
Net_Dennis.book Page i Thursday, October 31, 2002 4:04 PM
.NET Multithreading

Net_Dennis.book Page ii Thursday, October 31, 2002 4:04 PM

Net_Dennis.book Page iii Thursday, October 31, 2002 4:04 PM
.NET Multithreading

ALAN L. DENNIS

M A N N I N G

Greenwich
(74° w. long.)

Dennis_front.fm Page iv Friday, November 1, 2002 3:40 PM
For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-54-5

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

For Lara

Net_Dennis.book Page v Thursday, October 31, 2002 4:04 PM

Net_Dennis.book Page vii Thursday, October 31, 2002 4:04 PM

Net_Dennis.book Page vii Thursday, October 31, 2002 4:04 PM
brief contents

1 Process and thread basics 1

2 .NET from a threading perspective 24

3 Multithreading in .NET 36

4 Thread life cycle 49

5 Controlling threads 69

6 Communicating with threads 95

7 Concurrency control 110

8 WaitHandle classes 142

9 Reader/Writer lock 160

10 The ThreadPool class 182

11 ThreadStatic and thread local storage 194

12 Delegates 204

13 Exceptions 222

14 Timers 235

15 Windows Forms and multiple threads 245

16 Unmanaged code and managed threads 267

17 Designing with threads 275

18 Multithreading in J# 301
vii

Net_Dennis.book Page viii Thursday, October 31, 2002 4:04 PM

Net_Dennis.book Page ix Thursday, October 31, 2002 4:04 PM
contents

preface xv

about this book xvi

acknowledgments xviii

about the cover illustration xix

1 Process and thread basics 1

1.1 Background 2
What is a process? 2 ✦ What are threads and why should we care? 2
The cat project 6 ✦ Task Manager 9

1.2 Multitasking 10
Cooperative multitasking 10 ✦ Preemptive 15

1.3 Preemptive multitasking 16
Time slice, or quantum 16 ✦ Context and context switching 18
Detecting context switching 21

1.4 Summary 23

2 .NET from a threading perspective 24

2.1 .NET architecture overview 24
Framework runtime 24 ✦ .NET class libraries 25
ASP .NET 26 ✦ Developing custom libraries 26
Managed applications 26

2.2 Garbage collection 27
Finalization 31

2.3 Security 34

2.4 Summary 35
ix

Net_Dennis.book Page x Thursday, October 31, 2002 4:04 PM
3 Multithreading in .NET 36
3.1 Application domain 36

An application domain vs. a process 36
The AppDomain class 37 ✦ CreateDomain 38

3.2 Threads 39
Logical threads 40 ✦ Physical threads 43

3.3 Benefits of .NET to multithreading 44
Advantages of objects 44
Asynchronous execution of delegates 45

3.4 Summary 48

4 Thread life cycle 49
4.1 Creating a thread 50

Defining the thread’s entry point 50
Creating an instance of the ThreadStart delegate 51
Creating an instance of the Thread class 51

4.2 Starting threads 52

4.3 Ending threads 54
Introducing the ThreadAbortException exception 57
The ResetAbort method 59 ✦ The Join method 60

4.4 Determining a thread’s status 63
The IsAlive property 63 ✦ The ThreadState property 64

4.5 Summary 68

5 Controlling threads 69
5.1 Example: web site monitoring 70

5.2 Naming threads 72

5.3 Using Sleep and Interrupt 74
The Sleep method 75 ✦ The Interrupt method 77

5.4 Using background and foreground threads 79

5.5 Using Suspend and Resume 82
The Suspend method 82 ✦ The Resume method 84

5.6 Exploring thread states 85

5.7 Digging deeper into thread control 87
Controlling thread priority 87 ✦ Setting processor affinity 89
Specifying an ideal processor 91

5.8 Summary 94
x CONTENTS

Net_Dennis.book Page xi Thursday, October 31, 2002 4:04 PM
6 Communicating with threads 95
6.1 Using data to communicate 96

Public fields 96 ✦ Public properties 99
Queues and threads 102

6.2 When things go badly 105
Race conditions 105 ✦ Deadlock 107

6.3 Summary 109

7 Concurrency control 110
7.1 What does thread-safe mean? 111

Race conditions in collections 111
Making collections thread-safe using Synchronized 116
Thread safety in libraries 118
Understanding and detecting thread boundaries 119

7.2 Atomic operations 120
The Interlocked class 121

7.3 The Lock and SyncLock keywords 125

7.4 The Monitor class 128
The Enter and Exit methods 128 ✦ The TryEnter method 130
Wait and Pulse 133 ✦ The PulseAll method 136

7.5 Digging deeper into concurrency control 137
C#’s volatile keyword 137
COM+-based synchronization 139

7.6 Summary 141

8 WaitHandle classes 142
8.1 The WaitHandle class 143

8.2 The AutoResetEvent class 145
Using the Set method 145 ✦ Using the Reset method 146

8.3 WaitHandle 147
WaitOne 147 ✦ WaitAll 149 ✦ WaitAny 151

8.4 ManualResetEvent 154

8.5 Mutex class: WaitOne and ReleaseMutex 156

8.6 Summary 159
CONTENTS xi

Net_Dennis.book Page xii Thursday, October 31, 2002 4:04 PM
9 Reader/Writer lock 160
9.1 Acquiring a read lock from a ReaderWriterLock 161

Acquiring and releasing a reader lock 162
IsReaderLockHeld 164

9.2 Acquiring a writer lock from a ReaderWriterLock 166
Acquire, release, and IsLockHeld 166
UpgradeToWriterLock 168 ✦ DowngradeFromWriterLock 172
WriterSeqNum and AnyWritersSince 177

9.3 ReleaseLock and RestoreLock 179

9.4 Summary 181

10 The ThreadPool class 182
10.1 ThreadPool class and QueueUserWorkItem 182

10.2 The RegisterWaitForSingleObject method 184

10.3 Informational methods and properties 187
GetMaxThreads and GetAvailableThreads 187
The IsThreadPoolThread property 189

10.4 Two unsafe methods 190

10.5 The use of ThreadPools in .NET 192

10.6 Summary 193

11 ThreadStatic and thread local storage 194
11.1 Using ThreadStatic variables 195

11.2 Using unnamed data slots 197

11.3 Using named data slots 199

11.4 Freeing named data slots 201

11.5 Summary 203

12 Delegates 204
12.1 Delegates revisited 204

12.2 The ThreadStart delegate 207

12.3 Callbacks 208
TimerCallback 209 ✦ WaitCallback 210
WaitOrTimerCallback 212

12.4 Handling thread exceptions in Windows Forms 214

12.5 Asynchronous delegates 216
EndInvoke 217 ✦ AsyncCallback 218

12.6 Creating and invoking dynamic delegates 219

12.7 Summary 221
xii CONTENTS

Net_Dennis.book Page xiii Thursday, October 31, 2002 4:04 PM
13 Exceptions 222
13.1 Exceptions revisited 223
13.2 Thread-related exceptions 224

The ThreadAbortException class 224
The ThreadInterruptedException class 226
The ThreadStateException class 228
The SynchronizationLockException class 230

13.3 The AppDomain UnhandledException event 232
13.4 Summary 234

14 Timers 235
14.1 Using Windows Forms timers 235

How Windows Forms timers are implemented 235
Controlling Windows Forms timers 237

14.2 System.Timers.Timer 239
Using System.Timers.Timer in Windows Forms 239
System.Timers.Timer in Windows system services 240

14.3 System.Threading.Timer 243
14.4 Summary 244

15 Windows Forms and multiple threads 245
15.1 Multithreaded-related issues 245

Introduction to the STAThread attribute 245
Threading-related issues 248 ✦ Race conditions 254
Event-related deadlocks 256
Making Windows Forms thread-safe 258

15.2 Using the Graphics object with threads 260
Introduction to the Graphics object 260
Acquiring by overriding the OnPaint method 260
Acquiring by using the FromHwnd method 261

15.3 Thread-related application events and properties 264
The ThreadException event 264 ✦ The ThreadExit event 265
The MessageLoop property 265

15.4 Summary 266

16 Unmanaged code and managed threads 267
16.1 What is an apartment? 267

Single-threaded apartment model (STA) 268 ✦ MTA 268

16.2 COM interoperability 268
The ApartmentState property 270 ✦ Apartment conflicts 271
Discussion of the example 272

16.3 Summary 274
CONTENTS xiii

Net_Dennis.book Page xiv Thursday, October 31, 2002 4:04 PM
17 Designing with threads 275
17.1 Using the asynchronous design pattern 275

A file-sorting example 276 ✦ The Sorter class library 277
Using the Sorter class library 285
Steps to implement the asynchronous design pattern 289

17.2 Message Queue example 290
The message producer 290 ✦ The message consumer 291

17.3 One Class One Thread 294

17.4 Performance issues 299
Multithreading overhead 299 ✦ Increasing concurrency 299
Implications of multiple processors 300

17.5 Summary 300

18 Multithreading in J# 301
18.1 J#’s Thread class 301

Extending the Thread class 301
Comparing the Thread class to System.Threading.Thread 302

18.2 The Runnable interface 314

18.3 Concurrency control in J# 317
Synchronized regions 317 ✦ Synchronized methods 321
The wait, notify, and notifyAll methods 323

18.4 Summary 328

index 329
xiv CONTENTS

Net_Dennis.book Page xv Thursday, October 31, 2002 4:04 PM
preface

The idea for this book came out of discussions with Scott Christiansen, a leading
developer using Microsoft technologies. While working together at a consulting com-
pany we spent numerous lunches kicking around ideas for a book and agreed that
multithreaded development was an ideal subject. Soon after our discussions, I began a
conversation with Manning Publications; this book is the end result.

Rather than focusing on abstract concepts, this book looks at the motivation behind
each concept, not just the implementation. Readers of this book should know how to
develop in the .NET platform. It is not assumed that you have written multithreaded
applications, or programmed at a low level. All concepts beyond those required to
write a single-threaded application in .NET are covered in great detail.

This book is intended primarily for architects and developers. Other players in an
organization will also benefit from reading this book, but the primary focus is on
designing and implementing multithreaded applications.

Since .NET does not require a single language, all examples in this book are available
from the publisher’s web site in both C# and Visual Basic .NET. Removing syntactical
hurdles allows you to focus on the concepts. The examples alternate between the lan-
guages, showing that the fundamental issues relate to the .NET framework, not a par-
ticular language.

The code examples in the book are intentionally terse. Rather than including all
code relating to an example, only the relevant elements are included. This highlights the
relevant portions of code, allowing you to focus on the concept and not be drawn into
the unrelated detail. All code examples are available in entirety from the publisher’s
web site.
xv

Net_Dennis.book Page xvi Thursday, October 31, 2002 4:04 PM
about this book

How the book is organized

We begin with a discussion of operating system concepts in chapter 1. This material
serves as a foundation for concepts discussed in later chapters. It’s difficult, if not
impossible, to write multithreaded applications without understanding what a thread
is. If you’ve written multithreaded applications or have taken an operating systems
course in college you’ll likely skim this chapter.

After establishing the foundations we move into examining the .NET environment
from a multithreaded viewpoint. Much can be learned by examining things from a
slightly different perspective. That’s the purpose of chapters 2 and 3, to look at things
you’ve likely seen before, but from a slightly different angle.

Threads go through distinct phases of existence. Chapter 4 examines each of these
in great detail. This allows you to become familiar with how threads behave. Once
we’ve discussed the life cycle of threads we move on to controlling and communicating
with threads.

While there may be a benefit to creating a thread and never interacting with it
again, often multithreaded development involves interacting with, and controlling,
threads. This is what chapters 5 and 6 cover.

The biggest challenge facing multithreaded development is concurrency control,
something that single-threaded development doesn’t need to be concerned with.
Chapters 7, 8, and 9 deal with concurrency control in one form or another.

Thread pools, which provide a simplified means of concurrent execution, are used
for many things in .NET. Chapter 10 discusses how to use them in your applications.
Like most simple things, a thread pool can be used in some situations but not others.

In chapter 11 we discuss thread local storage, a means of associating value with a par-
ticular thread. This is followed by a discussion of delegates and exceptions in chapters 12
and 13. Each multithreaded delegate and exception is explored in detail.

In chapter 14, attention is turned to timers, a common programming construct that
allows for regular execution of methods.

Windows Forms provide for a rich user experience; when combined with multiple
threads highly effective interfaces can be created. Chapter 15 covers using multiple
threads with Windows Forms applications along with potential pitfalls.
xvi

Net_Dennis.book Page xvii Thursday, October 31, 2002 4:04 PM
Chapter 16 covers the advanced topic of unmanaged code and multiple threads.
Most organizations have a large number of COM objects in use. Leveraging those objects
in .NET involves controlling interaction with unmanaged code.

Being able to utilize multiple threads is only part of the challenge. It is important that
proper design principles be followed so that threads are used efficiently and correctly.
That’s what chapter 17 covers: designing with multiple threads.

We finish up by discussing multiple threads in J#, the next version of J++. Since many
J++ applications are multithreaded, it’s important to understand how they function,
along with how a similar C# or Visual Basic .NET program might be structured.

Code conventions

All source code appears in fixed font. Within the text, the same Courier font is
used to denote methods, classes, namespaces, programs and so forth. Annotations
accompany certain segments of code. Certain annotations have further explanations
that follow the code.

Source code downloads

Complete source code for the examples presented in this book is available from
www.manning.com/dennis. All examples in this book are available in both C# and
Visual Basic .NET.

Author Online

Purchase of .NET Multithreading includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and other threading experts. To access the
forum and subscribe to it, point your web browser to www.manning.com/dennis.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary.

The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s web site as long as the book is in print.

The author can also be contacted directly at adennis@manning.com.
ABOUT THIS BOOK xvii

Net_Dennis.book Page xviii Thursday, October 31, 2002 4:04 PM
acknowledgments

Without the help of many individuals, this book most likely would have never been
written. I would particularly like to thank Scott Christiansen, Naveed Zaheer, Christo-
pher Brumme, Connie Sullian, Sam Spencer, Eric Gunnerson, and Sanjay Bhansali.

The manuscript was reviewed in various stages of development by the following
individuals; their input made the book you are holding a much better one: Chad
Myers, Christopher Brumme, Fergal Grimes, Gary Decell, Joel Mueller, Mark Dawkins,
Mitch Denny, Patrick Steele, Rob Niestockel, Santhosh Pillai, and Scott Christiansen.
Special thanks to Sanjay Bhansali for a final technical review of the book, just before
it went into production.

I’d also like to thank everyone at Manning Publications who worked on this book.
In particular I’d like to thank Marjan Bace, my publisher; Susan Capparelle, his assistant;
Ted Kennedy, review editor; as well as Mary Piergies, production editor and the entire
production team: Syd Brown, design editor; Ann Navarro, developmental editor; Elizabeth
Martin, copyeditor; and Denis Dalinnik, typesetter.
xviii

Net_Dennis.book Page xix Thursday, October 31, 2002 4:04 PM
about the cover illustration

The figure on the cover of .NET Multithreading is a sheep trader from the moors of
Bordeaux, “Marchand d’Agneaux des Landes de Bordeaux.” The region of Bordeaux in
southwestern France, world-famous for its viniculture, also had a thriving sheep farming
industry in the past. The hand-colored copper engraving of the sheep trader is taken
from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in
1796. Travel for pleasure was a relatively new phenomenon at the time and travel books
such as this one were popular, introducing both the tourist as well as the armchair
traveler to the inhabitants of other regions of France and abroad.

The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel book brings to
life a sense of isolation and distance of that period and of every other historic period
except our own hyperkinetic present. Dress codes have changed since then and the
diversity by region, so rich at the time, has faded away. It is now often hard to tell the
inhabitant of one continent from another. Perhaps, trying to view it optimistically, we
have traded a cultural and visual diversity for a more varied personal life. Or a more
varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centuries
ago brought back to life by the pictures from this travel book.
xix

Net_Dennis.book Page xx Thursday, October 31, 2002 4:04 PM

Net_Dennis.book Page 1 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1

Process and thread basics

1.1 Background 2
1.2 Multitasking 10
1.3 Preemptive multitasking 16
1.4 Summary 23
There is a great deal of value in revisiting those things we “know” and exploring them
in greater depth. Every developer is familiar with what a program is (we write them,
after all) and what threads and processes are.

But it is a good exercise to review the basics, those things which are part of everyday
language, before tackling the somewhat daunting topic of multithreaded development.

This chapter, by way of introduction, reviews operating system (OS) concepts, with
a focus on processes and threads, and covers the basics of how threads do their work
and how the processor switches between them.

The examples throughout this book are written in both C# and Visual Basic .NET,
alternating between the two languages. All of the examples are available from the pub-
lisher’s web site at www.manning.com/dennis.

In this chapter, you’ll see code that’s devoted to relatively abstract concepts. The
goal is to present examples that make the abstract concepts clearer and demonstrate
them in a practical way.
1

Net_Dennis.book Page 2 Thursday, October 31, 2002 4:04 PM
1.1 BACKGROUND

A program, as you very well know, is typically defined as a series of instructions that are
related in some way. In .NET terms, a program can be defined as an assembly, or group
of assemblies, that work together to accomplish a task. Assemblies are nothing more
than a way of packaging instructions into maintainable elements. An assembly is gen-
erally housed in a dynamic link library (DLL) or an executable.

 Program A .NET program is an assembly, or group of assemblies, that perform a task.
An assembly is nothing more than a packaging mechanism where pieces of
related code are grouped into a common container, typically a file.

Closely related to programs are processes and threads. A program’s execution occurs
on one or more threads contained with a process. Threads allow the OS to exert con-
trol over processes and the threads that execute within.

1.1.1 What is a process?

A process gives a program a place to live, allowing access to memory and resources.
It’s that simple.

A process is an OS object used to associate one or more paths of execution with
required resources, such as memory that stores values manipulated by threads that exist
within the process.

A process provides a level of isolation that keeps different applications from inad-
vertently interacting with each other. Think of it in terms of cans of paint. Imagine you
have several different colors of paint. While each color of paint is in its own can it can-
not mix with other paints. The can is similar to a process in that it keeps things in the
can contained within and things outside of the can out. Every process contains one
or more threads. You can think of a thread as the moving part of the process. Without
a thread interacting with elements within a process, nothing interesting will happen.

1.1.2 What are threads and why should we care?

Threads are paths of execution. The threads perform the operations while the process
provides the isolation. A single-threaded application has only one thread of execution.

Thread A thread is the means by which a series of instructions are executed. A thread
is created and managed by the OS based on instructions within the program.
Every program will have at least one thread.

Let’s take a step back and talk about how a program is loaded into a process. I’m not
discussing Microsoft’s implementation, but the things that need to occur and their
likely order. When an executable is launched, perhaps by typing its name in a com-
mand window, the OS creates a process for the executable to run in. The OS then loads
the executable into the process’s memory and looks for an entry point, a specially
marked place to start carrying out the instructions contained within the executable.
Think of the entry point as the front door to a restaurant. Every restaurant has one,
and front doors are relatively easy to find. Generally speaking, it’s impossible to get
2 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 3 Thursday, October 31, 2002 4:04 PM
into a restaurant without going through the front door. Once the entry point is identi-
fied, a thread is created and associated with the process. The thread is started, executing
the code located at the entry point. From that point on the thread follows the series
of instructions. This first thread is referred to as the main thread of the process.

Listing 1.1 contains the listing of a console application that satisfies the obligatory
Hello World example.

Module ModuleHelloWorld
 Sub Main()
 Console.Write("Hello")
 Console.Write(" World")
 End Sub
End Module

As a console application, all input and output pass through the command-line envi-
ronment. Visual Basic console applications utilize the concept of a module. A module
is a Visual Basic construct that is identical in functionality to a C# class having all
static members. This means that the method can be invoked without an instance of
the class having been created.

I’ve found it very beneficial, when dealing with .NET, to examine the Microsoft
Intermediate Language (MSIL) the compiler produces. MSIL is an assembly-like lan-
guage produced by compilers targeting the .NET environment. MSIL is translated to
machine instructions by the runtime. MSIL is similar to Java’s bytecode. Listing 1.2
contains the MSIL that corresponds to the Main subroutine in listing 1.1.

.method public static void Main() cil managed
{
 .entrypoint
 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() =
 (01 00 00 00)
 // Code size 25 (0x19)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello"
 IL_0006: call void [mscorlib]System.Console::Write(string)
 IL_000b: nop
 IL_000c: ldstr " World"
 IL_0011: call void [mscorlib]System.Console::Write(string)
 IL_0016: nop
 IL_0017: nop
 IL_0018: ret
} // end of method ModuleHelloWorld::Main

Listing 1.1 An example of a single-threaded application (VB.NET)

Listing 1.2 The MSIL produced by the Hello World example (MSIL)

 C

 B
BACKGROUND 3

Net_Dennis.book Page 4 Thursday, October 31, 2002 4:04 PM
Notice the static keyword. This lets the runtime know that this is a static method.
Since the method is defined within a module, it is implicitly shared/static.

Console applications require a static method be the entry point. A common approach
is to have the console application contain a static Main that creates an instance of a
class and invokes a method on that instance.

The .entrypoint directive indicates that this method is the entry point for the
application. This tells the framework that this method should be invoked after the
assembly is loaded into memory.

This example contains a single thread of execution that starts by entering the Main
method and terminates when the ret, return, instruction executes. In this example
the thread does not contain branching or looping. This makes it easy to see the path
the thread will take.

Let’s examine listing 1.1 in detail. Figure 1.1 shows the path the main thread of
the process takes.

The arrows show the path the thread takes during execution of the Hello World program.
We’re covering this in such depth because, when doing multithreaded development, it is
critical to understand the execution path that a thread follows. When there is more than
one path, the complexity increases. Each conditional statement introduces another
possible path through the program. When there are a large number of paths, manage-
ment can become extremely difficult. When the path a thread takes contains branching
and looping, following that path often becomes more difficult. As a review, branching
occurs when a conditional instruction is encountered. Looping is accomplished by
having a branching statement target an instruction that has previously been executed.
Listing 1.3 contains a slightly more complex version of the Hello World example.

using System;
namespace HelloWorldAgain
{
 class ClassHelloWorldAgain
 {
 [STAThread]
 static void Main(string[] args)
 {

 B

 c

Figure 1.1 The execution path the main

thread in the Hello World example follows

Listing 1.3 Hello World with a loop (C#)
4 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 5 Thursday, October 31, 2002 4:04 PM
 for (int i=0;i<2;i++)
 {
 Console.Write("Hello");
 Console.Write(" World");
 }
 }
 }
}

It’s easier to annotate the execution path by using the MSIL. Figure 1.2 contains the
generated MSIL from listing 1.3 with numbered arrows indicating execution path.

This example demonstrates that code that is relatively simple can produce an execution
path that is somewhat complex. The interesting part of this example is the jump that
occurs at step 4. The reason for this jump is that the for loop tests to see if the test
condition is true before the loop executes. The important thing to take away from this
is that the main thread will execute steps 1 through 10. Those steps are the path the
thread will take through the code.

Figure 1.2 An execution path with branching
BACKGROUND 5

Net_Dennis.book Page 6 Thursday, October 31, 2002 4:04 PM
1.1.3 The cat project

It’s helpful to compare abstract things, like threads and processes, to something familiar.
Imagine a housecat in a typical family residence. The cat spends most of its time sleep-
ing, but occasionally it wakes up and performs some action, such as eating.

The house shares many characteristics with a process. It contains resources available
to beings in it, such as a litter box. These resources are available to things within the
house, but generally not to things outside the house. Things in the house are protected
from things outside of the house. This level of isolation helps protect resources from
misuse. One house can easily be differentiated from another by examining its address.
Most important, houses contain things, such as furniture, litter boxes, and cats.

Cats perform actions. A cat interacts with elements in its environment, like the
house it lives in. A housecat generally has a name. This helps identify it from other
cats that might share the same household. It has access to some or the entire house
depending on its owner’s permission. A thread’s access to elements may also be
restricted based on permissions, in this case, the system’s security settings. Listing 1.4
contains a class that models a cat.

using System;
using System.Threading;
namespace Cat
{
 public class ClassCat
 {
 public delegate void DidSomething(string message);
 DidSomething notify;
 int sleepTime;
 string name;
 Random rnd;
 string[] actions=
 {
 "Eat",
 "Drink",
 "Take a bath",
 "Wander around",
 "Use litter box",
 "Look out window",
 "Scratch furniture",
 "Scratch carpet",
 "Play with toy",
 "Meow"
 };

 public ClassCat(string name, DidSomething notify)
 {
 sleepTime=1000;
 rnd=new Random(Environment.TickCount);

Listing 1.4 The ClassCat class models the behavior of a cat (C#).

