Windows Forms thread-safe

	15.2 Using the Graphics object with threads
	15.2.1 Introduction to the Graphics object
	15.2.2 Acquiring by overriding the OnPaint method
	15.2.3 Acquiring by using the FromHwnd method

	15.3 Thread-related application events�and�properties
	15.3.1 The ThreadException event
	15.3.2 The ThreadExit event
	15.3.3 The MessageLoop property

	15.4 Summary

	Unmanaged code and managed threads
	16.1 What is an apartment?
	16.1.1 Single-threaded apartment model (STA)
	16.1.2 MTA

	16.2 COM interoperability
	16.2.1 The ApartmentState property
	16.2.2 Apartment conflicts
	16.2.3 Discussion of the example

	16.3 Summary

	Designing with threads
	17.1 Using the asynchronous design pattern
	17.1.1 A file-sorting example
	17.1.2 The Sorter class library
	17.1.3 Using the Sorter class library
	17.1.4 Steps to implement the asynchronous design pattern

	17.2 Message Queue example
	17.2.1 The message producer
	17.2.2 The message consumer

	17.3 One Class One Thread
	17.4 Performance issues
	17.4.1 Multithreading overhead
	17.4.2 Increasing concurrency
	17.4.3 Implications of multiple processors

	17.5 Summary

	Multithreading in J#
	18.1 J#’s Thread class
	18.1.1 Extending the Thread class
	18.1.2 Comparing the Thread class to System.Threading.Thread

	18.2 The Runnable interface
	18.3 Concurrency control in J#
	18.3.1 Synchronized regions
	18.3.2 Synchronized methods
	18.3.3 The wait, notify, and notifyAll methods

	18.4 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