The DidSomething
delegate is used when
an action occurs

 B

A list of possible
actions is generated

 C

A name and a
DidSomething
delegate is
passed in

 D
6 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 7 Thursday, October 31, 2002 4:04 PM
 this.name = name;
 this.notify = notify;
 }

 private string WhichAction()
 {
 int which = rnd.Next(actions.Length);
 return actions[which];
 }

 public void DoCatStuff(int howMuch)
 {
 for (int i=0;i< howMuch;i++)
 {
 if(rnd.Next(100) >= 80)
 {
 notify(name + ": " + WhichAction()+ " ");
 }
 else
 {
 notify(name + ": Zzz ");
 Thread.Sleep(sleepTime);
 }
 }
 }
 }
}

Since the cat does things, we need some way of letting the outside world know what
it did. To accomplish this we use a delegate. A delegate is simply a way of accessing a
method through a variable, similar in many ways to function pointers and callbacks.
Function pointers and callbacks come from the C++ world. They provide a means of
storing the information required to execute a function in a variable or parameter. This
allows the function to be invoked indirectly, by accessing the variable or parameter.
Cat owners may be wishing that their cat had a delegate available so that they could
monitor their cat’s activities.

Cats do many things. I did not include sleep in this list of common feline activities
since it occurs more frequently than the other activities.

Unlike the normal process through which cats come into the world, our cat is created
when it is allocated using the new statement. The constructor accepts the name of the
newly created cat along with a reference to the delegate to call when it does something.
The advantage of using a delegate in this way is that the cat class doesn’t need to know
anything about the class that’s utilizing its functionality.

The actions of a cat have always seemed pseudorandom to me. There may be a more
complex algorithm they use to determine their actions but they aren’t talking.

A name and a
DidSomething
delegate is
passed in

 D

A random action
is chosen

 E

Loop the supplied
number of times

 F

 b

 c

 d

 e
BACKGROUND 7

Net_Dennis.book Page 8 Thursday, October 31, 2002 4:04 PM
DoCatStuff is the main method used to simulate the cat’s actions. It loops the spec-
ified number of times. Each loop has an 80 percent chance of the cat doing nothing
more interesting than sleeping. The remaining 20 percent involves random selection
from the list of actions we discussed earlier.

We’re now ready to do something with our cat class. Listing 1.5 contains the code
from a console application that utilizes ClassCat.

using System;
namespace Cat
{
 class ClassMain
 {
 [STAThread]
 static void Main(string[] args)
 {
 ClassCat theCat;
 ClassCat.DidSomething notify;

 notify = new ClassCat.DidSomething(AddLine);
 theCat = new ClassCat("Tiger",notify);
 theCat.DoCatStuff(250);
 }

 static private void AddLine(string message)
 {
 Console.Write(message);
 }
 }
}

Our cat will perform many actions. In order for the ClassMain class to know that the
cat has performed an action, we must supply it with a delegate. The DidSomething
delegate that’s passed in to the constructor is invoked by the instance of the cat class
whenever it accomplishes some task. The instance of the DidSomething delegate
that’s passed in is associated with the AddLine method. This method accepts a
string as its only parameter. It then writes the contents of that string to the console.

When we create our cat we pass in the instance of the DidSomething delegate along
with the cat’s name. After we’ve created Tiger we tell it to do 250 iterations. This occurs
on the main thread of the application. Once DoCatStuff completes, the application
terminates. The following is a sample of the output produced by the program:

"Zzz" "Meow" "Zzz" "Zzz" "Zzz" "Play with toy" "Wander around" "Zzz" "Zzz"
"Take a bath" "Zzz" "Zzz" "Zzz" "Zzz" "Zzz" "Zzz" "Zzz" "Zzz" "Play with
toy" "Zzz"

We’ve explored a simple example of how a thread resembles a cat. In the next section
we take a look at processes from the Task Manager perspective.

 f

Listing 1.5 The console application that uses the ClassCat class

Contains a reference
to ClassCat

 B

Creates an instance
of ClassCat

 C

Is invoked when
an action occurs

 b

 c
8 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 9 Thursday, October 31, 2002 4:04 PM
1.1.4 Task Manager

To see examples of processes, you need look no further than the Windows Task Manager,
shown in figure 1.3.

Processes are assigned a priority that is used in scheduling its threads. In figure 1.3 the
column Base Pri contains the priority of the process. A process itself does not execute.
Instead the threads contained within a process execute. Their execution is controlled in
part by their priority. The OS combines each thread’s priority with that of the process
containing them to determine the order in which the threads should execute. Three
of the most common values for base priority—High, Normal, and Low—are listed in
figure 1.3.

The columns Mem Usage, Handles, USER Objects, and GDI Objects are examples
of memory and resources that a process uses. These resources include things like file
handles and Graphical Device Interface (GDI) objects. A file handle is used to interact
with a file system file while a GDI object is used to display graphical output, such as
circles and lines, on the screen.

Processes allow the actions of one thread in a process to be isolated from all other
processes. The goal of this isolation is to increase the overall stability of the system. If
a thread in a process encounters an error, the effects of that error should be limited
to that process.

Figure 1.3 Windows Task Manager lists the processes that are currently executing.
BACKGROUND 9

Net_Dennis.book Page 10 Thursday, October 31, 2002 4:04 PM
1.2 MULTITASKING

When computers ran only one program at a time, there was no need to be concerned
with multitasking. Not that long ago a computer executed only one process—a single
task—at a time. In the days of DOS the computer started up to a command prompt.
From that prompt you typed the name of the program to execute. This single tasking
made it very difficult to interact with multiple programs. Typically users were forced to
exit one program, saving their work, and start another. For many it is unimaginable
that a computer could run only a single program at once, such as a word processor or
spreadsheet. Today users routinely execute a relatively large number of processes at the
same time. A typical user may be surfing the Web, chatting using an instant messaging
program, listening to an MP3, and checking email simultaneously.

When an OS supports execution of multiple concurrent processes it is said to be
multitasking. There are two common forms of multitasking: preemptive and cooper-
ative, which we’ll explore next.

1.2.1 Cooperative multitasking

Cooperative multitasking is based on the assumption that all processes in a system
will share the computer fairly. Each process is expected to yield control back to the
system at a frequent interval. Windows 3.x was a cooperative multitasking system.

The problem with cooperative multitasking is that not all software developers fol-
lowed the rules. A program that didn’t return control to the system, or did so infre-
quently, could make the entire system unusable. That’s why Windows 3.x would
occasionally “freeze up,” becoming unresponsive. This occurred because the entire OS
shared a common thread processing messages. When Windows 3.x started a new
application, that application was invoked from the main thread. The OS would pass
control to the application with the understanding it would be returned quickly. If the
application failed to return control to the OS in a timely fashion, all other applications,
as well as the OS, could no longer execute instructions.

Development of applications for Window 3.x was more difficult than newer ver-
sions because of the requirements of cooperative multitasking. The developer was
required to process Windows messages on a frequent basis, requiring that checks to
the message loop be performed regularly. To perform long-running operations, such
as looping 100 times, required performing a small unit of work, and then posting a
message back to yourself indicating what you should do next. This required that all
work be broken up into small units, something that isn’t always feasible.

Let’s review the way that current Windows applications function. The main thread
executes a loop called a message pump. This loop checks a message queue to see if there’s
work to do. If so, it performs the work. The click event, which occurs when a user clicks
a control such as a button, enters work into the message queue indicating which method
should be executed in response to the user’s click. This method is known as an event handler.
While the loop is executing an event handler, it cannot process additional messages.
10 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 11 Thursday, October 31, 2002 4:04 PM
Think of the message pump as a person whose job is repairing appliances. Imagine
this person has an answering machine at his place of business. When people need the
technician, they call the answering machine and leave a message. This is essentially what
happens when an event is entered into the message queue. The technician then retrieves
messages from the answering machine, and, hopefully, responds in the order they were
received. Generally, while the technician is on a service call he cannot start working
on additional service calls. He must finish the current job and return to the office to
check for messages.

Suppose a repair is taking a long time to complete. The client might tell the technician,
go back to your office, check your messages, and do one job. Once you’ve finished it,
come back here and finish this job. This is what the Application.DoEvents
method does. It makes a call back to the message pump to retrieve messages.

Listing 1.6 contains the class that controls the sharing of the processor in a coop-
erative multitasking application.

using System;
using System.Collections;
namespace CooperativeMultitasking
{
 public class Sharing
 {
 public bool timeToStop=false;

 ArrayList workers;
 int current;
 public Sharing()
 {
 workers=new ArrayList();
 current=-1;
 }
 public void Add(WorkerBase worker)
 {
 workers.Add(worker);
 }

 public void Run()
 {
 if (workers.Count ==0)
 {
 return;
 }
 while (!timeToStop)
 {
 current++;
 if (current+1 > workers.Count)
 {
 current= 0;
 }

Listing 1.6 A cooperative multitasking controlling class (C#)

An ArrayList is
used to store
the workers

 B

An ArrayList is
used to store
the workers

 B

An ArrayList is
used to store
the workers

 B

Each worker is
given a chance
to work

 C
MULTITASKING 11

Net_Dennis.book Page 12 Thursday, October 31, 2002 4:04 PM
 WorkerBase worker;
 worker=(WorkerBase)workers[current];
 worker.DoWork(this);
 }
 }
 }
}

Since multitasking involves multiple elements we need some way of storing them. In
this example we use an ArrayList to store instances of classes derived from Worker-
Base. An ArrayList is a dynamic array that manages the memory required to
store its elements. To add an entry to the list you use the Add method. We discuss
WorkerBase in listing 1.7.

The heart of the Sharing class is the Run method which executes until the value of
timeToStop becomes true. On each pass the variable current’s contents are
incremented. This counter is used to choose which worker will be allowed to do a
portion of its work. The worker is extracted from the ArrayList and its DoWork
method is invoked.

WorkerBase is an abstract base class. All instances of classes that are managed by
the Sharing class must be derived from the WorkerBase class, either directly or
indirectly. Listing 1.7 contains the WorkerBase class.

namespace CooperativeMultitasking
{
 public abstract class WorkerBase
 {
 public abstract void DoWork(Sharing controller);
 }
}

Because WorkerBase contains an abstract method DoWork, all classes derived from
it must implement that method. The Sharing class calls the DoWork method each
time it’s the worker class’s turn. To perform some work we need a class that’s derived
from WorkerBase that does something. Listing 1.8 contains a class that writes out a
greeting based on a string passed to its constructor.

Each worker is
given a chance
to work

 C

 b

 c

Listing 1.7 WorkerBase is the foundation for all classes controlled by the

Sharing class (C#).
12 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 13 Thursday, October 31, 2002 4:04 PM
Public Class Hello
 Inherits WorkerBase

 Private name As String

 Public Sub New(ByVal name As String)
 Me.name = name
 End Sub

 Public Overrides Sub DoWork(ByVal controller As Sharing)
 Console.Write("Hello " + name)
 End Sub
End Class

Notice that the DoWork method is overridden to perform a simple action. Each time
an instance of this class has a chance to perform its action, it will simply write out the
greeting “Hello” followed by the name passed into the constructor.

To control termination we introduce a class that limits the number of times it is invoked
(listing 1.9). This keeps our example relatively simple and shows another derived worker.

using System;
namespace CooperativeMultitasking
{
 public class Die : WorkerBase
 {
 int howManyAllowed;
 int workUnits;
 public Die(int howManyAllowed)
 {
 workUnits=0;
 this.howManyAllowed= howManyAllowed;
 }
 public override void DoWork(Sharing controller)
 {
 workUnits++;
 if (workUnits > howManyAllowed)
 {
 controller.timeToStop=true;
 }
 }
 }
}

The problem with cooperative multitasking is when one of the elements being con-
trolled executes for an excessive amount of time. Listing 1.10 contains an example of
a class that contains an infinite loop in its DoWork method.

Listing 1.8 A cooperative greeter (VB.NET)

Listing 1.9 A worker who signals it’s time to stop all processing (C#)
MULTITASKING 13

Net_Dennis.book Page 14 Thursday, October 31, 2002 4:04 PM
Public Class Bad
 Inherits WorkerBase
 Public Overrides Sub DoWork(ByVal controller As Sharing)
 While (True)
 End While
 End Sub
End Class

We’re now ready to see all the pieces tied together. The controlling part of this example
is in listing 1.11. Notice that the line adding the badWorker is commented out.

using System;
namespace CooperativeMultitasking
{
 class ClassMain
 {
 [STAThread]
 static void Main(string[] args)
 {
 Sharing controller;
 controller = new Sharing();
 Hello hiNewton = new Hello("Newton ");
 Hello hiCayle = new Hello("Cayle ");
 Die terminator = new Die(10);
 Bad badWorker = new Bad();
 controller.Add(hiNewton);
 controller.Add(hiCayle);
 // controller.Add(badWorker);
 controller.Add(terminator);
 controller.Run();
 }
 }
}

This program produces the following output:

Hello Newton Hello Cayle Hello Newton Hello Cayle Hello Newton Hello Cayle
Hello Newton Hello Cayle Hello Newton Hello Cayle Hello Newton Hello Cayle
Hello Newton Hello Cayle Hello Newton Hello Cayle Hello Newton Hello Cayle
Hello Newton Hello Cayle Hello Newton Hello Cayle

Notice that the greetings alternate as each worker is given a chance to do his work. When
the badWorker is present in the collection of workers, the following output is produced:

Hello Newton Hello Cayle

Listing 1.10 A worker that uses more processing time than he should (VB.NET)

Listing 1.11 The Sharing example main class (C#)
14 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 15 Thursday, October 31, 2002 4:04 PM
Since the badWorker’s DoWork method never returns, the entire cooperative system
is destabilized. This kind of failure is why Windows 3.x would occasionally freeze,
requiring a reboot of the computer to recover.

We’ve discussed the challenges of developing applications under cooperative multi-
tasking. The biggest problem is that if one or more applications doesn’t follow the rules,
the entire OS is affected. It’s not surprising that all modern multitasking OSs use pre-
emptive multitasking.

1.2.2 Preemptive

Preemptive multitasking is the more common form of multitasking in use today.
Instead of relying on the programs to return control to the system at regular intervals,
the OS takes it. Listing 1.12 contains an example of a program that uses threads and
relies on preemptive multitasking.

private void button1_Click(object sender, System.EventArgs e)
{
 System.Threading.WaitCallback callback;
 callback = new System.Threading.WaitCallback(Loop);
 System.Threading.ThreadPool.QueueUserWorkItem(callback);
}

private void Loop(object state)
{
 for (int i=1;i<100;i++)
 {
 for (int k=0;k< 100;k++)
 {
 double d;
 d = (double)k/(double)i;
 SetLabel(d.ToString());
 }
 }
 SetLabel("Finished");
}

private delegate void SetLabelDelegate(string s);
private void SetLabel(string s)
{
 if (label1.InvokeRequired)
 {
 label1.Invoke(new SetLabelDelegate(SetLabel),new object[] {s});
 }
 else
 {
 label1.Text=s;
 }
}

Listing 1.12 Using a different thread to perform the work (C#)

Adds to the
ThreadPool

 B

Defines the method
that is invoked in
the ThreadPool

 C

Sets the text
of the label

 D

Sets the text
of the label

 D

Sets the text
of the label

 D
MULTITASKING 15

Net_Dennis.book Page 16 Thursday, October 31, 2002 4:04 PM
The key element in this example is that the button1_Click method doesn’t do the
actual looping; instead it creates a work item that’s entered into a thread pool. A thread
pool is an easy way to do multithreading. As with most things, this simplicity results
in a less flexible way of doing things. This execution occurs on a separate thread and is
periodically interrupted by the OS to allow other threads a chance to get work done.

Thread pools are a great way to perform multithreaded programming. Chapter 10
covers thread pools in detail. Thread pools perform their work using the Wait-
Callback delegate. A method that accepts a single parameter is associated with the
WaitCallback. That method, Loop, is invoked on a thread controlled by the
thread pool.

The Loop method performs the actual work. It is very similar to the method in listing 1.6.
The most notable difference is that there is no call to Application.DoEvents.
Additionally, some type casting is being performed to make the output more interesting.

Instead of accessing the label directly to output the results, we use the SetLabel
method. SetLabel ensures that the label is accessed on the same thread that created
the form. It does this because Windows Forms are not thread-safe. The potential exists
that something undesirable will occur if one thread—or more—manipulates a control
on a Windows Form.

It’s important to understand that this example would not work on a cooperative
multitasking OS because there is no call to service the message pump or to yield control.
In the next section we discuss how preemptive multitasking is done.

1.3 PREEMPTIVE MULTITASKING
When more than one application is executing, there must be some means of determin-
ing whose turn it is to execute. This is generally referred to as scheduling. Scheduling
involves an element in one of two states: currently executing and waiting to execute.
Under modern OSs scheduling is performed on a per-thread basis. This allows a single
thread to be paused and then resumed. Only one thread can be executing at a given
point in time. All other threads are waiting for their turn to execute. This allows the
OS to exert a high degree of control over applications by controlling the execution of
their threads.

1.3.1 Time slice, or quantum

Things are often not what they seem. When we go see a movie in a theater, the images
seem to flow from one to another in a seamless way. In reality, many separate images are
presented on the screen and our brain maps them together to form a continuous image.

OSs do a similar sleight of hand with threads. Multiple threads seem to execute at
the same time. This is accomplished by giving each thread in the system a tiny amount
of time to do its work and then switching to another one. This happens very quickly,
and the user of the system is typically unaware that a switch has occurred. The amount
of time a thread has to do its work is called a time slice, or quantum. The duration of

 b

 c

 d
16 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 17 Thursday, October 31, 2002 4:04 PM
the time slice varies based on the OS installed and the speed of the central processor.
Listing 1.13 demonstrates that threads are periodically interrupted.

Module ModuleTimeSlice
 Sub Main()
 Dim whatToOutput As String
 Dim i As Integer
 Dim lastTick As Long
 Dim newTickCount As Long
 Dim opsPerTick As Long
 Dim offbyone As Long
 lastTick = System.Environment.TickCount
 opsPerTick = 0
 offbyone = 0
 whatToOutput = ""
 For i = 1 To 1000000
 newTickCount = System.Environment.TickCount
 If (lastTick = newTickCount) Then
 opsPerTick += 1
 Else
 If (lastTick = (newTickCount + 1)) Then
 offbyone += 1
 opsPerTick += 1
 lastTick = newTickCount
 Else
 Dim output As String
 Dim numTicks As Long
 numTicks = newTickCount – lastTick
 output = String.Format("{0} {1}", numTicks, opsPerTick)
 whatToOutput += output + vbCrLf
 opsPerTick = 0
 lastTick = newTickCount
 End If
 End If
 Next
 Console.WriteLine("OffByOne = " + offbyone.ToString())
 Console.WriteLine(whatToOutput)
 End Sub
End Module

We start by retrieving the current tick from the OS. The TickCount property returns
the number of milliseconds since the OS was rebooted. We store that value in the
lastTick variable.

To see the breaks in execution, we loop for a large number of times. Too small of a
number here would not demonstrate the breaks in execution, since the task could be
completed quickly.

Listing 1.13 Detecting threads sharing a processor (VB.NET)

Retrieves the
TickCount before
the start of the
loop B

Loops a large
number of times

 C

Compares the
current
TickCount to
the last one

 D

Records the number
of operations

performed

 F

Checks to see if
the last TickCount
is one tick greater
than the current
tick

 E

 b

 c
PREEMPTIVE MULTITASKING 17

Net_Dennis.book Page 18 Thursday, October 31, 2002 4:04 PM
The first thing we do on each iteration is retrieve and store the current tick count. The
idea is to capture how many milliseconds have passed since the last time we retrieved
the value. We then check to see if the value has changed. If it hasn’t we increment the
number of operations that have been performed while the values were equal.

If the values have changed we check to see if the new value is one greater than the old
value. This would indicate that we moved from one millisecond to the next greater
one. In my testing this didn’t occur. This is as an indication that the amount of time
the processor gives a thread is smaller than 1 millisecond.

When a break of more than 1 millisecond occurs we determine the number of milli-
seconds that have elapsed and then record the results to a string and reset the
counters. The frequency of this occurrence is a product of the load of the system, the
power of the processor, and the number of iterations in the loop.

Listing 1.13 produces the following output:

The first column contains how many milliseconds have passed when a break in the
tick count occurred. The second column contains the number of iterations that were
completed without a break occurring. If the thread had a processor dedicated to it there
would be very even breaks, or not at all, in the tick count. As you can see, the breaks
that do occur have a small amount of time between them. The amount of time a thread
gets is based on the priority of the process it is executing in along with the priority
associated with the thread.

A time slice is a very small unit of time. This helps provide the illusion that a thread
has exclusive use of a processor. Each time that a processor switches from one thread to
another is referred to as a context switch. In the next section we discuss context switching.

1.3.2 Context and context switching

There are many threads in existence in a typical system at any given point. A count of
the threads from figure 1.3 yields over a hundred. Fortunately newer versions of Win-
dows are good at dealing with multiple threads. A single processor executes one thread
at a time. The thread has the processor’s attention for one quantum, a time slice. After
each quantum unit passes, the processor checks to see if another thread should have
the processor. When the processor decides that a different thread should be executed,
it saves the information the current thread requires to continue and switches to a dif-
ferent thread. This is called a context switch.

OffByOne = 0

16 177655

31 0

16 220041

15 395763

 d

 e

 f
18 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 19 Thursday, October 31, 2002 4:04 PM
A high level of context switching is an indication of system load. A system that is
switching excessively is said to be thrashing. The implication is that the processor is
spending a great deal of time switching between threads and not performing as much
work as if it were switching less frequently. High levels of context switching are gen-
erally associated with a shared resource being overutilized. When a resource isn’t avail-
able, the OS pauses the thread that’s requesting it. This allows other threads, which
most likely aren’t waiting for a resource, to execute.

One way that a context switch occurs is when a thread indicates that it has finished
processing and that some other thread should be given the remainder of its time. This
is accomplished using the Sleep method of the Thread class.

We’ll discuss this in greater detail in section 5.3, but for now think of Sleep as a
way for a thread to let the OS know that it would like to be idle for some period of time.
The idea is that the thread detects that it should pause for a small amount of time to allow
other things to happen. For example, if a thread is tasked with keeping a queue empty,
it might pause periodically to allow multiple entries to be entered into the queue.

Sleep accepts several different types of parameters. One version of Sleep accepts
an Integer indicating how many milliseconds the thread would like to be idle. If
zero is passed in, it indicates that the thread wishes to yield the remainder of its time
slice and continue executing on the next available time slice. This causes a context
switch to occur. Listing 1.14 contains a class that uses a thread pool to execute a
method on a different thread. The method continues to execute until changing the
value of a Boolean flag stops it. The method calls Sleep with zero, which forces the
thread to release the remainder of the current time slice to the operating system, forc-
ing a context switch.

using System;
using System.Threading;
namespace ContextSwitching
{
 public class Switching
 {
 private bool itsTimeToStop ;
 public bool TimeToStop
 {
 get {return itsTimeToStop; }
 set {itsTimeToStop=value; }
 }

 public Switching()
 {
 itsTimeToStop=false;
 WaitCallback callback;
 callback = new WaitCallback(Loop);
 ThreadPool.QueueUserWorkItem(callback);
 }

Listing 1.14 A class that generates a large number of context switches (C#)

itsTimeToStop
controls the
Loop method

 B

itsTimeToStop
controls the
Loop method

 B

WaitCallback is
used with thread
pools

 C
PREEMPTIVE MULTITASKING 19

Net_Dennis.book Page 20 Thursday, October 31, 2002 4:04 PM
 private void Loop(object state)
 {
 Thread.Sleep(500);
 while (!itsTimeToStop)
 {
 Thread.Sleep(0);
 }
 }
 }
}

An important element of any thread is being able to control its termination. We use the
itsTimeToStop flag to control the termination of the thread. Initially itsTime-
ToStop is set to false, indicating that the Loop method should continue executing.
To avoid interacting with the variable directly we use a property to manipulate its value.
This is a good practice in general, and very important when dealing with multi-
threaded development. This allows for a higher degree of control.

To create a separate thread of execution we use a thread pool. These are the same steps
we used in listing 1.12.

The Loop method contains a Sleep statement that pauses execution for half of a
second and then enters a loop where the current thread continually yields its time
slice to the processor. To test the effects of this class on a system, we use a simple console
application. Listing 1.15 contains the code of the console application that creates
instances of the Switching class.

using System;
namespace ContextSwitching
{
 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {
 RunTest(10);
 RunTest(5);
 RunTest(3);
 RunTest(1);
 RunTest(0);
 }
 static void RunTest(int numberOfWorkers)
 {
 string howMany;
 howMany= numberOfWorkers.ToString();
 long i;
 Switching[] switcher;

The Loop method
executes until
itsTimeToStop is
true

 D

 b

 c

 d

Listing 1.15 Console application that demonstrates context switching (C#)

The RunTest method
is called with different
parameters

 B

An array of
Switching class
is created

 C
20 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 21 Thursday, October 31, 2002 4:04 PM
 switcher = new Switching[numberOfWorkers];
 for (i = 0;i <switcher.Length ;i++)
 {
 switcher[i] = new Switching();
 }
 Console.WriteLine("Created " + howMany + " workers");
 System.Threading.Thread.Sleep(5000);
 for (i = 0;i <switcher.Length ;i++)
 {
 switcher[i].TimeToStop = true;
 }
 Console.WriteLine("Stopped " + howMany + " workers");
 System.Threading.Thread.Sleep(5000);
 }
 }
}

We call the RunTest method with a different parameter to create a different number
of workers. This demonstrates a varying level of context switching.

The RunTest method creates an array of Switching objects, from listing 1.14.
We then pause the main thread for five seconds. This gives time for the other threads
to execute. After five seconds we set the TimeToStop property to false for each
Switching object.

This program writes the following output to the console:

Created 10 workers
Stopped 10 workers
Created 5 workers
Stopped 5 workers
Created 3 workers
Stopped 3 workers
Created 1 workers
Stopped 1 workers
Created 0 workers
Stopped 0 workers

We’ve reviewed what a context switch is; now let’s examine how we can measure them.

1.3.3 Detecting context switching

The Performance Monitoring program (perfmon.exe) is useful in determining how
many context switches are occurring per second. In Windows 2000 the Performance
Monitoring program is located in the Administrative Tools group under Programs in
the Start menu. Figure 1.4 shows the impact of executing the program in listing 1.9.

The four “bumps” in the graph occurred during the time between when Created
x Workers was written to the console and when Stopped x Workers was written to the
console. Not surprisingly, the execution of zero workers did not produce a bump.

 b

 c
PREEMPTIVE MULTITASKING 21

Net_Dennis.book Page 22 Thursday, October 31, 2002 4:04 PM
Measuring the number of context switches that occur per second is a good way of
troubleshooting an application. Figure 1.5 shows how to add the measure to Perfor-
mance Monitor.

The OS determines when a context switch occurs. A thread can give the scheduler a
hint that it has finished performing its operations, but it’s up to the scheduler to deter-
mine if it will perform the context switch.

For more information on context switches, time slices, and thread scheduling, consult
any book that covers the Windows platform.

Figure 1.4 Performance Monitor during listing 1.9. The “bumps” correspond to

the time between Created and Stopped.

Figure 1.5

The Add Counter dialog box used

to add Context Switches / sec to a

Performance Monitor graph
22 CHAPTER 1 PROCESS AND THREAD BASICS

Net_Dennis.book Page 23 Thursday, October 31, 2002 4:04 PM
1.4 SUMMARY

This chapter serves as a review of the basic operating system concepts that relate to
multithreaded development. It is by no means an exhaustive discussion but does serve
to introduce the concepts. Understanding the underlying processes and threads is
very important when you’re doing multithreaded development. By being aware of
how the OS interacts with threads you can develop programs that work with the OS
rather than against it. By understanding what causes excessive context switching, you
can develop programs that avoid that performance bottleneck.

In the next chapter we discuss the .NET framework from a multithreaded perspective.
SUMMARY 23

Net_Dennis.book Page 24 Thursday, October 31, 2002 4:04 PM
C H A P T E R 2

.NET from a
threading perspective

2.1 .NET architecture overview 24
2.2 Garbage collection 27
2.3 Security 34
2.4 Summary 35
The Microsoft .NET framework was built with the knowledge that many of the appli-
cations written for it would contain multiple threads. Unlike with some platforms,
where threading was an afterthought, the designers of .NET not only considered multi-
threaded development needs, but also utilized multiple threads in the framework.

2.1 .NET ARCHITECTURE OVERVIEW

Throughout this book we’ll examine the architecture of the .NET framework from a
multithreaded perspective. Figure 2.1 shows the relationship between .NET and other
elements of the OS, including Microsoft Internet Information Server (IIS).

We’ll examine each of these, starting closest to the OS and working up.

2.1.1 Framework runtime

The .NET framework, which all managed applications utilize, executes on top of the
OS. The runtime provides managed applications numerous services such as garbage
collection, a common type system, and multithreaded support.

.NET differentiates between physical threads and logical threads because it is designed
to support multiple platforms. Traditional multithreaded development on the Windows
24

Net_Dennis.book Page 25 Thursday, October 31, 2002 4:04 PM
platform deals with physical threads. These physical threads are managed by the OS and
created when the appropriate function of the Win32 application program interface
(API) is called. The terms physical thread and OS thread can be used interchangeably.
They both refer to the thread that’s created and managed by the OS.

The .NET framework introduces the concept of a logical thread, created by the frame-
work rather than by the OS. The framework manages logical threads. All interaction with
logical threads occurs via the framework. Under the current implementation, the frame-
work uses one physical thread for each logical thread. This could change in the future.

We revisit the services the runtime provides in later sections of this chapter.

2.1.2 .NET class libraries

The .NET class libraries provide a hierarchy of objects that encapsulate commonly
needed programmatic constructs. While it is possible to write a .NET application with-
out using the class libraries, it is unlikely, and would not be cost effective, which is why
.NET applications are not presented as accessing the framework directly.

Object-oriented development relies heavily on class libraries. The majority of the
learning curve associated with .NET revolves around learning the features that the class
libraries provide. .NET provides support for custom multithreaded development by
using the System.Threading namespace. Recall that a namespace is used in .NET
to organize classes. Similar classes are grouped in the same namespace. We use namespaces
to prevent collision of classes with the same name.

The majority of the focus of this book will be on the classes contained within the
System.Threading namespace. One of the most frequently used classes in the
Threading namespace is Thread, which allows an object to be associated with a logical
thread. Just as a file object relates to an OS file, the Thread class relates to a thread of
execution. This level of abstraction allows for easy creation and management of threads.

Many of the classes in the class library utilize multithreading in one form or another.
As an example, the WebClient class in the System.Net namespace uses threads

Figure 2.1

The .NET framework’s

relationship to OS, IIS,

and unmanaged code
.NET ARCHITECTURE OVERVIEW 25

Net_Dennis.book Page 26 Thursday, October 31, 2002 4:04 PM
when methods such as DownloadData are invoked. Rather than putting the multi-
threading burden on the caller of the method, the class internalizes the use of threads,
providing an easy-to-use interface.

2.1.3 ASP .NET

ASP .NET is an important aspect of web development because it provides a high-
performance solution to developing web applications. I’ve included it in the .NET class
libraries section since it is essentially a subset of the library. This in no way diminishes the
importance of this development environment; I view ASP .NET as the ideal web devel-
opment tool. A thorough discussion of ASP .NET is outside the scope of this book.

One area where ASP.NET relates to multithreaded development is when a client
application accesses an XML Web Service. XML Web Services are created using ASP
.NET. Calling a method of an XML Web Service takes much longer to complete than
a call to a local object. Rather than forcing the client to wait for the call to return, we
can use multiple threads to continue processing other tasks. This creates a richer expe-
rience for the user of the application, as well as allowing for error recovery. XML Web
Services are increasingly being used as a data access mechanism. This trend will most
likely continue, increasing the need for clients that interact with them in a robust way.

2.1.4 Developing custom libraries

Custom library development is a key aspect of .NET. This is true in general, but espe-
cially so with respect to multithreaded development. By encapsulating multithreaded
classes in reusable assemblies, you can achieve a high level of code reuse. Additionally,
developers who are not versed in how to write multithreaded programs can use classes
that utilize threads.

When developing custom libraries, it is important to consider threading implica-
tions. If the class can safely be accessed from multiple threads concurrently, the library
is said to be thread-safe. Thread safety of a library should be documented. It is as
important to state a library is thread-safe as it is to convey it is not. Knowing the thread
safety allows developers using the library to know exactly how the classes in the library
will react when manipulated by multiple threads.

2.1.5 Managed applications

Development of managed applications, that is, applications that utilize the .NET frame-
work, is one of the most exciting ways to use multiple threads. Operations can be per-
formed in the background while the user continues to work within the application.
This is exactly what Microsoft Word does when Check Spelling As You Type is selected.
As the user types, Word is checking the recently typed words against a dictionary. When
the spell checker determines a word is misspelled, it places a red line under it, indicating
it found something the user should examine. All of this is happening while the user
continues to type.

Network operations are another area where threads are beneficial. Network operations,
such as opening a file, can take a relatively long time to complete. If a single-threaded
26 CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

Net_Dennis.book Page 27 Thursday, October 31, 2002 4:04 PM
application accesses a file, all operations must pause until that operation completes. By
using multiple threads, a managed application can access a remote file without sus-
pending other operations.

There are many areas where multiple threads can be used; the key is using the new
tool in an appropriate way.

2.2 GARBAGE COLLECTION

Garbage collection allows developers to focus on solving problems rather than manag-
ing memory. This section reviews garbage collection and then examines the role threads
play in it. We start by discussing the need for memory management and explore the
problems with traditional approaches.

Visual Basic and J++ developers take garbage collection for granted. They rightly
assume that when they have finished with memory it will be disposed of correctly. For
developers coming from C++ this isn’t the case. Listing 2.1 is an example of a C++ pro-
gram that does not free memory correctly.

#include "stdafx.h"
int main (int argc, char* argv[])
{
 for(int i=0;i< 10000000;i++)
 {
 char * c = new char[200];
 }
 return 0;
}

When this program executes, the memory usage grows rapidly, indicating that memory
is not being freed. Figure 2.2 shows the increase in the private bytes of the process.

Listing 2.1 Leaking program (C++)

Figure 2.2

Private bytes used by

the leaking program
GARBAGE COLLECTION 27

Net_Dennis.book Page 28 Thursday, October 31, 2002 4:04 PM
It’s easy to fix the leak in listing 2.1. Listing 2.2 contains the delete that should
accompany the new statement.

#include "stdafx.h"
int main(int argc, char* argv[])
{
 for (int i=0;i< 10000000;i++)
 {
 char * c = new char[200];
 if (c != 0)
 {
 delete[] c;
 }
 }
 return 0;
}

Figure 2.3 demonstrates that the program no longer leaks. Notice the flat memory usage.
.NET takes care of memory management for managed applications. Listing 2.3 is

the C# equivalent of listing 2.1. Notice that the memory is not released explicitly.

private void button1_Click(object sender, System.EventArgs e)
{
 for(int i=0;i< 10000000;i++)
 {
 char [] c = new char[200];
 }
}

Listing 2.2 Including the delete statement removes the leak (C++).

Listing 2.3 C# version of listing 2.1

Figure 2.3

Memory usage of a program

that does not leak
28 CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

Net_Dennis.book Page 29 Thursday, October 31, 2002 4:04 PM
Figure 2.4 shows the memory usage when the code in listing 2.3 executes. Notice that
the memory used does not grow in an uncontrolled way.

Visual Basic is not immune to memory leaks; they just take a different form. Where
Visual Basic has trouble is in the handling of circular references. A circular reference
occurs whenever an instance of one class references an instance of another class that
in turn references the original instance. Listing 2.4 is an example of a Visual Basic 6
circular reference leak.

Private Function CreateCircular()
 Dim oA As New ClassA
 Dim oB As New ClassB
 Set oA.oClassB = oB
 Set oB.oClassA = oA
 Set oA = Nothing
 Set oB = Nothing
End Function

' Class A
Public oClassB As ClassB

Private Sub Class_Initialize()
 Debug.Print "Init A"
End Sub

Private Sub Class_Terminate()
 Debug.Print "Term A"
End Sub

' Class B
Public oClassA As ClassA
Private Sub Class_Initialize()
 Debug.Print "Init B"
End Sub

Figure 2.4

Memory usage of a

managed application

Listing 2.4 Circular reference in Visual Basic 6
GARBAGE COLLECTION 29

Net_Dennis.book Page 30 Thursday, October 31, 2002 4:04 PM
Private Sub Class_Terminate()
 Debug.Print "Term B"
End Sub

You can determine that the program is leaking by noticing the absence of the "Term B"
and "Term A" statements in the immediate window. This is one of the reasons that
the designers of .NET chose to go with garbage collection instead of reference count-
ing as the means of managing memory. Recall that reference counting is a means of
keeping track of how many objects are referencing an item. Each time an object gains
a reference, it increments the reference count. When an object is finished with an item,
it decrements the reference count of that item. When the reference count of an item
reaches zero, it is removed from memory as part of the decrementing call.

The negative impact of garbage collection is that it introduces nondeterministic
finalization. All that means is that you don’t know exactly when, or even if, the
Finalize method will execute.

To see that .NET really has fixed the circular reference problem, consider listing 2.5.

Public Class Form1
 Inherits System.Windows.Forms.Form
. . .
Private Sub ButtonTestCircular_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ButtonTestCircular.Click
 MakeCircular()
 GC.Collect()
 End Sub
 Private Function MakeCircular()
 Dim oA As New ClassA()
 Dim oB As New ClassB()
 oA.oClassB = oB
 oB.oClassA = oA
 End Function
End Class

Public Class ClassA
 Public oClassB As ClassB
 Public Sub New()
 System.Diagnostics.Debug.WriteLine("New A")
 End Sub

 Protected Overrides Sub Finalize()
 MyBase.Finalize()
 System.Diagnostics.Debug.WriteLine("Finalize A")
 End Sub
End Class

Public Class ClassB
 Public oClassA As ClassA

Listing 2.5 Circular reference in Visual Basic .NET (VB.NET)
30 CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

Net_Dennis.book Page 31 Thursday, October 31, 2002 4:04 PM
 Public Sub New()
 System.Diagnostics.Debug.WriteLine("New B")
 End Sub

 Protected Overrides Sub Finalize()
 MyBase.Finalize()
 System.Diagnostics.Debug.WriteLine("Finalize B")
 End Sub
End Class

One thing you will notice is the addition of the GC.Collect to the testing method.
GC.Collect tells the garbage collector to recover any unused memory. Typically
there’s no reason to call Collect. A better practice is to allow the framework to deter-
mine when garbage collection should be performed. The output from this program is
as follows:
New A
New B
Finalize B
Finalize A

If you run it a few times you’ll see that sometimes Finalize B is displayed before
Finalize A. Other times it will reverse itself. This is an indication of the nonde-
terministic finalization we discussed earlier. The important thing to notice is that
both Finalize methods execute.

2.2.1 Finalization

Finalization is another area where threads play an important role. If a class contains a
Finalize method, it is invoked on a thread dedicated to that purpose. For this reason
the Finalize method should not rely on thread local values. Listing 2.6 contains
an example of a class with a Finalize method.

using System;
using System.Threading;
using System.Collections;
namespace Dennis
{
 public class
Data
 {
 static public void MakeData()
 {
 Thread t= new Thread(new ThreadStart(ThreadMethod));
 t.Name="Data Thread";
 t.Priority = ThreadPriority.BelowNormal;
 t.IsBackground=true;
 t.Start();
 }

Listing 2.6 Example of using the Finalize method (C#)

Creates and starts
the thread B
GARBAGE COLLECTION 31

Net_Dennis.book Page 32 Thursday, October 31, 2002 4:04 PM
 static long instanceIdCounter=0;
 long instanceId;
 ArrayList myData;
 public Data()
 {
 instanceId = Interlocked.Increment(ref instanceIdCounter);
 myData =new ArrayList();
 Random rnd = new Random(System.Environment.TickCount);
 String s;
 s= new String('c',rnd.Next(5000,60000));
 myData.Add(s);
 }

 ~Data()
 {
 Thread finalThread;
 finalThread = Thread.CurrentThread;
 string message;
 message=string.Format(
 "Finalize: Id={0} Name={1} Priority={2}",
 instanceId,finalThread.Name,
 finalThread.Priority);
 Console.WriteLine(message);
 }

 static private void ThreadMethod()
 {
 string message;
 message=string.Format(
 "{0} Enter Thread Method",
 Thread.CurrentThread.Name);
 Console.WriteLine(message);
 for (int i=0;i<10;i++)
 {
 Data tmpData = new Data();
 }
 message=string.Format(
 "{0} Exit Thread Method",
 Thread.CurrentThread.Name);
 Console.WriteLine(message);
 }
 }
}

It’s not important to understand all of the things that are happening in listing 2.6.
What is important is to understand that the method named ~Data is the Finalize
method. It will be invoked when the garbage collector frees the class it is associated
with. We’ll briefly go over each of the methods of the Data class.

Defines the class
constructor

 C

Method invoked when
the class is destroyed

 D

Method the new
thread executes
initially

 E
32 CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

Net_Dennis.book Page 33 Thursday, October 31, 2002 4:04 PM
The static MakeData method makes it easy to test the Data class. It creates an
instance of the Thread class and associates it with the ThreadMethod. It then starts
the new thread. The following is an example of how MakeData is called:

System.Threading.Thread.CurrentThread.Name="Main";
Data.MakeData();
Console.WriteLine("Hit Enter to Exit");
Console.ReadLine();

Notice that an instance of the Data class is not required to call the method. That’s
because the method is static.

The Data constructor increments a static counter. This allows each instance of the
Data class to be assigned an instance ID. Since the instance ID is monotonically
increasing, we know that an instance with a higher value was created after one with a
smaller value. This helps demonstrate that the order of invocation of the finalization
methods is not the same as the order of creation. The Interlocked class allows for
operations that are guaranteed to complete safely in a multithreaded environment.

The Finalize method is invoked when the memory the class uses is reclaimed.
Notice that C# uses the ~{class name} approach to identify the Finalize method.
In Visual Basic .NET overrides the Finalize method. The following is the Visual
Basic .NET version of the Finalize method:

Protected Overrides Sub Finalize()
 MyBase.Finalize()
 Dim finalThread As Thread
 finalThread = Thread.CurrentThread
 Dim message As String
 message = String.Format(_
 "Finalize: Id={0} Name={1} Priority={2}", _
 instanceId, finalThread.Name, finalThread.Priority)
 Console.WriteLine(message)
End Sub

The ThreadMethod is associated with the thread that is created by the static Make-
Data method. It creates ten instances of the Data class and then exits. When this
program is executed, it produces results similar to the following:

Hit Enter to Exit
Data Thread Enter Thread Method
Data Thread Exit Thread Method
Finalize: Id=4 Name= Priority=Highest
Finalize: Id=2 Name= Priority=Highest
Finalize: Id=1 Name= Priority=Highest
Finalize: Id=3 Name= Priority=Highest

Finalize: Id=10 Name= Priority=Highest
Finalize: Id=9 Name= Priority=Highest
Finalize: Id=8 Name= Priority=Highest
Finalize: Id=7 Name= Priority=Highest

 b

 C

 D

 E
GARBAGE COLLECTION 33

Net_Dennis.book Page 34 Thursday, October 31, 2002 4:04 PM
Finalize: Id=6 Name= Priority=Highest
Finalize: Id=5 Name= Priority=Highest

Each time the program executes, the results will likely vary:

Hit Enter to Exit
Data Thread Enter Thread Method
Data Thread Exit Thread Method
Finalize: Id=5 Name= Priority=Highest
Finalize: Id=4 Name= Priority=Highest
Finalize: Id=3 Name= Priority=Highest
Finalize: Id=2 Name= Priority=Highest
Finalize: Id=1 Name= Priority=Highest

Finalize: Id=10 Name= Priority=Highest
Finalize: Id=9 Name= Priority=Highest
Finalize: Id=8 Name= Priority=Highest
Finalize: Id=6 Name= Priority=Highest
Finalize: Id=7 Name= Priority=Highest

Notice that the thread name is empty. The thread name property lets us assign a name
to a thread that makes it easier to identify a thread during debugging. The main thread
is named “Main” and the thread that creates the data is named “Data Thread,” so where
does this unnamed thread come from? The thread is created by the runtime and is
dedicated to calling the Finalize method of objects that are freed. Notice that the
priority of the thread is set to Highest. The Finalize thread is intended to execute
Finalize methods. Those methods should be designed to execute very quickly. A
Finalize method should only be used to free resources that are not managed. Final-
ization should only be used when needed. It adds a considerable amount of overhead
to the cleanup of elements that are no longer needed.

2.3 SECURITY

One area in which .NET has made considerable improvements is security. Under .NET
not only are users restricted based on their access rights, but code is only allowed to
access resources based upon a set of rules called a security policy. A policy takes into
consideration evidence that is gathered about code. This evidence includes things such
as where the code came from, if it is signed or not, and so on, which is then evaluated
against security policies. Evidence-based security allows the runtime to exert a high
degree of control over threads accessing resources.

The level of trust associated with an assembly is dependent upon the location it is
loaded from. Recall that an assembly is nothing more than a way of packaging up pieces
of code, generally into a DLL. If you think about it, you generally trust programs that
are on your computer more than you do things that are on a web server of a different
company. Additionally, you trust programs that are in certain directories more than you
do others. For example, if a program is installed in “Program Files” you generally feel
more secure about it than you do a program installed in a Temp or Download directory.
34 CHAPTER 2 .NET FROM A THREADING PERSPECTIVE

Net_Dennis.book Page 35 Thursday, October 31, 2002 4:04 PM
When a thread is created, it is bound by the same restrictions as the thread that cre-
ates it. This ensures that malicious code does not circumvent the security policy of a
machine and gain access to restricted resources, such as a hard disk drive.

Often more than one assembly is included in a program. Suppose you had one
assembly that processed credit cards. The assembly itself is very well trusted. Suppose
you also had an assembly that was trusted very little. If that untrusted assembly called
a method in the credit card assembly, the trust level would be based on the untrusted
assembly. Otherwise malicious code could manipulate trusted code and gain access to
resources that were restricted by the security policy. When a function in an assembly
calls one in another assembly, the security of the called function will be based on the
trust level and security of the calling assembly. This level of trust will be the minimum
of the two levels.

Security is a complex topic, and complete coverage of it is beyond the scope of this book.

2.4 SUMMARY

We’ve seen how .NET is built from the ground up with support for multithreading.
This makes writing multithreaded applications easier than was previously possible. The
runtime itself uses multiple threads to perform concurrent actions. One area where
multiple threads are used is in the garbage collection system.

Garbage collection frees developers from managing memory within an application.
This allows them to focus on solving problems rather than allocating and freeing memory.
Traditionally, the majority of software defects occur as a result of memory management
issues. .NET eliminates memory-related defects by utilizing garbage collection, resulting
in high-quality code.

Security in applications is becoming increasingly important. .NET has robust secu-
rity features that help developers produce applications that protect their users from
malicious code. One way this is accomplished is through the use of evidence-based
security. We briefly discussed the types of evidence and saw how they are combined
with a security policy to determine what resources are available during execution.

In the next chapter we discuss multithreading in .NET in greater detail.
SUMMARY 35

Net_Dennis.book Page 36 Thursday, October 31, 2002 4:04 PM
C H A P T E R 3

Multithreading in .NET

3.1 Application domain 36
3.2 Threads 39
3.3 Benefits of .NET to multithreading 44
3.4 Summary 48
Microsoft’s .NET framework is an exciting new platform for software development, with
extensive support for multithreaded development. But, as we said in chapter 1, before
we launch into a new area, we should examine the basics. In this case, we’ll begin by
examining the concept of an application domain and how it relates to a process. Once
we have that under our belts, we’ll look at the two classes of threads—logical and
physical—and then examine the use of delegates to perform asynchronous execution.

3.1 APPLICATION DOMAIN

In .NET every application executes within an application domain. Application domains
are similar to Win32 processes in many ways but differ in several important areas.
The next section compares application domains to Win32 processes.

3.1.1 An application domain vs. a process

Historically a process has been used to isolate one application from another. As we dis-
cussed in chapter 1 a process is a collection of physical threads of execution manipulat-
ing resources. When one process terminates it generally does not affect another process.
Just as .NET extended the concept of a physical thread to a logical thread, it takes the
concept of a process and extends it to an application domain. One or more applica-
tion domains are housed within a single Win32 process. One or more logical threads
36

Net_Dennis.book Page 37 Thursday, October 31, 2002 4:04 PM
execute within the application domain, just as one or more physical threads execute
within a process. Figure 3.1 shows the relationship of an application domain to a process.

The AppDomain class is used to access application domains in .NET.

3.1.2 The AppDomain class

The AppDomain class allows for manipulation of the current application domain as
well as creation of additional application domains. There are times that the current
application domain needs to be retrieved, such as when a value is being stored at an
application level using GetData and SetData. These functions give all assemblies
contained within an application domain the ability to retrieve and set global values. One
situation where this would be extremely beneficial is when an application should behave
differently when in a development environment versus a production environment.

There are two ways of retrieving the current domain. System.AppDomain.Cur-
rentDomain and System.Threading.Thread.GetDomain both allow access
to the domain in which the statements are executed. The following example demon-
strates that the CurrentDomain property is equal to the domain returned by the
GetDomain method:

AppDomain appDomain1 = AppDomain.CurrentDomain;
AppDomain appDomain2 = System.Threading.Thread.GetDomain();
if (AppDomain.ReferenceEquals(appDomain1,appDomain2))
{
 Debug.WriteLine("The same");
}

Once we’ve retrieved a domain we can utilize some of its more commonly used methods
and properties:

Figure 3.1

A Win32 process contains one

or more application domains.
APPLICATION DOMAIN 37

Net_Dennis.book Page 38 Thursday, October 31, 2002 4:04 PM
• BaseDirectory—Contains the starting location at which .NET will look for
assemblies

• DynamicDirectory—Specifies where .NET should look for dynamically
created assemblies

• FriendlyName—Equates to the filename of the assembly

• RelativeSearchPath—Specifies a path where .NET should look for pri-
vate assemblies

• ShadowCopyFiles—Controls if dependent assemblies are copied to the
domain’s cache

• SetupInformation—Contains a reference to an AppDomainSetup object
that contains information about the installation of the application

• Evidence—Contains a reference to an instance of the Evidence class that is
used by the security policy

• CreateDomain—Creates an application domain within the current Win32 process

• SetData—Associates a value with a specified name

• GetData—Retrieves a value based on a supplied name

3.1.3 CreateDomain

A Win32 process can contain more than one application domain. CreateDomain
is a static method of the AppDomain object that creates a domain within the Win32
process. It’s important to note that this does not create a new thread within the pro-
cess but instead only creates a domain where a thread can execute. Listing 3.1 uses
CreateDomain and also creates a logical thread to execute in the new domain.

using System;
using System.Threading;
using System.Security.Policy;
namespace AppDomainTest1
{
 class ClassAppDomainTest
 {
 [STAThread]
 static void Main(string[] args)
 {
 Console.WriteLine("Enter Main");
 ClassAppDomainTest c = new ClassAppDomainTest();
 c.Main();
 }
 void Main()
 {
 AppDomain current;
 current = AppDomain.CurrentDomain;

Listing 3.1 An example of using CreateDomain

Static entry point
to the program

 B
38 CHAPTER 3 MULTITHREADING IN .NET

Net_Dennis.book Page 39 Thursday, October 31, 2002 4:04 PM
 Thread.CurrentThread.Priority = ThreadPriority.BelowNormal;
 object o= current.GetData("autostart");
 if (o == null)
 {
 Thread otherThread;
 otherThread = new Thread(new ThreadStart(NewThread));
 otherThread.Start();
 current.SetData("autostart",false);
 current.ExecuteAssembly("AppDomainTest1.exe");
 }
 Thread.Sleep(1000);
 string message;
 message=string.Format(" {0}",current.FriendlyName);
 Console.WriteLine(message);
 }
 void NewThread()
 {
 AppDomain otherDomain;
 otherDomain = AppDomain.CreateDomain("otherDomain");
 otherDomain.SetData("autostart",false);
 otherDomain.ExecuteAssembly("AppDomainTest1.exe");
 }
 }
}

This program produces the following output:

Enter Main
Enter Main
Enter Main
 AppDomainTest1.exe
 otherDomain
 AppDomainTest1.exe

The first Enter Main statement occurs when the program is initially loaded. The first
thing the main thread does is create an instance of the class containing the static Main
method and invokes the instance’s Main method. This is a common way of overcom-
ing the need for a static entry point into a console-based program.

The CreateDomain method that creates a domain and names it the specified name.
In this case the new domain inherits its security and evidence from the current domain.

3.2 THREADS

A thread is a path of execution. Every program contains at least one thread. .NET dif-
ferentiates between logical and physical threads. As we discussed in chapter 2, a physical
thread is an OS thread. Just as the OS manages other resources it manages physical
threads. .NET introduces the concept of a logical thread. A logical thread is managed
by the .NET framework and provides additional functionality beyond a physical thread.

Method that
creates a domain

 C

 B

 C
THREADS 39

Net_Dennis.book Page 40 Thursday, October 31, 2002 4:04 PM
3.2.1 Logical threads

Under the Win32 implementation of .NET there is a one-for-one mapping between
physical threads and logical threads. When additional platforms are supported by .NET it is
very possible that there may be more than one logical thread associated with each physical
thread. For example, if an OS didn’t provide support for multiple physical threads in a
process, the .NET runtime might supply that functionality using logical threads. Logical
threads in .NET are accessed using the System.Threading namespace.

Threading namespace

The Threading namespace contains the classes associated with creating threads
under managed code.

Table 3.1 contains the most important classes in the Threading namespace.

Table 3.1 Commonly used classes in the Threading namespace

Class Description
Section/Chapter

Discussed

AutoResetEvent A synchronization mechanism that resets itself
from the signaled state.

8.2

Interlocked A class that provides access to simple atomic
operations.

7.2

ManualResetEvent A synchronization mechanism that stays in the
signaled state until it is explicitly reset.

8.4

Monitor One of the most commonly used synchroniza-
tion mechanisms. It allows for restriction of
access to an object.

7.4

Mutex A class that allows for the creation of mutually
exclusive blocks of code.

8.5

ReaderWriterLock A class that allows for multiple readers and a
single writer. This allows for high-performance
solutions when the majority of the access to a
data element is to read a value.

9

SynchronizationLockException An exception that’s raised when an attempt is
made to access a Monitor class method
that requires synchronization while not in a
synchronized block of code.

13.2.4

Thread A class that contains methods for creating and
manipulating logical threads.

4

ThreadAbortException An exception that’s raised when a thread is termi-
nated using the Abort method of the Thread class.

13.2.1

ThreadExceptionEventArgs A class that contains data used when a
ThreadException occurs.

12.4

ThreadInterruptedException An exception that’s raised when a thread is
interrupted using the Interrupt method of the
Thread class.

13.2.2

continued on next page
40 CHAPTER 3 MULTITHREADING IN .NET

Net_Dennis.book Page 41 Thursday, October 31, 2002 4:04 PM
This is an overview of the classes in the Threading namespace. The Thread class and
the ThreadStart delegate are critical to managed threading. Without them it would
be impossible to create multithreaded managed programs in the .NET framework.

Thread class

The Thread class represents a managed thread. The CurrentThread property is
used to retrieve a reference to the currently executing managed thread. This is similar
to the AppDomain.GetDomain method we discussed earlier. The following is an
example of using the CurrentThread property:

Class Description
Section/Chapter

Discussed

ThreadPool A class that provides an easy way of performing
multithreaded operations by reusing multiple
threads.

10

ThreadStateException An exception that’s raised when the thread is in
a state that is invalid for a particular method.

13.2.3

Timeout A class that contains a static public field used
to represent an infinite wait.

5.3.1

Timer A means of executing a method at a regular
interval.

14.3

WaitHandle A base class that provides a means of restrict-
ing access to a resource by having one or more
threads wait for it to become available.

8.1

LockCookie A structure used to store lock information when
a lock is converted from a reader lock to a writer
lock.

9.2.3

ThreadStart A delegate used to represent a method that is
the entry point for a new thread.

3.2.1

TimerCallback A delegate used with the Timer class to define
the method that’s executed when the Timer’s
timeout occurs.

12.3.1

WaitCallback A class that is used with a ThreadPool class to
enter a work item into the queue.

12.3.2

WaitOrTimerCallback A class that is used with a WaitHandle derived
class. It is invoked when the WaitHandle class
becomes signaled or a timeout occurs.

12.3.3

ApartmentState An enumeration that indicates the threading
state of an apartment.

16.2.1

ThreadPriority An enumeration that contains the priorities a
thread can be assigned.

5.7.1

ThreadState An enumeration that contains the valid states a
thread can be in.

4.4

Table 3.1 Commonly used classes in the Threading namespace (continued)
THREADS 41

Net_Dennis.book Page 42 Thursday, October 31, 2002 4:04 PM
Dim thisThread As System.Threading.Thread
thisThread = System.Threading.Thread.CurrentThread

Table 3.2 contains the frequently used properties and methods of the Thread class
and where they are described in this book.

Table 3.2 The Thread class’s properties and methods

Property/Method Description
Section

Discussed

ApartmentState Controls how a thread interacts with COM objects 16.2.1

CurrentThread Retrieves the instance of the Thread class that is associ-
ated with the currently executing logical thread

3.2.1

IsAlive Indicates if a thread is in an active state 4.4.1

IsBackground Used to determine if a thread executing will cause its
application domain to continue to exist

5.4

IsThreadPoolThread A Boolean that indicates if a thread is managed by a
thread pool

10.3.2

Name Used to help identify a thread 5.2

Priority Used to control the scheduling of a thread 5.7.1

ThreadState Returns a value indicating the state of a thread 4.4.2

Abort Signals a thread that it should terminate 4.3

AllocateDataSlot Used to allocate thread local storage that is not associ-
ated with a name

11.2

AllocateNamedDataSlot Used to allocate thread local storage that is associated
with a name

11.3

FreeNamedDataSlot Used to free thread local storage that is associated with
a name

11.3

GetData Retrieves a value from thread local storage 11.2

GetDomain Retrieves the application domain the thread is contained
within

3.1.2

GetNamedDataSlot Allows access to a named thread local storage location 11.3

Interrupt Signals a thread that is in the Sleep state that it should
become active

5.3.2

Join Causes the calling thread to wait until a timeout occurs
or the requested thread terminates

4.3.3

ResetAbort Cancels a call for a thread to Abort 4.3.2

Resume Allows a thread that has been suspended to resume 5.5.2

SetData Used to store values in thread local storage 11.2

Sleep Causes the current thread to pause its execution for a
period of time

5.3.1

Start Invokes the thread delegate creating an new logical thread 4.2

Suspend Signals a thread to pause its execution 5.5.1
42 CHAPTER 3 MULTITHREADING IN .NET

Net_Dennis.book Page 43 Thursday, October 31, 2002 4:04 PM
ThreadStart delegate

The ThreadStart delegate is used to associate a method with a newly created thread.
As we discussed in chapter 1, a delegate is a way to associate a thread with a method
that is to be executed on that thread. Delegates are a powerful construct in .NET.

3.2.2 Physical threads

Managed threads provide a high degree of flexibility and control. There are times that
access to the physical thread is required. In those cases we use System.Diagnos-
tics.Process and System.Diagnostics.ProcessThread.

System.Diagnostics.Process

The Process class represents a Win32 process. To retrieve an instance of the Process
class that’s associated with the currently executing Win32 process, we use the static
method GetCurrentProcess. The following is an example of using the Get-
CurrentProcess method:

Process thisProcess= Process.GetCurrentProcess();

Once we have an instance of the current process, we can examine it. For our purposes
the most important property of the Process object is the Threads property. The
Threads property is a ProcessThreadCollection. The ProcessThread-
Collection supports the GetEnumerator method. This means it can be used
with C#’s ForEach operator. The following displays the IDs of each thread to the
debug window:

Process thisProcess= Process.GetCurrentProcess();
foreach (ProcessThread aPhysicalThread in thisProcess.Threads)
{
 Debug.WriteLine(aPhysicalThread.Id.ToString());
}

Notice there are a considerable number of threads, the majority of which were created
to display the threads in the process. When using the Diagnostics namespace,
remember that inspecting a portion of the system may change the behavior of that
part of the system.

System.Diagnostics.ProcessThread

A physical thread is represented using the ProcessThread object. Table 3.3 contains
selected ProcessThread properties and methods.
THREADS 43

Net_Dennis.book Page 44 Thursday, October 31, 2002 4:04 PM
The ProcessThread class allows for relatively low-level manipulation of threads.
It should be used with care since misusing it may result in poor performance, or even
system instability.

3.3 BENEFITS OF .NET TO MULTITHREADING

There are many benefits to doing multithreaded development in the .NET environ-
ment. Since a thread is a managed element, the amount of effort required to create
and manage threads is greatly reduced. As with all managed resources, the framework
ensures threads are disposed of properly. Additionally, any resources utilized by a
thread are also managed by the runtime.

3.3.1 Advantages of objects

Knowing exactly when a thread comes into existence and when it terminates is a very
important aspect of multithreaded development. For example, suppose you were tasked
with developing a server that processes requests. One or more threads will be tasked
with processing those requests. It is important that the thread-processing requests be
created before those requests arrive, or soon after, to ensure the entries are handled in
a timely fashion.

Table 3.3 The ProcessThread Class’s Properties and Methods

Property/Method Description
Section

Discussed

BasePriority Used to calculate the CurrentPriority of a thread. 5.7.1

CurrentPriority The priority that the thread is currently operating
at based on any priority boosts and the priority of
the containing process.

5.7.1

Id Each thread has an operating system assigned
unique identifier. The Id property exposes
that value.

5.7.3

PriorityBoostEnabled Determines if a thread is eligible for a temporary
boost in priority.

5.7.1

PriorityLevel Used to set a thread to a predefined range
of priority levels contained within the
ThreadPriorityLevel enumeration.

5.7.1

ThreadState An indication of the thread’s state. 5.6

Ideal Processor Used to give the operating system scheduler a
hint as to which processor the thread should be
executed on.

5.7.3

Processor Affinity Used to restrict a thread to a particular processor
or processors.

5.7.2

ResetIdealProcessor Clears any previously assigned ideal processors. 5.7.3
44 CHAPTER 3 MULTITHREADING IN .NET

Net_Dennis.book Page 45 Thursday, October 31, 2002 4:04 PM
In traditional Win32 software development, a thread was created using a Win32
API call. A handle was returned from the call that was used to interact with the control.
In .NET we use the Thread class to create a new thread. The Thread class contains
all methods and properties required to manage a thread. This provides a single point
for finding all Thread-related methods.

A fundamental object-oriented concept is that an object should contain the methods
that are related to it. That’s what the Thread class does. It contains those methods
required to interact with a logical thread. By having an object that represents a logical
thread, it becomes very easy to write multithreaded applications.

3.3.2 Asynchronous execution of delegates

There are several ways of executing methods on a different thread. One way is to use
asynchronous execution of a delegate. This has the benefits of the method executing on
a different thread while requiring one of the lower levels of effort. In the next chapter
we discuss the more flexible way of utilizing multiple threads. Listing 3.2 contains an
updated version of the Cat object we discussed in chapter 1.

Imports System.Threading
Public Class ClassCat
 Private Delegate Sub DoStuff(ByVal howMuch As Integer)
 Private async As DoStuff
 Public Delegate Sub DidSomething(ByVal message As String)
 Private notify As DidSomething
 Private sleepTime As Integer
 Private name As String
 Private rnd As Random
 Private actions() As String = {"Eat", "Drink", "Take a bath", _
 "Wander around", "Use litter box", "Look out window", _
 "Scratch furniture", "Scratch carpet", "Play with toy", "Meow"}
 Private callback As AsyncCallback
 Public Sub New(ByVal name As String, ByVal notify As DidSomething)
 sleepTime = 1000
 rnd = New Random(Environment.TickCount)
 Me.name = name
 Me.notify = notify
 End Sub

 Private Function WhichAction() As String
 Dim which As Integer
 which = rnd.Next(actions.Length)
 Return actions(which)
 End Function

 Public Sub DoCatStuff(ByVal howMuch As Integer
 Dim i As Integer
 For i = 0 To howMuch - 1

Listing 3.2 A modified ClassCat that utilizes a delegate’s BeginInvoke method

(VB.NET)

Defines a delegate
that is used to perform

asynchronous execution

 B
BENEFITS OF .NET TO MULTITHREADING 45

Net_Dennis.book Page 46 Thursday, October 31, 2002 4:04 PM
 If (rnd.Next(100) > 80) Then
 notify(name + ": """ + WhichAction() + """ ")
 Else
 notify(name + ": ""Zzz"" ")
 Thread.Sleep(sleepTime)
 End If
 Next
 End Sub
 Private Sub Finished(ByVal ar As IAsyncResult)
 notify(name + ": Finished")
 End Sub
 Public Sub Go(ByVal howMuch As Integer)
 Dim state As Object
 callback = New AsyncCallback(AddressOf Finished)
 async = New DoStuff(AddressOf DoCatStuff)
 async.BeginInvoke(howMuch, callback, state)
 End Sub
End Class

To take advantage of asynchronous delegate execution, we need a delegate to associate
with the method we wish to execute. The DoStuff delegate is private to the Class-
Cat class. We need an instance of the DoStuff delegate to utilize. The async private
data member is used to store the reference to the instance.

The public method Go is used to create an instance of the DoStuff delegate. Part of
the creation process is to associate the delegate with a method to execute. Visual Basic
uses the AddressOf keyword to differentiate between a method and a reference to
that method. Once the async variable contains a reference to a new DoStuff dele-
gate, we can use the BeginInvoke method to start the asynchronous execution of
the DoCatStuff method.

Listing 3.3 contains code of the main module that utilizes the ClassCat class.

Module Module1
 Sub Main()
 Dim notify As ClassCat.DidSomething
 notify = New ClassCat.DidSomething(AddressOf OutputLine)

 Dim oTiger As ClassCat
 oTiger = New ClassCat("Tiger", notify)
 oTiger.Go(10)

 Dim oGarfield As ClassCat
 oGarfield = New ClassCat("Garfield", notify)
 oGarfield.Go(10)

 Console.WriteLine("Press enter to exit")
 Console.ReadLine()
 End Sub

Creates an
instance of
the DoStuff
delegate and
then calls
BeginInvoke

 C

 B

 C

Listing 3.3 The main module that uses ClassCat (VB.NET)

One instance
of ClassCat
named Tiger

 B

Another named
Garfield

 C
46 CHAPTER 3 MULTITHREADING IN .NET

Net_Dennis.book Page 47 Thursday, October 31, 2002 4:04 PM
 Sub OutputLine(ByVal message As String)
 Console.WriteLine(message)
 End Sub
End Module

This example is very similar to that in chapter 1. One major difference is that the execu-
tion of the DoCatStuff method occurs on a different thread. The oTiger variable is
a reference to an instance of the ClassCat. When the Go method of the oTiger
method is invoked, an instance of the DoStuff delegate is created and BeginInvoke
is called on it. The Go method returns as soon as it has invoked the BeginInvoke
method. This will be before the DoCatStuff method has completed.

To see that the execution occurs on different timelines it helps to have two instances
of ClassCat. The second instance has a different name but shares the same Did-
Something delegate.

The program produces the following output:

Press enter to exit

Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Drink"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Take a bath"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: "Meow"
Tiger: "Zzz"
Garfield: "Zzz"
Tiger: Finished
Garfield: "Zzz"
Garfield: Finished

Notice that the two “cats’” output is commingled. If the execution were occurring on
the same thread, the Tiger output would be separate from the Garfield output.

Asynchronous delegates are an easy way to execute methods on different threads.
There are limitations on how this should be used. The source of these limitations is
related to asynchronous delegates using a thread pool to do their asynchronous execu-
tion. Thread pools are limited in size. Because the number of threads that can exist in
a thread pool is restricted, methods invoked in thread pools should be short-lived. This

 B

 C
BENEFITS OF .NET TO MULTITHREADING 47

Net_Dennis.book Page 48 Thursday, October 31, 2002 4:04 PM
restriction is often too severe for many problems. Because not every problem can be
solved using asynchronous delegates, it’s important to understand how to do multi-
threading using the Thread class in the Threading namespace. That’s where we
pick up in the next chapter.

3.4 SUMMARY

This chapter has introduced some fundamental elements of multithreading in the .NET
framework. Application domains provide the framework with a way of determining
the boundaries of an application. Application domains are very similar to the Win32
process within which they live. Each application domain contains one or more logical
threads that execute a series of instructions.

Logical threads are represented in the .NET framework using the System.Thread-
ing.Thread class. This class is used to create, control, and manage logical threads.
There are times that it is necessary to manipulate physical threads; to do so the .NET
framework includes the System.Diagnostics.Process and System.Diag-
nostics.ProcessThread classes. These classes allow access to all physical threads
on a system, not just those related to the .NET framework.

.NET provides many benefits to developers. This is especially true with regards to
multithreaded development. Since the .NET framework is object-oriented, all methods
needed to manipulate a logical thread are contained in the System.Threading.Thread
class. This grouping makes it very easy to find the methods to manipulate a thread.

The System.Threading.Thread class is not the only way to execute a method
on a different thread. We discussed the asynchronous execution of delegates. While this
approach is simpler to implement than using the System.Threading.Thread
class, it lacks flexibility.

In the next chapter we dig into the means of creating, destroying, and interacting
with logical threads.
48 CHAPTER 3 MULTITHREADING IN .NET

Net_Dennis.book Page 49 Thursday, October 31, 2002 4:04 PM
C H A P T E R 4

Thread life cycle

4.1 Creating a thread 50
4.2 Starting threads 52
4.3 Ending threads 54
4.4 Determining a thread’s status 63
4.5 Summary 68
So far we have talked about multithreading concepts and how they relate to .NET. We
are now going to explore how threads are created, why they go away, and how we can
make them go away. At the end of the chapter we will look at how we can determine
what a thread is doing. All examples, available in both VB.NET and C#, are available
from the publisher’s web site.

We will alternate between C# and VB.NET, showing how close the languages are
to each other with regard to the use of threads. Also, we will examine the differences
that exist. To demonstrate, we will use an implementation of a bubble sort to sort an
array of randomly generated numbers. The bubble sort algorithm is easily understood
and inefficient, which is good. Because it is inefficient it allows us time to examine it
during execution.

In this chapter all examples will be console applications, allowing us to focus on the
concepts rather than be distracted by unrelated implementation issues. Each example
includes at least two classes per section. One will contain the main entry point asso-
ciated with console applications. The other will contain the code relating to the array
of values and the creation of the threads that operate on those values.

In general, threads should be associated with the data elements they operate on, sup-
porting the object-oriented concepts of data protection and abstraction. The user of
the class need not be concerned with the creation of the thread. Instead the user calls
49

Net_Dennis.book Page 50 Thursday, October 31, 2002 4:04 PM
methods on the class and allows the class to keep track of the threading information.
Including threads as elements of a class is a powerful concept, which is why we intro-
duce it this early in the discussion.

4.1 CREATING A THREAD

The process of launching a new thread can be broken down into three steps:

1 Define the method that will serve as the entry point for the thread.

2 Declare and create an instance of a thread start delegate that is used to associate
the entry point with the thread.

3 Create an instance of the Thread class, passing in the thread start delegate to
the constructor.

4.1.1 Defining the thread’s entry point

Suppose that you wanted to sort an array of numbers from smallest to largest. For
demonstration purposes we will use a simple bubble sort since it is an algorithm most
developers are familiar with. The process starts by creating a method that will be the
entry point for the new thread, in this case SortAscending. This means that the
method will be invoked, much as if it had been called directly; however, the method
will execute on a different thread than its caller. We will discuss this in greater detail
in the next section. The method can either be static or an instance method associated
with an instance of a class (listing 4.1).

public class ClassThreadExample_1
{
 long[] NumbersToSort;
. . .
private void SortAscending()
 {

 for (int i= 0;i < NumbersToSort.Length ;i++)
 {
 for (int j=0;j<i;j++)
 {
 if (NumbersToSort[i] < NumbersToSort[j])
 {
 Swap(ref NumbersToSort[i],ref NumbersToSort[j]);
 }
 }
 }
 }
 private void Swap(ref long First,ref long Second)
 {
 // Swap the values in First and Second
 long TempNumber = First;

Listing 4.1 Defining a thread’s entry point (C#)

Declares an
array of longs

Defines a method associated
with the new thread
50 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 51 Thursday, October 31, 2002 4:04 PM
 First = Second;
 Second = TempNumber;
 }
. . .

In listing 4.1 it is an instance method. This means that the thread will have access to
all instance and static/shared variables contained within a particular instance of
ClassThreadExample_1.

4.1.2 Creating an instance of the ThreadStart delegate

The way that the method is associated with a thread is through the use of the
ThreadStart delegate that is located in the System.Threading namespace.
Chapter 12 discusses delegates in detail. For now, assume that the ThreadStart del-
egate is the way that a method is associated with a thread. When the delegate is cre-
ated, the name of the method to execute is passed in to the constructor. Before we can
create an instance of the delegate, we should declare a variable to allow us to reference
the new delegate.

ThreadStart ThreadStartDelegate;

We’re now ready to create an instance of the ThreadStart delegate and associate it
with a method to execute:

ThreadStartDelegate = new ThreadStart(SortAscending);

The name of the method is not included in quotes. ThreadStart expects a method
name, not a string, as the parameter to its constructor. The method cannot have
parameters nor can it have a return value. This is the type of method that the
ThreadStart delegate is expecting. Chapter 6 discusses communication between
threads. Since the method associated with the thread cannot accept a parameter, it is
not possible to pass any information to the new thread during its construction.
Instead, if the thread is associated with an instance method, it will have access to all
instance variables contained within the instance of the class it is contained within.

ThreadStart ThreadStart is a delegate that is used to associate a method with a Thread.
An instance of the delegate is passed in to the thread constructor so that the
thread knows what delegate to invoke.

In the body of the thread method it is acceptable, and desirable, to call other methods.
This generally makes the code more readable and reusable. Remember that these
methods will execute on the thread from which they are called.

4.1.3 Creating an instance of the Thread class

Now we need to create an instance of the Thread class. Before we can do that we need
to have a declaration of a variable to associate with that new instance. This will allow
us to interact with the class after it is created. The following declares an instance of
the Thread class:
CREATING A THREAD 51

Net_Dennis.book Page 52 Thursday, October 31, 2002 4:04 PM
Thread ExampleThread;

We’re now ready to create an instance of the Thread class. The constructor of the
class expects that a ThreadStart will be passed in. When we create an instance of
the Thread class, we supply the newly instantiated ThreadStart delegate:

ExampleThread = new Thread(ThreadStartDelegate);

This tells the Thread object what delegate it should invoke when we tell the thread
to start executing. Note that so far we have not created an OS thread. What we have
created is an instance of the Thread class that will allow us to create the OS thread in
the next section.

We can simplify the thread object creation code in C# by doing the following:

Thread ExampleThread = new Thread(new ThreadStart(SortAscending));

VB.NET does this automatically, so all you need to pass in to the Thread constructor
is the address of the method you wish to associate with the new thread. Unless there is
a reason to assign the instance of the ThreadStart delegate to a variable, the creation
can be done inline.

TIP Under most circumstances the ThreadStart delegate is not needed once
it is passed in to the Thread constructor. Instead of you assigning a variable
its value, it can be passed to the Thread constructor inline.

As an example, you might need to assign the delegates to variables when a different
delegate may be assigned depending on a runtime condition. For instance, if the num-
ber of elements is less than 10,000, sort them in ascending order; otherwise sort them
in descending order:

if (HowMany < 10000)
 ThreadStartDelegate = new ThreadStart(SortAscending);
else
 ThreadStartDelegate = new ThreadStart(SortDescending);

Until we start the thread, neither SortAscending nor SortDescending will
execute. All we have done is create an instance of the Thread class and associated it
with a delegate that is in turn associated with the method. We are now ready to start
the threads.

4.2 STARTING THREADS

Since we are dealing with the .NET framework instead of language constructs, the
VB.NET example is very similar to the C# example from the previous section. The
most obvious difference is how the ThreadStart delegate is created. In the
VB.NET example the ThreadStart delegate seems to be missing. In its place the
AddressOf operator precedes the name of the method that will be the entry point
for the new thread. The reason: the AddressOf operator creates a delegate that
accesses the SortAscending method.
52 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 53 Thursday, October 31, 2002 4:04 PM
AddressOf The AddressOf operator is the mechanism that VB.NET uses to create a
delegate for a method.

Since the VB.NET compiler can determine which of the possible delegates it should
produce, it uses the results of the AddressOf operator in place of the delegate. In C#
the name of the method resolves to the address of the method and the ThreadStart
delegate is required to convert this address into a delegate. Unless there are other consid-
erations, such as assigning the ThreadStart delegate to a variable based on runtime
conditions, VB.NET developers should use the AddressOf operator in the Thread
constructor. C# developers should use an inline ThreadStart delegate as discussed
in the previous section.

Start Start is a method of the Thread class that signals a managed thread to
begin execution. This generally creates an OS thread.

Now that we have created our instance of the Thread class, we are ready to launch
the thread. Starting a thread is much like calling a method, except the calling thread
continues execution. The following example includes the addition of the call to the
Start method:

Sub CreateThreadExample(ByVal HowMany As Integer)
 . . .
 Dim ExampleThread As System.Threading.Thread
 ExampleThread = New System.Threading.Thread(AddressOf SortAscending)
 ExampleThread.Start()
End Sub

In the example, StartThreadExample will probably exit before SortAscending
has finished executing. If the line containing the Start method was replaced with

SortAscending()

execution would continue on the same thread. This means that StartThread-
Example would pause until the SortAscending method completed its calcula-
tions. Once those calculations are complete the SortAscending method exits,
then the StartThreadExample method exits.

This is a new concept to many developers, and a key one, so we will spend some time
exploring it. Figure 4.1 displays a visual representation of how this works. At the point
ExampleThread.Start() executes, a thread is created and the SortAscending
method begins to execute on that thread. This increases the number of threads associated
with the process by one. In our example the thread will continue until SortAscending
completes execution and returns. In the next section we will cover another way that
threads can end. The important concept is that when the method associated with the
ThreadStart delegate terminates, the thread associated with it also terminates.
Remember that even though we did not declare a ThreadStart delegate in the
VB.NET example, one was created for us.
STARTING THREADS 53

Net_Dennis.book Page 54 Thursday, October 31, 2002 4:04 PM
The first thread created in a process is called the main thread. It is a foreground
thread and it is possible to have multiple foreground threads in the same process. So
far all of our examples have contained only foreground threads. In the next chapter
we will explore all forms of thread control, one of which is setting a thread to be a
background thread.

Debugging multithreaded applications is a little different than debugging tradi-
tional applications. In our example, stepping through the code does not step into the
SortAscending method. Instead control goes from the invocation of the Start
method and returns to the calling method. The way to see what happens on the new
thread is to use a breakpoint in the SortAscending method. When debugging a
multithreaded application, you should focus on one thread at a time because it is often
difficult, if not impossible, to determine the exact order of execution of multiple
threads. This is one of the challenges associated with multithreaded development.

4.3 ENDING THREADS

Suppose that you wanted a thread to end. One way to do that is to have the method
the thread is executing end. For some applications this is sufficient. One way of telling
a thread it is time to end is through the use of instance variables associated with the
class the thread method is a member of. The thread method generally has a loop of
some sort and a test for a change in the value of the variable. When the variable changes,
it is an indication that the method should exit. In listing 4.2, if TimeToStop is true
the method exits and the thread terminates.

Figure 4.1

Creation of a thread
54 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 55 Thursday, October 31, 2002 4:04 PM
public class ClassThread_End_1
{
 long[] NumbersToSort;
 public bool TimeToStop = false;
 . . .
 public void CreateDataAndStartThread(int HowMany)
 {
 . . .
 ExampleThread = new Thread(new ThreadStart(Sort));
 TimeToStop = false;
 ExampleThread.Start();
 }
 public void StopThread()
 {
 TimeToStop =true;
 }
. . .
 void SortAscending()
 {
 for (int i= 0;i < NumbersToSort.Length ;i++)
 {
 if (TimeToStop) return;

 for (int j=0;j<i;j++)
 {
 if (NumbersToSort[i] < NumbersToSort[j])
 {
 Swap(ref NumbersToSort[i],ref NumbersToSort[j]);
 }
 }
 }
 }
. . .
}

A different thread changes the value of TimeToStop by calling its method, signaling
that it is time to terminate execution. This demonstrates one of the problems with this
approach: the inner loop must complete before the test is performed. This also relies on
the thread method checking this value, and being in a state that it can check the value.

TIP One way of ending threads is to have the thread check a variable that signals
when the thread should stop.

While this approach works for many situations, there are times that a more direct
method must be used. Fortunately we have a means of signaling the thread that it is
time to end. The Abort method signals a thread that it should terminate. When an
abort is signaled a ThreadAbortException is raised on the thread.

Listing 4.2 Ending a thread (VB.NET)

Controls the
termination of
the thread

Determines if the
thread method
should return
ENDING THREADS 55

Net_Dennis.book Page 56 Thursday, October 31, 2002 4:04 PM
Abort Abort is a method on the Thread class that raises a ThreadAbortExcep-
tion on the related thread. Abort is used to stop a thread from processing.

The Thread class also contains a method, Sleep, that will suspend execution of a
thread for a set period of time. It accepts a parameter that indicates how long the thread
should be idle, in milliseconds. This allows a thread to pause itself for a period of time.

Sleep Sleep is a method on the Thread class that causes the current thread to
pause execution for a period of time.

We will discuss the Sleep method in more detail in the next chapter. In the Main
method of our example, we have the following:

void Main()
{
 ClassThread_Exceptions_1 Example = new ClassThread_Exceptions_1();
 Example.CreateDataAndStartThread(10000);
 System.Threading.Thread.Sleep(1000);
 Example.StopThread();
 System.Threading.Thread.Sleep(4000);

}

We create an instance of the class associated with this example called Example. We
then call the CreateDataAndStartThread method, passing in HowMany ele-
ments we want in our array. This creates and populates the array with random values
and starts the ExampleThread.

public void CreateDataAndStartThread(int HowMany)
{
 . . .
 ExampleThread = new Thread(new ThreadStart(Sort));
 ExampleThread.Start();
}

We then pause the main thread using the Sleep method, indicating that we wish to
sleep for 1,000 milliseconds, or one second. After the main thread has slept for one
second it calls the StopThread method, which calls Abort() on the Example-
Thread, raising an exception on the ExampleThread.

public void StopThread()
{
 ExampleThread.Abort();
}

We then sleep for an additional four seconds and then exit the Main method. Anytime
an unhandled exception occurs on a thread, that thread will terminate. To achieve the
desired results, you must understand thread-related exceptions.
56 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 57 Thursday, October 31, 2002 4:04 PM
4.3.1 Introducing the ThreadAbortException exception

Exceptions are likely a new concept for VB developers. They are a means of handling
runtime conditions that if not dealt with become runtime errors. In chapter 13 we will
discuss thread-related exceptions in greater detail.

Exceptions Exceptions are a type of error handling that allows for dealing with unex-
pected runtime conditions.

As we saw in the previous section, when Abort() is called on a thread a Thread-
AbortException is raised. The thread may not be terminated immediately. The
runtime waits until the thread reaches a safe point before terminating it. Safe points
are locations in code where the .NET runtime can take control of a thread and per-
form needed actions. Terminating a thread is one of those actions.

The way that exceptions are generally handled involves try, catch, and
finally clauses. The try block contains a series of instructions that are to be exe-
cuted and that might raise an exception. catch handles the exceptions that have not
been handled by a more specific clause. When an exception is handled by a catch
clause, execution generally continues. The ThreadAbortException is unlike most
exceptions because execution does not continue after the catch clause. finally
clauses are always executed, regardless of whether or not an exception is raised. A try
block must be followed by finally, catch, or both.

Listing 4.3 shows how a method can be written to handle exceptions.

Private Sub Sort()
 Dim i, j As Integer
 Try
 For i = 0 To NumberOfElements
 For j = 0 To i
 If NumbersToSort(i) < NumbersToSort(j) Then
 Swap(NumbersToSort(i), NumbersToSort(j))
 End If
 Next
 Next
 Catch ex As Threading.ThreadAbortException
 Console.WriteLine("Caught ThreadAbortException:" + ex.Message)
 End Try
End Sub

When Abort is called on the ExampleThread, the following line is written out to
the console:

Caught ThreadAbortException:Thread was being aborted.

ThreadAbort-
Exception

The ThreadAbortException generally does not allow execution to
continue after the exception has been handled.

Listing 4.3 Example of handling ThreadAbortException (VB.NET)
ENDING THREADS 57

Net_Dennis.book Page 58 Thursday, October 31, 2002 4:04 PM
Suppose that you wanted to determine why the thread was being aborted. This would
allow the cleanup code to perform different operations depending on the message sent.
A version of the Abort method accepts a single parameter called a stateInfo. This
allows an object to be passed to the thread via the ThreadAbortException. The
object that is passed to the Abort method will be available by accessing the Exception-
State property. So if we change our StopThread method to pass a string, that string
will be passed on to the catch clause that catches the ThreadAbortException.

Sub StopThread()
 Dim StateInfo As String
 StateInfo = "It's time to stop executing."
 ExampleThread.Abort(StateInfo)
End Sub

If we change our catch clause to the following:

Catch ex As Threading.ThreadAbortException
 Console.WriteLine("Caught ThreadAbortException:")
 Console.Write("Message=")
 Console.WriteLine(ex.Message)
 If Not ex.ExceptionState Is Nothing Then
 Console.Write("ExceptionState=")
 Console.WriteLine(ex.ExceptionState)
 End If

the following output will be generated on the console:

Caught ThreadAbortException:
Message=Thread was being aborted.
ExceptionState=It's time to stop executing.

Notice the test to see if ExceptionState is Nothing. If state information is not
passed into the Abort method, then ExceptionState will be Nothing.

The finally clause will always execute, whether or not an exception occurs. It
allows for a series of statements that should be executed regardless of outcome, such
as closing any open ports or files, and releasing any resources. If we add

Finally
 Console.WriteLine("The Sort has ended")

to our exception-handling code, then the output of the execution would be:

Caught ThreadAbortException:
Message=Thread was being aborted.
ExceptionState=It's time to stop executing.
The Sort has ended

If the Abort did not occur, the results would be:

The Sort has ended
58 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 59 Thursday, October 31, 2002 4:04 PM
4.3.2 The ResetAbort method

It seems a shame to blindly stop sorting the elements of our array when an Abort occurs.
Suppose that we are 99 percent finished and received an Abort. Wouldn’t it be nice if we
could choose to ignore it? That is exactly what the ResetAbort method lets you do.

...
catch(ThreadAbortException ex)
{
 Console.WriteLine("Caught ThreadAbortException: "+ ex.Message);
 if (ex.ExceptionState != null && (bool)ex.ExceptionState)
 {
 if (i > NumberOfElements/2)
 {
 Console.WriteLine("Ignoring the abort");
 Thread.ResetAbort();
 }
 }
}
finally
{
 Console.WriteLine("finally");
}
...

In the example if more than half of the elements are in order, we let the sort complete:

void Sort()
{
 int i = 0;
 bool ContinueProcessing = true;
 while (ContinueProcessing)
 {
 try

This requires reworking the Sort method so that an Exception can be handled and
processing can continue. Without this modification we would call ResetAbort. We
would then be able to stay in the thread’s method. Next we would exit the catch
clause, and execute the finally clause. Next we would exit the try block, exit the
method, and end the thread. We would have ignored the Abort but the thread
would have ended anyway. We use the stateInfo parameter of the Abort method
to pass in a Boolean indicating if it is permissible for the Abort to be ignored. This
allows the caller of the Abort to permit the thread to ignore the abort.

The first thing we need to do is change the outer loop from a for loop to a while
loop and change where the counter was initialized. Additionally we added a while
loop to allow us to resume our sorting:

while (i < NumberOfElements)

By initializing the outer loop index before the while loop, we ensure that the index value
will be preserved when an exception occurs. We also need to have a way of indicating
ENDING THREADS 59

Net_Dennis.book Page 60 Thursday, October 31, 2002 4:04 PM
that we have finished with the sorting. When the outer loop finishes, we execute the
following line:

ContinueProcessing = false;

This indicates that we have finished sorting the data and the thread can exit. We also
change the way we call Abort to pass in a Boolean that indicates if the thread can
choose to ignore the abort:

public void StopThread()
{
 bool CanResetAbort = true;
 ExampleThread.Abort(CanResetAbort);
}

This approach allows for robust handling of different states. It also adds complexity
to the solution. The idea that a thread can determine how it should behave is both
powerful and dangerous. Threads should respond as expected, unless they are given
permission to do otherwise. This gives the designer of the solution the ability to make
things more complex. Keep in mind that if the thread is a foreground thread and it
ignores an Abort, it may cause the thread to keep executing after the main thread
has completed its execution. While this might be desired under some circumstances,
generally it is not a good idea. If the thread is not a foreground thread, the runtime
terminates the thread without considering if the ResetAbort method is invoked.
The next chapter discusses foreground and background threads in depth.

Notice that the finally clause executes more than once. It is important to
remember that the finally clause indicates exit from a try, catch, finally
block. As we’ve seen in this example, it is possible to exit and reenter a try/catch/
finally block numerous times.

An important concept here involves signaling an Abort and assuming that it
occurred. Before you signal a thread to abort, you need to know its state. Second, if you
need to know that the thread actually ended, you should wait for it to end. We will
cover these two topics in the following two sections of this chapter.

4.3.3 The Join method

So far we’ve created, started, and requested a thread to stop executing. Until now we’ve
had no way of knowing that the thread actually stopped executing. The Thread class
provides the Join method that lets us wait until the specified thread stops executing.
We call Join on the instance of the Thread class we wish to wait on. Figure 4.2 is a
graphical representation of how Join works. A key element is that the main thread
will wait until the new thread terminates before continuing.

The next example is similar to those we’ve done before. We create an instance of the
class that contains the instance of the Thread class. We create an array of 10,000 ele-
ments and assign random values. We then start the thread. The main thread sleeps for
one second and then signals that the thread should stop. Next, instead of sleeping for
an arbitrary amount of time, we wait, indefinitely, for the thread to terminate.
60 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 61 Thursday, October 31, 2002 4:04 PM
Sub Main()
 Dim Example As New JoinThread()
 Example.CreateDataAndStartThread(10000)
 System.Threading.Thread.Sleep(1000)
 Example.StopThread()
 Example.WaitForThread()
End Sub

Sub WaitForThread()
 ExampleThread.Join()
End Sub

At the point ExampleThread terminates, the Join method returns and the
WaitForThread method continues executing. Join is termed a blocking method,
meaning it does not return until it has finished waiting for some event to occur,
thereby blocking the thread it is executed on.

Join Join is a method of the Thread class that causes the current thread to pause
until the thread associated with the instance of the Thread class terminates
or a timeout occurs. If a parameter is supplied to the Join method, it indi-
cates how long the runtime should wait before timing out. If no parameter
is supplied, it means to wait indefinitely for the thread to terminate.

One issue with using Join as we have here is that it waits indefinitely for Example-
Thread to terminate. If ExampleThread never terminates, Join never returns.
There are cases where that is exactly what you want to do. However, sometimes you
want to wait for the thread to end; if it doesn’t, you do something else. This is often
associated with polling the state of the thread.

Figure 4.2

Graphical representation

of the Join method
ENDING THREADS 61

Net_Dennis.book Page 62 Thursday, October 31, 2002 4:04 PM
Suppose that you wanted to let the sorting method run for ten seconds, and if the
sort had not completed, call StopThread. Recall that StopThread may not result
in the thread stopping, since the thread can choose to call ResetAbort and continue
processing. The WaitForThread method is now more complex:

Sub WaitForThread(ByVal HowLongToWait As Integer)
 Dim KeepGoing As Boolean
 Dim ThreadDied As Boolean
 Dim NumberOfSeconds As Integer
 NumberOfSeconds = 0
 KeepGoing = True
 While (KeepGoing)
 ThreadDied = ExampleThread.Join(1000)
 If ThreadDied Then
 Console.WriteLine("Dead")
 KeepGoing = False
 Else
 NumberOfSeconds += 1
 Console.WriteLine("Alive " + NumberOfSeconds.ToString)
 If NumberOfSeconds > HowLongToWait Then

 Console.WriteLine("Calling StopThread")
 StopThread()
 End If
 End If
 End While
End Sub

The version of Join we are using here accepts a single integer parameter that indi-
cates a timeout value. The parameter indicates how many milliseconds Join should
wait for the thread to end, in this case 1,000, or one second. If Join returns true then
the thread terminated in the time allowed by the timeout parameter. If it returns false,
the thread is still alive. The logic of this method is pretty straightforward. While the
thread is executing we keep attempting to Join it, waiting one second each time. After
HowLongToWait attempts to join, we start requesting that the thread die, which
causes an Abort to be called on the thread. Depending on how far along the thread is
in its processing, it may either die or continue sorting its elements.

We can modify our main procedure to remove any Sleep calls as follows:

Sub Main()
 Dim Example As New JoinThread2()
 Example.CreateDataAndStartThread(20000)
 Example.WaitForThread(10)
End Sub

Another version of Join accepts a TimeSpan parameter, instead of an integer param-
eter, indicating how long to wait before timing out. The TimeSpan structure allows
for greater flexibility. The smallest unit of time that can be assigned using a TimeSpan
object is one hundred nanoseconds, known as a tick. The return value behaves the
same: true if the thread ended, false if not.
62 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 63 Thursday, October 31, 2002 4:04 PM
4.4 DETERMINING A THREAD’S STATUS

Being able to determine the condition of a thread is very useful. There are two prop-
erties that provide insight into the condition of a thread. IsAlive returns a Boolean
value indicating if the thread is in a state where it is executing. ThreadState
returns a bitmasked value that provides more detail into the exact states a thread is in
at any point.

4.4.1 The IsAlive property

So far we know how to tell if a thread is alive only by waiting for it to die. We could
ask to Join a thread and specify a very small timeout, such as 1 millisecond. But this
doesn’t express what we are trying to do; we want to know if the thread is alive, not if
it is going to die in the next millisecond. To do this we use the IsAlive property of
the Thread class. Our next example uses IsAlive instead of Join.

A key concept here is that IsAlive returns immediately with either true or false.
It is intended to check the state of a thread. We will discuss the other states that
threads go through in the next section. IsAlive is an easy way to determine if a
thread is executing.

One area where IsAlive can be useful is during thread startup. We have seen
that calling Abort does not terminate the thread immediately; the same thing is true
of calling Start. Start is a request for the runtime to start the thread. Depending
on machine load and performance, the thread may or may not be started by the time
the next instruction executes. If it is critical to know if a thread is started, checking
its state using IsAlive is a good idea. It’s worth noting that under typical conditions
threads start very quickly, and it is not generally necessary to check to see when a thread
actually started.

Suppose that we needed to know if the ExampleThread actually started. If it did,
we display the message “Thread is alive”; if not, “Thread is not alive.” If a thread does
not start after a sufficiently long period, an error message should be logged. This will
likely be due to a machine being in an unhealthy state. Attempting to start the thread
again most likely will not help.

public void CreateDataAndStartThread(int HowMany)
{
 CreateData(HowMany);
 ExampleThread = new Thread(new ThreadStart(Sort));
 ExampleThread.Start();
 int IsAlivePollCount = 0;
 while (!ExampleThread.IsAlive)
 {
 IsAlivePollCount++;
 if (IsAlivePollCount > 100)
 {
 // Do something drastic
 throw new Exception("ExampleThread would not start");
 }
DETERMINING A THREAD’S STATUS 63

Net_Dennis.book Page 64 Thursday, October 31, 2002 4:04 PM
 Console.WriteLine("Thread is not alive");
 Thread.Sleep(1000);
 }
}

Let’s examine the value of IsAlive at each point through the thread creation process:

public void TestIsAlive(int HowMany)
{
 Thread OurThread;
 CreateData(HowMany);
 OurThread= new Thread(new ThreadStart(Sort));
 Console.WriteLine(OurThread.IsAlive); // False
 OurThread.Start();
 Thread.Sleep(1000);
 Console.WriteLine(OurThread.IsAlive); // True
 Thread.Sleep(1000);
 Console.WriteLine(OurThread.IsAlive); // True
 OurThread.Abort();
 Console.WriteLine(OurThread.IsAlive); // True
 OurThread.Join();
 Console.WriteLine(OurThread.IsAlive); // False
}

We start by declaring and assigning an instance of the Thread class, associating it
with a method that will serve as the entry point to the thread. IsAlive returns false
at this point, since we haven’t started the thread. The next step is to start the thread.
If a small amount of time has passed, IsAlive returns true, assuming the runtime
was able to start the thread. If we signal an Abort, the value of IsAlive stays true,
in part because the thread method chooses to ignore the call, but also because Abort
is a request for an Abort so it is unlikely that it would be processed immediately.
After we Join the thread, IsAlive returns false.

We’ve now seen a way to check if a thread is alive. This is somewhat useful but
there is a lot more we can know about the state of the thread.

4.4.2 The ThreadState property

Threads go through several states. A state is a condition that is either true or false. A
thread is either in a state or it is not. One way to see the states a thread goes through
is to create another thread whose sole purpose is to watch the thread we care about.
The following example creates a thread to keep track of the thread we want to watch:
Imports System.Threading
Public Class ThreadStateWatcher
 Private ThreadToWatch As Thread
 Private WatchingThread As Thread
 Public Sub WatchThread(ByRef ThreadToWatch As Thread)
 Me.ThreadToWatch = ThreadToWatch
 WatchingThread = New Thread(AddressOf Watch)
 WatchingThread.IsBackground = True
 WatchingThread.Start()
 End Sub
64 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 65 Thursday, October 31, 2002 4:04 PM
 Private Sub Watch()
 Dim LastState As ThreadState
 While True
 Dim CurrentState As ThreadState
 CurrentState = ThreadToWatch.ThreadState
 If CurrentState <> LastState Then
 LastState = CurrentState
 Trace.Write(ThreadToWatch.IsAlive.ToString)
 Trace.Write(" ")
 Trace.WriteLine(CurrentState.ToString())
 Thread.Sleep(5)
 End If
 End While
 End Sub
 . . .
End Class

Every five milliseconds the thread wakes up and checks if the thread it is watching has
changed state. If it has, it outputs the new state. It also outputs the value for IsAlive.
When we create the thread we set the IsBackground property to true. When design-
ing systems it isn’t uncommon to dedicate a single thread to monitoring the activities
of the other threads. It wouldn’t be very efficient to create a monitoring thread for
each thread that needed to be monitored.

ThreadState The ThreadState property is a bitmasked value that indicates the current
state(s) the thread is in. A thread can be in more than one of the ten states
at the same time. Certain states are mutually exclusive, such as Running
and Stopped.

Threads start out as Unstarted. Once started, threads transition from Unstarted
to Running. If the thread method exits, the thread transitions from the Running state
to Stopped. If an Abort is called on a thread, it transitions to AbortRequested.
If the thread then chooses to ignore the Abort using ResetAbort, it returns to the
Running state. Otherwise the thread transitions to the Aborted state and then to
the Stopped state.

Notice in the sample output that ThreadState can have multiple values at the
same time. For instance it can be WaitSleepJoin and AbortRequested at the
same time. This is accomplished by using bit-masked values. A bitwise AND must be
used to determine if a thread is in a certain state. For example:

If CurrentState And ThreadState.Unstarted Then

Since a thread can be in more than one state at the same time, the values must be
checked individually. In the current implementation, the Running state is associated
with the integer value zero. This means that a test to see if a thread is in the Running
state cannot be accomplished using a simple bitwise comparison. Instead, if the thread
is not in the Unstarted state or is not stopped, then it must be running.
DETERMINING A THREAD’S STATUS 65

Net_Dennis.book Page 66 Thursday, October 31, 2002 4:04 PM
Public Function MyAlive() As Boolean
 Dim UnstartedOrStopped As ThreadState
 UnstartedOrStopped = ThreadState.Unstarted Or ThreadState.Stopped
 Return ThreadToWatch.ThreadState And UnstartedOrStopped = 0
End Function

The first column contains the value of IsAlive, the second the ThreadState:

False Unstarted
True Running
True AbortRequested
True WaitSleepJoin, AbortRequested
True AbortRequested
True WaitSleepJoin, AbortRequested
True Running
False Stopped
False Aborted

Figure 4.3 shows the states and transitions that we’ve covered so far. Don’t be overly
concerned if it seems complex; we will discuss it in more detail in the next chapter.

Table 4.1 contains the current values for each of the thread states. As we discussed
earlier, Running is associated with zero. Notice that the values are powers of two.
This allows bitwise logic to be applied. We will discuss each of these states in detail in
later chapters.

Figure 4.3 ThreadState transition diagram
66 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 67 Thursday, October 31, 2002 4:04 PM
Suppose you had a thread that was a Background thread in the WaitSleepJoin
state. The value returned by ThreadState would be 4 plus 32 which would equal
36. One of the interesting properties of combining bitmask values with a bitwise OR
is that it is equivalent to addition. Table 4.2 demonstrates how this is occurring at a
bit level.

To determine if a bit is on, we use a logical AND. In Table 4.2 the resulting row has
both the 25 and 22 bits on. This yields a resulting decimal value of 36. Table 4.3
shows how a logical AND can be used to see if a bit is turned on. The first line contains
the value 36, the same as the result from Table 4.2. When it is compared to the constant
for WaitSleepJoin, 32, using a logical AND, the result is 32.

Table 4.1 ThreadState Descriptions and Values

State Description Value

Aborted The thread is in the Stopped state as a result of an
Abort request.

256

AbortRequested An abort has been signaled. 128

Suspended A thread has called Suspend on the thread. It can only
leave the suspend state when some other thread calls
Resume.

64

WaitSleepJoin The thread is idle. It is either waiting for a resource, for
another thread to terminate, or for a sleep timeout to
expire.

32

Stopped The thread is no longer executing. 16

Unstarted The thread object has been created but the OS thread
has not been started.

8

Background The thread is executing in background mode, meaning
it will be terminated when all other nonbackground
threads terminate.

4

SuspendRequested A Suspend request has been signaled. 2

StopRequested A stop has been requested. 1

Running The thread is currently executing. 0

Table 4.2 Explanation of Bitwise OR

28 27 26 25 24 23 22 21 20 Decimal Value

0 0 0 0 0 0 1 0 0 4

0 0 0 1 0 0 0 0 0 32

Logical OR

0 0 0 1 0 0 1 0 0 36
DETERMINING A THREAD’S STATUS 67

Net_Dennis.book Page 68 Thursday, October 31, 2002 4:04 PM
The majority of the time you do not care what the actual value returned by the logical
AND is; you only care if it is greater than zero. This indicates that at least one bit is on.

4.5 SUMMARY

After we learned how to create a thread and how it can be started, we saw how this
creates an OS thread. When the method associated with the thread’s ThreadStart
delegate exits, the thread terminates. Alternatively, we can use the Abort method on
the instance of the Thread class associated with the thread to trigger a Thread-
AbortException that results in the termination of the thread. We can use the
ResetAbort method to cancel an abort.

Table 4.3 Explanation of Bitwise AND

28 27 26 25 24 23 22 21 20 Decimal Value

0 0 0 1 0 0 1 0 0 36

0 0 0 1 0 0 0 0 0 32

Logical AND

0 0 0 1 0 0 0 0 0 32
68 CHAPTER 4 THREAD LIFE CYCLE

Net_Dennis.book Page 69 Thursday, October 31, 2002 4:04 PM
C H A P T E R 5

Controlling threads

5.1 Example: web site monitoring 70
5.2 Naming threads 72
5.3 Using Sleep and Interrupt 74
5.4 Using background and

foreground threads 79

5.5 Using Suspend and Resume 82
5.6 Exploring thread states 85
5.7 Digging deeper into thread control 87
5.8 Summary 94
As a general rule, anything that is allowed to happen without a certain degree of control
is a bad thing. I’m reminded of a wedding I once attended. A youngster was in an over-
stimulated state. At one point during the festivities the child was running at full speed
directly toward the wedding cake. Fortunately his alert grandmother intercepted him
and got him under a certain degree of control.

Threads that are not controlled can potentially be just as dangerous.
In the last chapter we covered creating threads, determining their state, and stopping

them. While this is a good foundation, you’ll often need to exercise more control over
threads. One of the things we generally want to do with a thread is be able to identify
it from another. If I have a thread that is performing a certain task, say a calculation,
it is more convenient to refer to that thread as the “Calculating Thread” rather than
as thread 2412. The Thread class allows us to assign a name to a thread so that we
can more easily identify it during debugging.

Like the child running toward the cake, threads that don’t have a proper amount
of pause during their execution can cause some very bad things to happen. To help slow
them down, we can use the Sleep method. Sometimes we want to interrupt a thread
while it is sleeping, which is exactly what the Interrupt method does.

Just as his grandmother caused the child to stop what he previously was doing, run-
ning toward the wedding cake, we sometimes want to stop a thread from doing what
69

Net_Dennis.book Page 70 Thursday, October 31, 2002 4:04 PM
it is doing. This is what the Suspend method allows us to do. Once a thread has
entered the Suspended state we are likely going to want to have it exit that state. The
Resume method causes a thread that is in the Suspended state to exit it and con-
tinue its execution.

This chapter uses a web site monitoring application for demonstration purposes. A
site monitoring application fits many of the concepts we’ll be covering. When possible
the concepts will be associated with that example. Occasionally a simple example will
be introduced when it can more clearly convey the information.

This chapter also covers advanced topics, such as processor affinity. These advanced
mechanisms generally should not be used when dealing with managed code. It is a good
idea to be familiar with them, but in general the methods in the System.Diagnos-
tics.Process class should not be used to tune multithreaded applications. If the
need arises, you will be familiar with the concepts and able to determine when you
need the features they provide.

5.1 EXAMPLE: WEB SITE MONITORING

When a web site stops working correctly, the time it is unavailable can often be measured
in dollars. The example we’ll use in this chapter is a web site monitor, a program used
to ensure that a web site is in a state such that it can service user requests in a timely
manner. One approach to web site monitoring is to have a predefined page that
returns an indication of health. The page is retrieved at regular intervals. This page
often exercises various objects or assemblies, perhaps accesses a database, and returns
a reasonable estimation of the health of the web server the page resides on. Listing 5.1
uses the System.Net.WebClient object to retrieve a page referenced by a URL.

Imports System.Net
Imports System.Threading

Public Class WebSiteMonitor

 Private URL As String
 Private MonitorThread As Thread
 Private SleepTime As Integer
 Private LastRequestHowLong As TimeSpan

 Public Sub New(ByVal URL As String, ByVal SleepTime As Integer)
 Me.URL = URL
 Me.SleepTime = SleepTime
 MonitorThread = New Thread(AddressOf ThreadMethod)
 MonitorThread.Name = "WebSiteMonitor"
 End Sub
. . .

 Private Sub ThreadMethod()
 Dim Notify As Boolean

Listing 5.1 Retrieving a web page using WebClient (VB.NET)
70 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 71 Thursday, October 31, 2002 4:04 PM
 While True
 Notify = False
 Dim client As New WebClient()

 Dim data As Byte()
 Dim StartTime As DateTime = System.DateTime.Now
 ' Retrieve the Page
 data = client.DownloadData(URL)
 Dim StopTime As DateTime = System.DateTime.Now
 LastRequestHowLong = StopTime.Subtract(StartTime)
 Dim Results As String
 Results = System.Text.Encoding.ASCII.GetString(data)
 If Results.IndexOf("OK") < 0 Then
 Notify = True
 End If
 If Notify Then
 ' Let someone know
 End If
 Thread.Sleep(SleepTime)
 End While
 End Sub
End Class

Processing begins by creating an instance of the WebClient class. The current time is
recorded so that the time required to retrieve the page can be calculated. The Down-
loadData method is used to return the contents of the page as an array of Bytes.
Once the page is downloaded, the time is recorded. In order to easily interact with the
contents page, we must convert it from a Byte array to a string using the GetString
method of the System.Text.Encoding.ASCII class. If the resulting string does
not contain "OK" the Notify flag is set to true, indicating that someone should be
notified that the web site is in an unhealthy state. The idea is that a dynamic page will
return the status of the web site. If the system is in a healthy state, the page will return.
Notification could be through the addition of an entry to the NT Event Log, or some
other means. Figure 5.1 gives a high-level view of how the application logically functions.

When we monitor a web site, we generally pause between each check. If the pause
is too short, we have written a web site stress-testing tool instead of a monitor. If we
pause too long, we may miss something important. We’ve seen the Sleep method
in previous chapters. It causes a thread to pause for a period of time. We will examine

Creates a simple
HTTP client

Retrieves
the page

Figure 5.1 Web site monitoring logical flow
EXAMPLE: WEB SITE MONITORING 71

Net_Dennis.book Page 72 Thursday, October 31, 2002 4:04 PM
the Sleep method in detail in section 5.3.1. At times we wish to check the state of
the site immediately; perhaps someone has reported that the web site is down. In
threading terms, this is accomplished using the Interrupt method.

When the connection from the monitoring machine to the Internet goes down, often
the best approach is to stop checking the site until the connection has been reestablished.
This relates to the Suspend and Resume methods that we cover in section 5.5. At
the point it becomes apparent that the connection is down, the thread polling the site
should be suspended. Once it is determined that polling should continue, Resume
should be called on the suspended thread.

When multiple sites are being checked, some are likely more important than others.
We may want to ensure that the thread that is checking the more important site is given
the opportunity to do its work first. In section 5.6.1 we cover how to adjust the thread’s
priority. We most likely will want to have a thread whose job is to notify someone when
there is a problem. That notification is important and needs to happen at a higher pri-
ority than the monitoring.

Often the computer doing the monitoring is not dedicated to that task. In that case
it is desirable to control how many of the resources of the computer are used. We may
wish to control what processors in a multiple-processor machine can be used to check
the status of the web sites. In this case processor affinity lets us control what processors
a process utilizes. Processor affinity is an advanced topic, and not something generally
done. We’ll cover it in section 5.7 since it relates to thread control. If you limit what
processor a process uses, you’ve also limited what processor a thread can use.

5.2 NAMING THREADS

Sometimes you need to keep track of what a particular thread is doing. To help you do
this, the Thread class supports the Name property. This allows us to assign a name to
an instance of a thread. So rather than referencing threads by their identification num-
ber, we can then refer to them by name.

Name Name is a property of the Thread object that allows a developer to assign a
name to a thread. The Name property can be assigned a value only once; any
additional attempts will result in an exception.

In Listing 5.2 we assign the main thread of the process the name Main. This enables
us to easily identify that thread.

void InstanceMain(string[]args)
{
 Thread.CurrentThread.Name = "Main";
 Console.WriteLine(Thread.CurrentThread.Name);
 WebSiteMonitor SiteMonitor;
 SiteMonitor = new WebSiteMonitor("http://localhost/test.htm", 1000);
 SiteMonitor.Start();

Listing 5.2 Example of naming a thread (C#)

Associates “Main”
with the main thread
72 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 73 Thursday, October 31, 2002 4:04 PM
 Thread.Sleep(15000);
 SiteMonitor.Abort();
 SiteMonitor.Join();
}

When we stop execution using a breakpoint, we can examine what threads are in the
application domain and what their names are. To see the value of Name before assign-
ment, set a breakpoint on the line that assigns the value "Main" to the Name property
and run the program. Before the line executes, select Debug \ Windows \ Threads, or
press Ctrl+Alt+H, to bring up the window shown in figure 5.2.

Notice that the Name column contains an entry that is set to <No Name>. This lets you
know that the thread currently does not have a name. The Location column contains the
method the selected thread is currently executing. The small arrow on the left side indi-
cates the current thread that the debugger is viewing. Since we have not started any other
threads there is only one thread in the process, so it makes sense that it would be the active
thread. The ID column contains the operating system thread identifier. This identifier
is unique to a thread and will likely change on each execution. We will cover Priority
and Suspend in sections 5.5 and 5.6 respectively. As you can see in figure 5.3, once
we’ve assigned the Name property the value of "Main" the Thread window updates.

After the Sleep statement is executed (listing 5.2), there are four additional threads
listed. Notice in figure 5.4 that the WebSiteMonitor is the thread that is currently
visible in the debugger.

The last three threads are related to the WebClient object. This demonstrates
that many things in the .NET framework are themselves multithreaded. Having named
the two threads we are primarily concerned with, we can now easily identify them during
debugging.

Figure 5.2 The Thread window before the main thread is named

Figure 5.3 The Thread window after the main thread is assigned a name
NAMING THREADS 73

Net_Dennis.book Page 74 Thursday, October 31, 2002 4:04 PM
The following rules govern thread names:

• Once a thread’s name has been set, it cannot be changed.
• Thread names do not need to be unique within an application domain.
• Thread names can contain any character.
• Thread names should be as long as needed to make it easy to recognize the thread;

there is no limit to the length of the thread name.

The Name property of the Thread object allows both Get and Set. This means that
the thread’s name can be retrieved programmatically. Once a name is associated with a
thread, it cannot be changed. The danger here is that a developer might assume that a
thread’s name is unique and attempt to do some sort of logic based upon it. Nothing
prevents two threads from having the same name. If a thread needs to be uniquely iden-
tified, and the reference to the Thread object isn’t sufficient, then using the GetHash-
Code method will return an integer that will be unique within an application domain.

GetHashCode GetHashCode is a method that returns an integer value that will be unique
within an application domain.

Thread names are great for what they are intended, which is associating an easily rec-
ognizable value with a thread. Assigning a thread a name can greatly improve and
simplify the debugging process.

5.3 USING SLEEP AND INTERRUPT

What’s the difference between a web site stress-testing tool and a web site monitor? The
short answer is the amount of time between requests. The goals of the two products
are very different. Both applications repeatedly request pages from a web server, but a
stress-testing tool is designed to request as many pages as possible; a web site monitor
requests its pages at a much slower rate. To slow down the requesting of pages, we can
use the Thread class’s Sleep method.

Threads go through many different states, one of which is WaitSleepJoin. As
you might guess, a thread enters this state when it executes the Wait, Sleep, or Join
methods. This section discusses how the Sleep method of the Thread class affects
the state of a thread. It also discusses how a thread can be triggered to exit the Wait-
SleepJoin state by using the Interrupt method.

Figure 5.4 The Thread window after the WebClient object creates additional threads
74 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 75 Thursday, October 31, 2002 4:04 PM
5.3.1 The Sleep method

Imagine how much you could accomplish if you never rested. The same is very true
of threads. Since a computer’s processor and memory are finite shared resources, if
one thread doesn’t rest other threads may not be able to get their work done. Many
applications rely on a relatively large amount of time passing between actions. For
example, if the web site monitor were to constantly request pages, it would put an
unnecessary stress on the web site that it was monitoring. Fortunately, we can use the
Sleep method to suspend the execution of a thread for a period of time.

Sleep Sleep is a method on the Thread class that enables the current thread to
pause its execution for a period of time. Alternatively, it can be used to yield
the remainder of its time to the OS.

A thread can put only itself to sleep. This means that one thread cannot cause a dif-
ferent thread to sleep by calling its Sleep method. Because Sleep is such a useful
method, we’ve been working with it for some time now. Listing 5.3 shows Sleep in
a number of forms.

Sub Main()
 Thread.CurrentThread.Name = "Main"
 Console.WriteLine(Thread.CurrentThread.Name)
 Dim SiteMonitor As New WebSiteMonitor("http://localhost/test.htm", 1000)

 Dim ThreadWatcher As ThreadStateWatcher
 ThreadWatcher = New ThreadStateWatcher()
 ThreadWatcher.WatchThread(Thread.CurrentThread)

 SiteMonitor.Start()
 Dim D, H, M, S, MS As Integer
 D = 0 ' Days
 H = 0 ' Hours
 M = 0 ' Minutes
 S = 20 ' Seconds
 MS = 0 ' Milliseconds
 Thread.Sleep(1000)
 Thread.Sleep(0)
 Thread.Sleep(New TimeSpan(100))
 Thread.Sleep(New TimeSpan(H, M, S))
 Thread.Sleep(New TimeSpan(D, H, M, S))
 Thread.Sleep(New TimeSpan(D, H, M, S, MS))
 Thread.CurrentThread.Interrupt()
 Thread.Sleep(System.Threading.Timeout.Infinite)
 SiteMonitor.Abort()
 SiteMonitor.Join()
 End Sub

Listing 5.3 Example of using various forms of Sleep (VB.NET)

Sleeps for
one second

 B

Gives up the
remainder of
the time slice

 C

Sleeps for
100 ticks

 D

Sleeps until a different
thread calls Interrupt

 E
USING SLEEP AND INTERRUPT 75

Net_Dennis.book Page 76 Thursday, October 31, 2002 4:04 PM
Sleep is a way for a thread to yield control to the OS. Naming the method Sleep is
fairly accurate. You can think of it as the thread taking a nap. During naps, we don’t
consume many resources; we’re still alive, and generally pretty easy to wake up. That
applies equally well to threads that have invoked their Sleep method.

There are different versions of the Sleep method. The version we have seen so far takes
an integer parameter that indicates the maximum number of milliseconds the current
thread should be allowed to sleep. In listing 5.3, the thread sleeps for one second, or
one thousand milliseconds.

This version passes zero to the Sleep method. When the parameter to Sleep is 0
this indicates that the current thread should yield the remainder of its time slice to
the operating system and continue executing on the next time slice. There are times
when this is a good idea. The thread watching class we discussed in section 4.5.2 is a
good example of when this approach should be used. Instead of calling Sleep with
five milliseconds, it would have been better to call it with zero. This would indicate
that as soon as the thread had finished the current iteration of inspecting the other
thread, it should yield the remainder of the current time slice. If the thread takes
longer than one time slice to do its work, it will be interrupted and a context switch
will occur. Using the thread watching class, we can see that calling Sleep on a thread
causes it to enter the WaitSleepJoin state.

This version of the Sleep method accepts a TimeSpan object as its parameter. The
TimeSpan object can be created numerous ways and offers an easy way to indicate
the length of time that a thread should sleep. One way to create a TimeSpan object
is to pass in the number of ticks the span should account for. A tick is the smallest
unit of time in .NET. There are 10,000,000 ticks in a second.

TimeSpan TimeSpan is an object that represents a unit of time. There are various
constructors that allow for a highly flexible means of representing time du-
rations. One version of the Sleep method accepts a TimeSpan object as
its parameter.

The TimeSpan object also allows for the span to be denoted in terms of days, hours,
minutes, seconds, and milliseconds. The following statement causes the current thread
to sleep for one hour, two minutes, and three seconds:

Thread.Sleep(New TimeSpan(1, 2, 3))

For threading purposes, sleeping for multiple days probably is not the best approach.
Instead, the Schedule component is likely a better fit. However, for those cases where
it is needed, the capability does exist. The following causes the current thread to sleep
for one day, two hours, three minutes, four seconds, and five milliseconds:

Thread.Sleep(New TimeSpan(1, 2, 3, 4, 5))

 B

 C

 D
76 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 77 Thursday, October 31, 2002 4:04 PM
If the Sleep method is called with System.Threading.Timeout.Infinite
passed in as the parameter, the thread will remain in the WaitSleepJoin state until
a different thread wakes it by using the Interrupt method.

Thread.Sleep(System.Threading.Timeout.Infinite)

One reason you might want to do this is if a thread determines that it is in a state where
the best thing it can do is nothing. This may be an alternative to ending the thread by
using the Abort method, or simply exiting the thread’s method. Once a thread ends,
there is no way to restart it. However, if a thread calls the Sleep method and passes
in Infinite for the timeout value, it is possible to exit that state at a later time.

This concept is similar to calling Join. When Join is called and no parameter
is passed in, the current thread will wait indefinitely for the thread to end. When Join
is called with a timeout value, the Join method will block for at most that period of
time and then return a value indicating if the thread of interest ended. A key difference
is that Join is called on a different thread while Sleep is called on the current thread.
Join also causes the current thread to pause for a period of time, but with the idea
that it is waiting for some other thread to terminate. At the point the thread being
joined terminates, the Join method returns. Later we will see how to pause a different
thread’s execution.

5.3.2 The Interrupt method

Suppose that you’re tasked with making sure your company’s web site is functioning
correctly. Your boss calls and asks, “Is the web site down?” In this case, you don’t want
to wait until the thread finishes sleeping to find out if the web site is not well. The
Interrupt method on the instance of the Thread object allows one thread to
wake up another.

Interrupt The Interrupt method can be called on a thread that is in the Sleep-
WaitJoin state. It raises a ThreadInterruptedException that causes
the thread to exit the SleepWaitJoin state.

Interrupt is similar to Abort in that it causes an exception to be raised in the thread’s
method. If the exception is not handled, the thread will terminate. This is a recurring
theme; always wrap a thread’s main method with a try catch block to capture any
exceptions that might arise. The ThreadInterruptedException is raised when-
ever another thread calls Interrupt. Notice in listing 5.4 that we aren’t declaring a
variable to reference the exception being caught in the case of the two thread exceptions.

private void ThreadMethod()
{
 while (true)
 {
 try

 E

Listing 5.4 Using the Interrupt method (C#)
USING SLEEP AND INTERRUPT 77

Net_Dennis.book Page 78 Thursday, October 31, 2002 4:04 PM
 {
 CheckSite();
 Thread.Sleep(sleepTime);
 }
 catch(ThreadInterruptedException)
 {
 status = "Interrupted";
 System.Diagnostics.Trace.WriteLine(status);
 }
 catch(ThreadAbortException)
 {
 status = "Aborted";
 System.Diagnostics.Trace.WriteLine(status);
 }
 catch(Exception ex)
 {
 status = "Caught " + ex.ToString() + " " + ex.Message;
 System.Diagnostics.Trace.WriteLine(status);
 }
 }
}

The exception’s message contains information on where the exception was generated.
In our example we don’t care where the Abort or Interrupt was initially triggered.
We only care that they were triggered, so we can safely ignore the information.

To allow for easier user interaction let’s move our example from the console-based
world to the Windows Forms world. A screenshot of the application can be seen in
figure 5.5. The class being called is basically the same as in previous examples except
that instead of writing out to the console the state of the last request, we record the state
in a status variable. This isn’t ideal—in the future we’ll save the output to a database—

but for now, it’s sufficient. We’re now using properties
to change the URL that is being checked, along with
the time to sleep between requesting a download of the
page referenced by the URL. The use of properties is
always a good idea, but it becomes even more impor-
tant when doing multithreaded development. Because
properties restrict access to data elements, it is much
easier to determine when a variable can change value.
Since multiple threads may act upon a value, it is a
good idea for them to go through a property to do so.
We will discuss this more in future chapters.

We update the values displayed in the window of the application on a variable rate
using a thread dedicated to that purpose. Because the native Windows controls are
not thread-safe, we must use the control’s Invoke method, passing in a delegate. We
will discuss this more in chapter 15.

Raised when a thread
calls Interrupt

Figure 5.5 Our web site moni-

toring application
78 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 79 Thursday, October 31, 2002 4:04 PM
By changing the value of UI Thread Sleep Time you can change the responsive-
ness of the application. When the Initialize button is clicked, a new instance of Web-
SiteMonitor is created and assigned to the SiteMonitor variable. Clicking Start
causes the URL and sleep time properties on SiteMonitor to be updated and
invokes SiteMonitor’s Start method. Clicking the Interrupt button causes the
following code to be executed:

if (SiteMonitor != null)
{
 SiteMonitor.Interrupt();
}
else
{
 MessageBox.Show("Not Initialized");
}

SiteMonitor.Interrupt simply invokes the Interrupt method on the instance
of the Thread class:

MonitorThread.Interrupt();

When the interrupt is signaled, a ThreadInterruptedException is generated.
The exception likely will occur during the Thread.Sleep statement; however, since
the WebClient object uses threads it is possible that the exception will occur during the
DownloadData call. Exceptions should always be handled, and ideally as close to the
source of the exception as possible. Chapter 13 covers thread-related exceptions in detail.

When we create the threads in this example, we set the IsBackground property
to true. In the next section we’ll explore that property and why we use it.

5.4 USING BACKGROUND AND
FOREGROUND THREADS

Suppose that you had a thread that calculates the running average time to download a
given web page. At the point the web site monitor is shutting down, there is no rea-
son for that thread to continue to exist. To simplify application termination, you can
mark the thread as a background thread. This is accomplished by using the IsBack-
ground property.

IsBackground IsBackground is a property of the Thread object that controls termination
of the process. When a thread is a background thread, it will be terminated
at the point all foreground threads terminate.

In previous examples, we have assigned true to the IsBackground property. IsBack-
ground controls how termination of a process is carried out. The application domain
will continue to exist as long as there is at least one foreground thread executing. This
means that if the main thread of the process exits and another foreground thread is
executing, the process will continue to exist and the foreground thread will continue
to execute.
USING BACKGROUND AND FOREGROUND THREADS 79

Net_Dennis.book Page 80 Thursday, October 31, 2002 4:04 PM
In the following example we set UIThread’s IsBackground property to true
to indicate that the thread associated with UIThread is a background thread:

Private Sub Form1_Load (ByVal sender . . .)
 Thread.CurrentThread.Name = "Main"
 UIThreadSleepTime = 1000
 UIThread = New Thread(AddressOf UpdateUIMethod)
 UIThread.Name = "UIThread"
 UIThread.IsBackground = True
 UIThread.Start()
End Sub

Suppose you have a process that has two threads in it: one is a foreground thread, while
the other is a background thread. If the background thread ends, the foreground thread
will continue to execute, as you would expect (figure 5.6). The ending of background
threads has no effect on the life of the process where the thread lives.

If the foreground thread terminates before the background thread, the background
thread’s execution is also ended. Figure 5.7 shows an example where the termination of
the foreground thread causes the background thread to be terminated. When the last
foreground thread ends, the process also ends. When the background thread is ended,
no exceptions are raised in the background thread’s methods. This means that the
background thread is not given the chance to gracefully exit. If some operation is par-
tially completed, it will be interrupted and the thread will terminate.

A common mistake that developers new to multithreaded development make revolves
around foreground threads and process termination. A process will continue to exist
as long as there is at least one foreground thread. Figure 5.8 demonstrates this.

Makes UIThread a
background thread

Figure 5.6 Background thread ending before foreground thread

Figure 5.7 Foreground thread ending before background thread
80 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 81 Thursday, October 31, 2002 4:04 PM
When a Windows Form application starts up, the only thread that exists is the thread
that creates the user interface elements, such as buttons, text boxes, and the form itself.
During the execution of the main thread, another foreground thread is created. When
the main, user interface oriented thread exits, the visual portion of the application disap-
pears. However, the application continues to execute because there is still at least one
foreground thread executing. The application will terminate when the last foreground
thread exits, or when the process is terminated.

The mistake is that the non-UI foreground thread does not terminate as expected,
not that there is more than one foreground thread.

In our example, the SiteMonitor thread accesses web sites using the WebClient
object from the Net namespace. WebClient retrieves web pages by opening sockets,
starting threads, and closing sockets. Ending this thread in the middle of some opera-
tions can cause undesirable results. It’s a good idea to terminate the thread cleanly,
using the Abort method. It also is a good idea to use the Join method to wait for
the thread to terminate. Since our application is a Windows application, we can add
an Application Closing event handler:

Private Sub WebSiteMonitorForm_Closing(...) Handles MyBase.Closing
 If Not IsNothing(SiteMonitor) Then
 SiteMonitor.Abort()
 SiteMonitor.Join(1000)
 End If
End Sub

The parameters are omitted for space reasons. Since the user may not click on Initialize
before closing the application, we first check to see if SiteMonitor has been assigned.
If it has, we invoke the Abort method and then the Join method. Since Join expects
that the thread has started, we need to change the Join method to add defensive
code that checks if the thread is alive before calling Join.

Clean
Shutdown

To perform a clean shutdown of a process call the Abort method on the
thread and then call the Join method to wait for it to end.

Figure 5.8 Multiple foreground threads
USING BACKGROUND AND FOREGROUND THREADS 81

Net_Dennis.book Page 82 Thursday, October 31, 2002 4:04 PM
Public Sub Join(ByVal HowLong As Integer)
 If MonitorThread.IsAlive Then
 MonitorThread.Join(HowLong)
 End If
End Sub

This allows the application to shut down cleanly.

5.5 USING SUSPEND AND RESUME

As a child you may have played a game called “freeze tag” or “statue tag.” In the game,
one, and only one, of the players is It. If you’re It, your goal is to freeze all of the other
players by tagging them. If a player you tag is touched by a player who is not frozen,
that person is thawed and can return to play. This is fairly close to how the Suspend
and Resume methods work.

When a thread’s Suspend method is invoked it goes into a frozen state. This state
is very similar to the WaitSleepJoin state except that in order to leave that state
the thread must either terminate or the Resume method must be invoked. Just as in
the game of freeze tag, the thread that invokes the Suspend method is not required
to be the same one that invokes the Resume method.

The Suspend and Resume methods are not a means of synchronizing threads.
In the next chapter we discuss ways of having threads talk to each other without bad
things happening. When the Suspend method is invoked, it causes the thread to
pause its execution as soon as it reaches a point where it can do so. This means that
if that thread owns a certain resource, it will continue to own that resource even though
it is in a suspended state. In general Suspend and Resume should be avoided. They
are covered here for completeness and so that if you ever encounter a situation where
you need them you know what they are.

A multithreaded version of freeze tag is available at www.manning.com/dennis. It
is simple, but demonstrates how Suspend and Resume can be used.

5.5.1 The Suspend method

We have seen how a thread can put itself to sleep for a period of time. Suppose you had
two threads: Thread A and Thread B. Thread A is the main thread, meaning it is cre-
ated when the application domain is created. It creates and starts Thread B. Thread B
does some work, and during its work Thread B sleeps for a period of time. Thread A
calls the Interrupt method on Thread B, forcing Thread B to continue its execution.
Figure 5.9 is a visual representation of the flow that occurs.

The number 1 in figure 5.9 is the point where Thread A creates Thread B and calls
Start. The number 2 is where Thread A calls Interrupt on Thread B. Notice that
Thread B put itself to sleep. Thread B decides to go to sleep at the point that the Sleep
statement is evaluated because the Sleep statement places the thread into a safe point.
82 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 83 Thursday, October 31, 2002 4:04 PM
Suspend Suspend is a method on the Thread object that allows one thread to pause
the execution of another thread (including its own). The suspend request
will take effect as soon as the thread being suspended reaches a safe point.

A thread cannot call Sleep on a different thread. In order for one thread to pause the
execution of another, it must use the Suspend method. Unlike Sleep, Suspend
doesn’t necessarily cause the thread to pause immediately. The thread must enter a
safe point before it can be suspended.

Thread A starts Thread B at point 1 in figure 5.10. Notice that at point 2 Thread A calls
Suspend on Thread B. It takes a little time for Thread B to enter the Suspended state.
A thread cannot cause itself to exit the Suspended state. Instead, some other thread
must invoke the Resume method (point 3) to cause a thread to exit the Suspended
state. Thread B terminates at point 4.

NOTE Suspend is not a synchronization mechanism. It should not be used in place
of a synchronization mechanism. It should only be used in situations where
synchronization is not a concern.

In the previous chapter we discussed the ThreadState property of the Thread class.
When Suspend is called on a thread the ThreadState property’s Suspended bit
is turned on. When Suspend is called on a thread, that has already been suspended,
it has no effect. If a thread called Suspend 1,000 times on a thread, and then called
Resume once, the thread would exit the Suspended state and continue execution.

There are paths from one state to another that are allowed, while other paths are
not. We call these paths state transitions. An example of an allowed state transition is
going from the Unstarted state to the Running state when the Start method is

Figure 5.9 Impact of sleep and safe points

Figure 5.10 Example of Suspend
USING SUSPEND AND RESUME 83

Net_Dennis.book Page 84 Thursday, October 31, 2002 4:04 PM
called. When an invalid state transition is attempted, a ThreadStateException
is thrown. For instance, when a thread is in the Suspended state as a result of some
other thread calling the thread’s Suspend method, if the Abort method is invoked
on that thread a ThreadStateException is thrown.

public void ForceAbort()
{
 try
 {
 if ((MonitorThread.ThreadState & ThreadState.Suspended) > 0)
 {
 status = "Can't abort a suspended thread";
 MonitorThread.Resume();
 }
 MonitorThread.Abort();
 }
 catch(System.Threading.ThreadStateException ex)
 {
 status = "Abort attempted:" + ex.Message;
 System.Diagnostics.Trace.WriteLine(status);
 }
}

Since our application doesn’t restrict what buttons the user can click, we need to provide
error handling. In general, error handling is a good idea, but when dealing with threads
it is very important. At the very least, it’s a good idea to wrap all calls to methods that
can change the state of a thread with try catch blocks. A more robust form of error
handling would be to check the state the thread is in before attempting to change it.
Spending time developing robust error handling can greatly reduce the time associated
with maintenance and debugging a multithreaded application. This concept is true of
developing any application, but because of the potentially high complexity of devel-
oping multithreaded applications it is imperative to provide good error logging, if not
error handling.

5.5.2 The Resume method

In the previous section we covered the Suspend method. We saw how it allows us to
interrupt the execution of a thread and place it in a Suspended state. To exit the
Suspended state, we use the Resume method. Regardless of how many times Suspend
was called, a single call to Resume allows the thread to exit the Suspended state.

Resume Resume is a method on the Thread object that allows a thread to continue
execution after it has been suspended by calling the Suspend method.

In the last chapter we discussed several other thread states. In this chapter we have added
to that list. The Suspended state is entered whenever a thread has its Suspend
method invoked. In order to exit that state, we must call Resume. If a thread is in the
Suspended state and some method other than Resume is called, it will likely result
in a ThreadStateException.
84 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 85 Thursday, October 31, 2002 4:04 PM
5.6 EXPLORING THREAD STATES

Threads can be in multiple states. For instance, a thread can be in the Background
and WaitSleepJoin states at the same time. Other states are mutually exclusive;
for instance, a thread cannot be in the Aborted and the Running state at the same
time. Table 5.1 outlines the states a thread can be in concurrently.

Thread-
State-

Exception

ThreadStateExceptions occur when a method is called that attempts to
cause a thread to move into a state that is not allowed based upon the thread’s
current state. An example is when a thread is in the Stopped state; it cannot
be moved to the Running state by calling Start.

For example, if a thread is in the Suspended state and Abort is called on
that thread, a ThreadStateException will be raised on the calling thread.
This brings us back to handling exceptions when dealing with threads. Every
method that acts upon a thread should be included in a try catch block that
logs any exceptions that occur. Many of the examples so far have not included
error handling, primarily because it can make it difficult to see the actual con-
cepts involved. In general, unless the purpose of the code is to demonstrate a
concept, error handling should be included around every call to each method
on an instance of the Thread class that could cause a state transition.

Table 5.1 Mutually exclusive thread states: N indicates that a thread cannot be in two states

at the same time, while a Y indicates it can.

State

State

A
b

o
rt

R
e

q
u

e
s
te

d

A
b

o
rt

e
d

B
a

c
k
g

ro
u

n
d

U
n

s
ta

rt
e

d

S
u

s
p

e
n

d
e

d

R
u

n
n

in
g

W
a

it
S

le
e

p
J
o

in

S
to

p
p

e
d

S
u

s
p

e
n

d
R

e
q

u
e

s
te

d

AbortRequested

Aborted N

Background Y Y

Unstarted Y N Y

Suspended Y N Y N

Running N N N N N

WaitSleepJoin Y N Y N Y N

Stopped N N Y N N N N

SuspendRequested Y N Y N N N Y N
EXPLORING THREAD STATES 85

Net_Dennis.book Page 86 Thursday, October 31, 2002 4:04 PM
It is important when dealing with threads to know what state the thread is in. Since
threads can change state between the time you check and the execution of some
instruction, it is imperative that error handling be in place to handle unforeseen cir-
cumstances. Traditional single-threaded development usually involves controlling what
can happen based on the current state the program is in. Since state is ever-changing in
multithreaded development, a more flexible approach must be taken. For instance, it
might make sense to do the following:

if (SiteMonitor.Suspended)
{
 SiteMonitor.Resume();
}

The problem is that between the time that the test to see if Suspended is true and
the time Resume is called, a different thread might have called Resume on the same
thread. Instead, the call in the example should be contained in a try block.

Figure 5.11 contains an extended version of the state transition diagram we presented
at the end of chapter 4.

Figure 5.11 Expanded state transition diagram from chapter 4. A link indicates that a state

transition can occur between those two states.
86 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 87 Thursday, October 31, 2002 4:04 PM
5.7 DIGGING DEEPER INTO THREAD CONTROL

It’s unlikely that you will need to use the advanced topics in this section, but it’s a
good idea to be aware of them. If you are new to multithreaded development, you
can safely skip this section. The material covered here contains concepts that are not
required to develop a multithreaded application.

5.7.1 Controlling thread priority

So far our web site monitor has monitored only one site. If we add a second site to
monitor, it might well be that one of the sites is more important than the other. It is
possible to give each thread a different priority, and this may improve responsiveness.
I say may because dealing with thread priority (figure 5.12) is somewhat tricky. It
depends a great deal on what a thread is doing, what the machine executing the pro-
cess is doing, and the configuration of the machine. If each thread is processor bound,
then giving one thread a higher priority than another might result in some threads
not being given a chance to do their work. Processor bound means the thread is using
the CPU more than other resources. Changing priority of a thread may make no dif-
ference, it might make things much worse, or it might make things much better.
We’ll explore this in detail and discuss when adjusting a thread’s priority is a good
idea and when it is not.

When a thread is created, it inherits the priority of that process. In figure 5.12 the
process has a priority of 8. Thread3 has the same priority as the process since it has a
priority level of Normal. Priority is a relative thing. If all threads in a process have the
same priority, they will be given a chance to execute roughly the same number of times.
The catch here is that priority makes a difference only when a thread is available for
scheduling. A thread needs to be in a state where it can do work to be scheduled.

Figure 5.12 How a thread’s priority is calculated
DIGGING DEEPER INTO THREAD CONTROL 87

Net_Dennis.book Page 88 Thursday, October 31, 2002 4:04 PM
The priority system is based on a scale from 0 to 31, with 31 being the highest. To
change the priority of a thread, we use the ThreadPriority property on the instance
of the Thread class. For example, if we have an instance of the Thread class called
WorkingThread, we can change its priority to AboveNormal by using the fol-
lowing statement:

WorkingThread.Priority = ThreadPriority.AboveNormal

From time to time the OS may temporarily increase the priority of a thread. This is
called a priority boost. This is often done when the scheduler determines that a thread
has some needed resource allocated, but doesn’t have a high enough priority that it can
complete its usage of the resource. By assigning a priority to a thread, you are giving
the scheduler a hint as to how it should execute your thread. It will follow your guid-
ance pretty closely, but it may intervene from time to time.

A process has a priority associated with it. PriorityClass, which is an enu-
meration of five values, sets the process’s priority. The enumerated values, along with
the corresponding base priority, are listed in table 5.2. The process priority combined
with the thread’s priority yields the dynamic priority of the thread. This is the value
that is used by the operating system scheduler. Table 5.2 presents a simplified version
of how a thread’s priority is calculated.

When you’re doing multithreaded development, initially it’s best not to change thread
priority. It is possible to mask serious issues, such as race conditions, which we will cover
in the next chapter, by changing the priority of a thread. This is a short-term solution
and will most likely not fix the problem. Changing thread priority is an optimization,
and as with all optimizations it should be done only after careful analysis and profiling.
When you’re profiling, it is best to use the same type of hardware the application will be
deployed on. So, if the application will be installed on a four-processor machine, it is a
good idea to profile, and test, the application on a four-processor machine. Scheduling
of threads is done on a per-processor basis. The behavior of an application may change
when you move from a single processor to a multiprocessor machine:

Table 5.2 Process Class and Associated Priority

Priority Class Base Priority

RealTime 24

AboveNormal 10

Normal 8

BelowNormal 6

Idle 4
88 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 89 Thursday, October 31, 2002 4:04 PM
There are circumstances where changing a thread’s priority is always a good idea. When
a task is not critical to completion of some work and it can be delayed, it likely makes
sense to lower that thread’s priority. This may free up resources for other threads. If a
thread has important work to do (is processor intensive), but that work isn’t always
present, it is probably a good idea to increase the thread’s priority. Small changes in
priority are typically the best. This is not an example of if a little does a little good, a lot
will do a lot of good.

5.7.2 Setting processor affinity

Under normal situations the OS scheduler assigns the highest priority available thread
to each processor in the system. This means that if a process has more than one
thread, each of those threads may execute on different processors. Generally this is
exactly what is wanted. An exception is when the process contains CPU-intensive
activity or the server is under a high load from other sources.

By limiting what processor a process can utilize, you create situations where per-
formance can be improved. A processor contains a certain amount of memory, called
a cache. By keeping the same thread on the same processor, you ensure that the cache
is utilized more frequently, and performance improves. The scheduler in Windows
attempts to keep a thread on the same processor if possible for that very reason. This
is known as soft processor affinity.

A process can also tell the scheduler that it should run only on certain processors.
This keeps the process on the processors where it is allowed to execute. This is called
processor affinity. It is possible to change a process’s processor affinity using the Sys-
tem.Diagnostics.Process class. Using the static/shared method on the Pro-
cess class called GetCurrentProcess retrieves a
reference to the current process. We can then change the
ProcessorAffinity property to indicate the desired
affinity. ProcessorAffinity is a pointer to a 32-bit
integer. It contains a bitmask on which processors a process
can execute. The low-order bit corresponds to the first
processor in the machine, CPU 0. The high-order bit matches the last processor that
can be installed in the machine, which under 32-bit Windows is 32. In figure 5.13 we
can infer that the machine has at least three processors and that the process can execute
on CPU 1 and CPU 2 but not on CPU 0.

Process Base Priority

+ Thread Priority Delta

+ Priority Boost (If Any)

Thread Current Priority

Processor
Affinity

Processor affinity is a means of controlling the scheduling of a process so that
a certain process’s threads will execute on a set of processors.

Figure 5.13 Bitmask

value example
DIGGING DEEPER INTO THREAD CONTROL 89

Net_Dennis.book Page 90 Thursday, October 31, 2002 4:04 PM
The integer value returned by ProcessorAffinity would be 6:

 (0*23) + (1*22) + (1*21) + (0*20)=6

Figure 5.14 shows the impact of changing the processes’ processor affinity.

Since Thread T1 has an affinity of 6 it will not be scheduled on CPU 0 or CPU 3. It
will only be scheduled on CPU 1 or CPU 2.

When a process first loads, it can determine what processors it can execute on by
examining the contents of ProcessorAffinity. It is important to remember that
even though you might set the processor affinity, it is possible that it will change during
the life of the process. One way this can happen is by using Task Monitor. If you right-
click on a process, on a machine with more than one processor, you can select Set
Affinity. This will display the dialog box in figure 5.15.

By selecting what processor the current process can execute on, you can essentially
override any settings that might have been specified by the program. Remember this

Figure 5.14

Processor affinity

Figure 5.15

ProcessorAffinity

dialog box
90 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 91 Thursday, October 31, 2002 4:04 PM
when developing. Do not count on multiple processors. Even in situations where there
are multiple processors the scheduler may choose to execute each thread of a process
on the same processor. Under symmetric multiprocessing, the process has very little
control of how it is scheduled. In general, it is better to let the operating system take
care of it for you.

One use of this type of capability would be to restrict a misbehaving multithreaded
application to execute on a single processor. This may remove concurrency issues. Since
each thread in the process would execute on the same processor, true concurrency would
not be reached. This may reduce timing issues. This approach is not a replacement
to proper design and implementation, but under extreme circumstances it is a valid
short-term fix.

5.7.3 Specifying an ideal processor

Suppose that you wanted the web site monitor to utilize a certain processor. One way
you could accomplish this is to set the process’s processor affinity as we discussed in
the last section. A less restrictive approach is to set the thread’s ideal processor.

This allows us to give the scheduler a hint as to what processor we think that the thread
should execute on. The scheduler may or may not listen to our hint because we don’t
know as much about the load on the system as it does. It may be that some other process
also thinks it should execute on the same processor we think we should execute on.

The motivation of setting an ideal processor is to take advantage of the CPU’s cache.
Since it has been working with the data our thread uses, the data is already in the CPU’s
cache. Loading the CPU’s cache is a relatively expensive operation. Processors have
caches because it is much faster to retrieve data from a cache than it is from main mem-
ory. Caching is also done at multiple levels. If the data the processor needs isn’t in the
first-level cache it looks in the second. If the data isn’t in the second-level cache, it looks
in main memory. Not all systems have a second-level cache. For those systems with
only a first-level cache, if the data needed isn’t in that cache it is loaded there from
main memory. Processor cache sizes have grown to where relatively large first-level
caches are not unusual. When a processor references data, it is generally loaded into
the cache (listing 5.5).

US
IN

G
TA

SK

M
AN

AG
ER

 T
O

SE
T

PR
OC

ES
SO

R
AF

FI
NI

TY 1 Open Task Manager.

2 Right-click on the process that you wish to change the processor affinity of.

3 Select Set Affinity from the context menu that pops up.

4 Update the check boxes.

5 Click OK.

Ideal
Processor

An ideal processor is one that a thread would prefer to be scheduled on. The
scheduler may or may not honor that preference.
DIGGING DEEPER INTO THREAD CONTROL 91

Net_Dennis.book Page 92 Thursday, October 31, 2002 4:04 PM
. . .
Process MyProcess;
ProcessThread MyProcessThread;
. . .
private void ThreadMethod()
{
 MonitorThreadId= AppDomain.GetCurrentThreadId();
 MyProcess = Process.GetCurrentProcess();
 for (int i=0;i<MyProcess.Threads.Count;i++)
 {
 if(MyProcess.Threads[i].Id == MonitorThreadId)
 {
 MyProcessThread = MyProcess.Threads[i];
 break;
 }
 }
 if (MyProcessThread== null)
 {
 throw new Exception("Thread Not Found in Current Process");
 }
. . .
 MyProcessThread.IdealProcessor = 2;
. . .

Listing 5.5 shows how to set a process’s ideal processor. The Threading.Thread
object does not enable us to set a thread’s ideal processor. Instead, we must use the
Diagnostics.ProcessThread object. In order to retrieve the ProcessThread
object that corresponds to a certain thread, we must first determine the thread’s ID.
This isn’t exposed as a property of the Thread object. Instead, we need to call App-
Domain.GetCurrentThreadId from a method that is executing on the thread
we’re dealing with.

The System.Threading.Thread class does not expose the OS thread ID
because on some platforms one-for-one mapping may not exist between a managed
thread and an OS thread. Certain handheld platforms may not provide OS multi-
threaded support. On those platforms the .NET framework will provide the multi-
threaded support itself, instead of relying on the OS. The framework provides an
abstraction between the physical threading implementation and managed threading.
This means that interacting with OS-level threads and processes may restrict the plat-
forms an application can execute on.

Once we have the thread’s ID, we can look for it in the current process. We retrieve
the current process using the Diagnostics.Process.GetCurrentProcess
method. Once we have the current process, we examine its Threads collection. We
look at each ProcessThread object in the Threads collection, checking the Id
property to see if it is the same as our current thread’s ID. Once we find the matching

Listing 5.5 Setting a process’s ideal processor (C#)
92 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 93 Thursday, October 31, 2002 4:04 PM
ProcessThread, we can set its IdealProcessor property. IdealProcessor
is a write-only property. This means we can set the ideal processor but we cannot see
what the current ideal processor is. Only one processor can be the ideal processor at a
time. Instead of passing in a bitmask as we did in setting the process’s processor affinity,
we pass in a value indicating which is the ideal processor. For example, we pass in 2
to indicate that CPU 2 is our ideal processor. To undo the ideal processor setting, we
use the ProcessThread’s ResetIdealProcessor method. This removes the
setting of the current ideal processor.

Setting the ideal processor is a way of giving the scheduler a hint as to where the thread
should be executed. If we’ve selected a process affinity mask, the ideal processors should
be one of the processor we’ve selected.

The concept of an ideal processor is so important that the scheduler attempts to keep
threads on the same processor, if possible. Figure 5.16 shows that by keeping a thread
on the same processor the contents of the processor’s cache need to be refreshed less
often than if a different processor was used. Under most circumstances the scheduler
does a good job. Setting the ideal processor is an optimization and should be done only
once. It is clear that it improves performance. Optimization should be performed after
correctness has been reached, and only if it is needed.

T1 has selected CPU 0 as its ideal
processor. By keeping T1’s most
recently used data in CPU 0’s cache,
performance can be improved. If T1
is then scheduled on a different CPU,
the data will need to be loaded into
that CPU’s cache. If instead T1 were
consistently scheduled on CPU 0, the
data would already be in the cache.
One thing to keep in mind is that
other processes can set things like

ideal processor. Just as tools like Process Viewer can change thread priority, a program
can change the ideal processor. To test out setting IdealProcessor you can use the
ProcessThreadViewer program that is available from the publisher’s web site at
www.manning.com/dennis. The program allows inspection of a process and each of its
threads. You can also set IdealProcessor for a particular thread. This tool is for
learning purposes only and can result in system instability. Be careful playing with it.

ST
EP

S
TO

 S
ET

ID

EA
L

PR
OC

ES
SO

R 1 Retrieve the current thread’s ID using GetCurrentThreadId.
2 Retrieve the current process by calling GetCurrentProcess.
3 Look for the current thread in the current process’s threads.
4 Set IdealProcessor on the ProcessThread object.

Figure 5.16 Motivation for setting an ideal processor
DIGGING DEEPER INTO THREAD CONTROL 93

Net_Dennis.book Page 94 Thursday, October 31, 2002 4:04 PM
5.8 SUMMARY

This chapter exposed you to the basic concepts and syntax of thread control. You’ve
learned how to put a thread to Sleep and Interrupt it. You’ve learned that one
thread can call Suspend and Resume on another thread. Most important, you’ve
learned the rules governing the termination of an application domain with regard to
background and foreground threads.

We’ve also covered some deeper topics in section 5.7. Don’t be concerned if they
seem a bit overwhelming. It’s not important that you understand them until you plan
to use them, at which time you can return to these sections. Now that you’ve learned
how to control threads, we can move on to the next chapter and see how threads can
communicate.
94 CHAPTER 5 CONTROLLING THREADS

Net_Dennis.book Page 95 Thursday, October 31, 2002 4:04 PM
C H A P T E R 6

Communicating
with threads

6.1 Using data to communicate 96
6.2 When things go badly 105
6.3 Summary 109
Communication is very important. In software development a project that does not
have good communication among the team members is not likely to succeed. The
same is true in multithreaded development. The ability for one thread to communicate
with another allows for robust solutions. Since C# and VB.NET do not allow for
methods without classes, each method associated with a thread delegate is associated
with the class it resides in. This means that the method has access to the data ele-
ments that are contained within its class. This provides an easy and powerful way for
a thread to have access to data elements. Those data elements are encapsulated in a
class and can be protected.

The first way of communicating between threads that we will cover is the use of
public fields. Public fields are no more than public data elements. They can be manip-
ulated directly from other objects. This is one of the simplest ways of communicating
with threads. It has many drawbacks, all of which are related to using public fields in
general. Public fields violate the concept of encapsulation. Encapsulation encourages
the designer of objects to restrict knowledge of the inner workings of an object as much
as possible. This means that if I’m using an object I should not need to know how it
works to use it.
95

Net_Dennis.book Page 96 Thursday, October 31, 2002 4:04 PM
We then move on to the use of public properties as a means of communicating with
threads. Public properties solve many of the issues of public fields. The area where
public properties fall short is when communication between threads involves multiple
pieces of data.

The last means of communicating with threads we cover in this chapter involves
using first-in, first-out queues associated with a public method. Public methods can
have multiple parameters and can be used to submit elements to the queue.

We complete the chapter by discussing race conditions and deadlocks. These are
two common issues related to thread communications. We will discuss their causes
and explore ways of avoiding both of these conditions.

6.1 USING DATA TO COMMUNICATE

When a thread is created using managed code, there is no way to pass information to
it directly. Instead, we must take advantage of the fact that all methods in the .NET
framework are associated with a class or an instance of a class. This means that if we
change a value of an instance of a class, a thread associated with that instance of the
class will be able to see that change. The simplest way of changing a value associated
with a class is to use a public field.

6.1.1 Public fields

We will continue using the web site monitoring tool we introduced in the last chapter
as our example. When a web site goes down, logging that information is only part of
the goal. The more important part is letting someone know the site is down. One
way of informing people is to send email messages.

The .NET framework makes it very easy to send messages using the Sys-
tem.Web.Mail namespace. The SmtpMail object contains a static/shared prop-
erty called SmtpServer that identifies the name address of the SMTP server to use
to send the email. The send method causes a message to be sent using the specified
SMTP server. Listing 6.1 contains the class SMTPNotification.

using System;
using System.Web.Mail;
using System.Threading;
namespace PublicFields
{
 public class SMTPNotification
 {
 // Public Fields
 public bool TimeToSendNotification;
 public string To,Subject,Body,From,ServerName;
 //
 Thread SendingThread;
 public SMTPNotification()

Listing 6.1 SMTP mail notification thread (C#)
96 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 97 Thursday, October 31, 2002 4:04 PM
 {
 SendingThread= new Thread(new ThreadStart(ThreadMethod));
 ServerName="mail";
 From=To="noone@nowhere.com";
 Subject="Test from code " ;
 Body = "This is the Body";
 TimeToSendNotification=false;
 SendingThread.Name="SMTPThread";
 SendingThread.Start();
 }
. . .
 private void ThreadMethod()
 {
 while(true)
 {
 try
 {
 if (TimeToSendNotification)
 {
 SmtpMail.SmtpServer = ServerName;
 SmtpMail.Send(From,To,Subject,Body);
 TimeToSendNotification=false;
 }
 Thread.Sleep(1000);
 }
 catch(Exception ex)
 {
 System.Diagnostics.Trace.WriteLine(ex.Message);
 }
 }
 }
 }
}

Since sending an email message involves connecting to a mail server through the net-
work, it may take a relatively long time. It is better to send the message on a different
thread than the one monitoring the web site. The notification thread is dedicated to
sending notification email messages. It sleeps the majority of the time, waking up to
check for work and then sleeping again. When the monitoring thread determines that
a web site is down and that it should notify someone, it sets a public Boolean field,
TimeToSendNotification, to true. This indicates that it is time to send a mes-
sage. The notification thread sees this, and uses the From, To, Subject, and Body
public fields to send the email message.

While having one thread control the operation of another is the idea, this approach
introduces many problems. Setting the public fields must be done in the proper sequence.
Generally, performing a series of assignments in a certain order is not a good thing.

Controls when a
message is sent

 B

 B
USING DATA TO COMMUNICATE 97

Net_Dennis.book Page 98 Thursday, October 31, 2002 4:04 PM
Since the fields are public, every consumer of the class has access to those data ele-
ments. This means that there is no restriction as to who can manipulate those values,
and in what order. It also means that the user of the object must be familiar with how
the object behaves. This violates the concept of encapsulation.

Any value can be assigned to the fields since there is no validation mechanism. The
only validation that can be performed is before the message is actually sent. Ideally we
would not allow the value to be assigned if it isn’t valid. We will cover this in the next
section on properties. In the next chapter we will discuss synchronization concepts in
detail. For now, synchronization becomes an issue when multiple threads are manipu-
lating the same data. One thread may change the value while another is accessing it.
When this occurs, the results of the interaction become indeterminate. This is one of
the biggest challenges of multithreaded programming and is amplified by allowing
direct manipulation of data elements.

The web site monitoring thread does not stop and wait for the notification thread
to finish its work (figure 6.1). There is the possibility that during the time the notifi-
cation thread is sending the message the web site monitoring thread may determine that
the web site is still down and that another message should be sent. The web site moni-
toring thread would populate the To, From, Body, and Subject fields and then set
the TimeToSendNotification field to true. During this time, the TimeToSend-
Notification field would already be true since the notification thread is in the process
of sending the message. Once that message is sent, the notification thread would set
the TimeToSendNotification to false. This means that the second notification
message would not be sent. If more than one web site is being monitored, the failure
of one site might not be reported because of the slow notification time.

PU
BL

IC
 F

IE
LD

CO

M
M

UN
IC

AT
IO

N

One way for one thread to communicate with another is to set public fields.
The issues with this approach are:
• Decreased encapsulation of information—other objects are required to

know too much about the inner workings of an object.
• The lack of synchronization opportunities.
• The possibility that data changes are missed due to timing issues.

Figure 6.1 How two threads can interact
98 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 99 Thursday, October 31, 2002 4:04 PM
The goal is for one thread to impact the state of another. In the next section we’ll cover
properties. Public properties address many of the issues with using public fields as a
communication mechanism.

6.1.2 Public properties

Public properties behave a lot like public fields. Properties are essentially a pair of
methods. One of the methods is used to get the value while the other is used to set it.
They are a powerful and convenient way of limiting access to data elements. Since access
to the internal data value is limited to access by the property, the value being assigned
can be inspected. The following example shows how to define a public property:

Public Class SMTPNotification
 Private mTimeToSendNotification As Boolean
. . .
 Public Sub New()
. . .
 mTimeToSendNotification = False
. . .
 End Sub

. . .
 Public Property TimeToSendNotification() As Boolean
 Get
 Return mTimeToSendNotification
 End Get
 Set(ByVal Value As Boolean)
 If Value = False Then
 Throw New Exception("Assigning to False is not allowed")
 End If
 If mTimeToSendNotification = True Then
 Throw New Exception("Missed notification")
 End If
 mTimeToSendNotification = Value
 End Set
 End Property
. . .
End Class

If the mTimeToSendNotification data element is true, we do not want to allow
it to be assigned true again. This is a means of enforcing rules regarding the object. In
this case, the mTimeToSendNotification is used to signal when the notification
thread should send a notification email. Replacing a true value with another true
value can only occur when the notification message has not been sent. In our example
we throw an exception, forcing the caller to deal with the invalid state transition.

Additionally, we can ensure that only certain values are assigned. In this case, the
only value that should be assigned to the TimeToSendNotification property is
True. If an attempt is made to assign False to the property, an exception is thrown.
USING DATA TO COMMUNICATE 99

Net_Dennis.book Page 100 Thursday, October 31, 2002 4:04 PM
Properties Properties are a means of controlling data access that allow for robust error
handling and data protection. They are implemented as a pair of methods
that control the getting and setting data element values. If only the Get
portion of the property is present, the property is read-only. If only the Set
portion of the property is present, the property is write-only.

Properties are an important aspect of object-oriented programming. They allow the
consumer of a class to interact with that class without being tied to the internal imple-
mentation. This means that the users of a class can interact with it without knowing
how the class actually performs its operations (figure 6.2). The internal workings of
the class may change and the consumer of that class need not change the way they are
using the class. This is very closely related to the concept of an interface, which serves
as a contract between the provider of some service and the consumer of that service.

Our example uses properties to cross thread boundaries. This addresses several of the
issues we raised with public fields in the last section. We can control when a value is
changed. We can determine if the value is valid for a given situation and can even restrict
certain properties to being set only once. An example of this is the Name property on the
Thread class. It can be assigned only once.

You might be wondering how properties are actually implemented. Listing 6.2
shows the Set portion of the TimeToSendNotification property (MSIL).

.method public specialname instance void
 set_TimeToSendNotification(bool Value) cil managed
{
 // Code size 47 (0x2f)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldarg.1
 IL_0002: ldc.i4.0
 IL_0003: bne.un.s IL_0010

Figure 6.2 Using properties for thread communication

Listing 6.2 The Set portion of the TimeToSendNotification property (MSIL)
100 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 101 Thursday, October 31, 2002 4:04 PM
 IL_0005: ldstr "Assigning to False is not allowed"
 IL_000a: newobj instance void [mscorlib]System.Exception::.ctor(string)
 IL_000f: throw
 IL_0010: nop
 IL_0011: ldarg.0
 IL_0012: ldfld bool PublicProperties.SMTPNotification::mTimeToSend-
Notification
 IL_0017: ldc.i4.1
 IL_0018: bne.un.s IL_0025
 IL_001a: ldstr "Missed notification"
 IL_001f: newobj instance void [mscorlib]System.Exception::.ctor(string)
 IL_0024: throw
 IL_0025: nop
 IL_0026: ldarg.0
 IL_0027: ldarg.1
 IL_0028: stfld bool PublicProperties.SMTPNotification::mTimeToSend-
Notification
 IL_002d: nop
 IL_002e: ret
} // end of method SMTPNotification::set_TimeToSendNotification

Notice that the method name is set_TimeToSendNotification. The compiler
maps the Set portion of the property to a method named set_PropertyName,
where PropertyName is the name of the property. This lets us see that properties
are intended to make it easy for developers to wrap access to data elements with
methods. This follows a common approach of writing a Get and Set method for
each data element of a class. If a property includes a Get portion, a method named
get_PropertyName is also generated. In the case of TimeToSendNotification
the MSIL is shown in listing 6.3.

.method public specialname instance bool
 get_TimeToSendNotification() cil managed
{
 // Code size 12 (0xc)
 .maxstack 1
 .locals init ([0] bool TimeToSendNotification)
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldfld bool PublicProperties.SMTPNotification::mTimeToSend-
Notification
 IL_0007: stloc.0
 IL_0008: br.s IL_000a
 IL_000a: ldloc.0
 IL_000b: ret
} // end of method SMTPNotification::get_TimeToSendNotification

Listing 6.3 The Get portion of the TimeToSendNotification property (MSIL)
USING DATA TO COMMUNICATE 101

Net_Dennis.book Page 102 Thursday, October 31, 2002 4:04 PM
Notice that the return data type of the get_TimeToSendNotification method
is bool, just as the data type of the single parameter to set_TimeToSend-
Notification was also bool. It isn’t important to understand all of the MSIL;
however, by looking at it you can often learn a great deal.

In our example, the web site monitoring thread determines that the site is down. It
checks to see if it has been instructed to send notification messages. If it has, it sets the
various properties on the class associated with the notification thread and then sets the
TimeToSendNotification property to true. This changes the private data ele-
ment that controls when the notification thread sends email messages.

If a second assignment is made to TimeToSendNotification before the sending
of the message is complete and the value of the internal data element is set to true, an
exception is raised. We will address this particular problem with a more robust solution
involving the use of queues between threads.

6.1.3 Queues and threads

People work at different speeds. Some work very quickly; others take longer to accom-
plish their tasks. This is true of threads as well. One thread may be able to do its work
very quickly while another may take longer. Often a thread will receive a rapid succes-
sion of elements to deal with and then have long periods where it is idle. A way to
handle these situations is to utilize a queue. Recall that a queue is a first-in, first-out
collection. Logically, an element is added at the end of the queue and is later retrieved
from the front. This works well with threading issues.

In the last section we saw how public properties address many of the issues with thread
communication. Several issues could not be overcome using properties. The biggest
issue is that properties accept a single value. This means that multiple properties need
to be set in order to perform the desired task. One way of dealing with this might be
to have a property that deals with an object, in our case a MailMessage object.
MailMessage objects are in the System.Web.Mail namespace and represent an
SMTP mail message. There are no technical reasons why setting a property couldn’t
add an instance of the MailMessage object to a queue; however, this is not how
properties are expected to behave. Instead a public method is a more logical fit.

In listing 6.4 the SendNotification method accepts four parameters and assigns
them to the properties of the MailMessage object. It then adds that object to the noti-
fication queue. The notification queue is an instance of the Collections.Queue
class. It is instantiated in the constructor.

W
HY

 U
SE

 Q
UE

UE
S? • Threads execute at different speeds and a queue can act as a buffer be-

tween them.

• Queues enable the sequential processing of entries.

• Queues allow the workload to be spread out over a longer period of time.

• Fire-and-forget situations are good uses of queues.
102 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 103 Thursday, October 31, 2002 4:04 PM
using System;
using System.Web.Mail;
using System.Threading;
using System.Collections;
namespace QueuesAndThreads
{
 public class SMTPNotification
 {
 Queue NotificationQueue;
 private string mServerName;

 Thread SendingThread;
 public SMTPNotification()
 {
 NotificationQueue=new Queue();
 SendingThread= new Thread(new ThreadStart(NotificationMethod));
 mServerName="";
 SendingThread.Name="SMTPThread";
 SendingThread.Start();
 }
 . . .
 private void NotificationMethod()
 {
 while(true)
 {
 try
 {
 // While there are entries in the queue
 while (NotificationQueue.Count > 0)
 {
 MailMessage message =
 (MailMessage)NotificationQueue.Dequeue();
 SmtpMail.SmtpServer = mServerName;
 SmtpMail.Send(message);
 }
 Thread.Sleep(1000);
 }
 catch(Exception ex)
 {
 System.Diagnostics.Trace.WriteLine(ex.Message);
 }
 }
 }

 public void SendNotification(
 string ToLine,string From,string Subject, string Body)
 {
 MailMessage Message=new MailMessage();
 Message.To=ToLine;
 Message.From=From;

Listing 6.4 Sending SMTP mail using a queue and a thread servicing the queue (C#)

Loops while there are
entries in the queue

Extracts a
MailMessage object
from the queue
USING DATA TO COMMUNICATE 103

Net_Dennis.book Page 104 Thursday, October 31, 2002 4:04 PM
 Message.Subject=Subject;
 Message.Body=Body;
 NotificationQueue.Enqueue(Message);
 }
. . .
 }
}

You can see in figure 6.3 that the web site monitoring method that adds the entry to
the notification queue executes on the web site monitoring thread. Even though that
execution occurs on a different thread, the Notification object is still restricting
access to its data elements. This enforces that the only way to interact with the notifi-
cation queue is via the appropriate method.

The notification thread changes from waiting for a flag to be set to looking at the size
of the notification queue. If there are no entries in the queue it sleeps for one second;
while there are entries in the queue, it retrieves and processes them. This changes the job
of the notification thread to servicing the notification queue. You can see this by looking
at NotificationMethod in listing 6.4. This is a very common construct. The basic
idea is to have a class that contains a queue and a method that services that queue.

Adds a Message
object to the
notification queue

Figure 6.3 Using a queue to cross thread boundaries
104 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 105 Thursday, October 31, 2002 4:04 PM
This approach is one that is very reusable. It solves many of the issues we’ve encoun-
tered so far. In the next sections we’ll discuss some issues that are not solved by this
approach, and in the next chapter we’ll introduce solutions to those problems.

6.2 WHEN THINGS GO BADLY

In the physical world the more moving parts an object contains the higher the proba-
bility of a mechanical failure. The same is true in software development. Any time
two threads interact with the same piece of data the possibility of things going wrong
exists. The two most common errors are race conditions and deadlocks.

6.2.1 Race conditions

The winner of a race is generally the first person to reach the end of the course. While
this may be great for athletic competition, it is not desirable in a program. A race con-
dition occurs whenever the outcome of the event is dependent on which thread
reaches a state first. To demonstrate this we’ll do some addition (figure 6.4).

Suppose you had two threads, Thread A and Thread B, as seen in figure 6.4. Both
threads act upon a variable named X. One thread adds 1 to the value currently in X
while the second thread adds 2. In our example the initial value of X is 4. Both Thread A
and Thread B read that value to their stacks. Thread A adds 1 to its copy of X and
Thread B adds 2. Thread B happens to be faster than Thread A and updates X with 6.
Thread A is unaware of anyone else accessing X and updates it with 5. By saving its
value, Thread A undoes Thread B’s work. This is an example of a race condition.

Race conditions are considered indeterminate events, in that the outcome of the event
cannot be predicted beforehand. Additionally, they are essentially random events.
Under some circumstances, this is tolerable. If, however, your bank didn’t guard against
race conditions you’d likely find a new bank (figure 6.5).

HO
W

 T
O

US
E

QU
EU

ES
 W

IT
H

TH
RE

AD
S 1 Encapsulate data elements relating to the area in a class.

2 Create or find an object that represents a unit of work, in our case the
MailMessage object.

3 Add a private queue data member.
4 Create a public method that adds elements representing the unit of work

to the queue.
5 Create a method that retrieves elements from the queue and processes them.
6 Create a thread associating it with the queue servicing method.
7 Instantiate and start the thread in the constructor of the class.
8 Provide a means of cleaning up and terminating the thread, such as a
Dispose method.

Race
Condition

A race condition is a situation where the result depends on the time it takes
a thread to execute instructions. Since the results are not predictable these
conditions are generally to be avoided.
WHEN THINGS GO BADLY 105

Net_Dennis.book Page 106 Thursday, October 31, 2002 4:04 PM
Suppose that you have an initial balance of $20 in your checking account. You win
the lottery and deposit $1,000,000 to your account. At the very instance your deposit
is being processed, a $10 check you wrote to a local pizza chain is being processed.
Without synchronization, your balance could be $10 or $1,000,020 instead of the cor-
rect $1,000,010. Since these conditions are not uncommon, it is unimaginable that
they would be allowed to happen. Banks generally deal with this by using a transaction.
Transactions are a form of synchronization management.

One way of dealing with race conditions is to restrict access to shared resources. We
will discuss this in detail in the next chapter. A good design minimizes the number of
shared resources. In those cases where sharing a resource is required, concurrency control
must be enforced.

Figure 6.4

Example of a

race condition

Figure 6.5

A banking race

condition
106 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 107 Thursday, October 31, 2002 4:04 PM
TIP If a program works fine on a single processor but does not on a multiple
processor, it is likely due to a race condition. It is important to test multi-
threaded applications during development on multiprocessor machines.

Race conditions are one of the most common areas where mistakes are made when
dealing with multiple threading. A symptom of this is that the program seems to
work fine on the developer’s machine (equipped with a single processor) but does not
on the production machine (equipped with multiple processors). Race conditions can
happen on multiple- or single-processor machines. It is really a matter of probability. If
concurrency control isn’t enforced, eventually shared resources will cause a problem.

6.2.2 Deadlock

As a child you may have found yourself in a battle of wills with another child. Suppose
you wanted to color. If you have the coloring book and someone else has the crayons,
unless someone is willing to yield there will be no coloring. The same thing can happen
in multithreaded development. In order for deadlock to occur, more than one thread
must be attempting to access two or more resources. If there is no competition for
resources, there will be no deadlock. If you as a child owned multiple boxes of crayons
and multiple coloring books, then you may never have faced a coloring deadlock situa-
tion. Deadlocks are another common problem in concurrent programming. Databases
deal with them on a frequent basis. Figure 6.6 shows how a deadlock can occur.

The best way to deal with deadlocks in an application is to avoid entering into one.
When a deadlock occurs, the completion of a task is very unlikely. In order for some task
to complete, another task must release its resources. This involves being able to detect
when a deadlock is occurring and then resolve it. This is moderately complex.

Figure 6.6 Anatomy of a deadlock
WHEN THINGS GO BADLY 107

Net_Dennis.book Page 108 Thursday, October 31, 2002 4:04 PM
Deadlock Deadlock is a state where one thread owns one or more resources and re-
quires one or more additional resources to complete its execution. A different
thread owns the required additional resources. That thread requires one or
more of the resources that the first thread owns.

Fortunately, following a few guidelines can minimize the occurrence of deadlock. The
first guideline is to always acquire resources in the same order. In the example, Thread A
asks for ResourceOne, then ResourceTwo while Thread B asks for ResourceTwo, then
ResourceOne. This allows both threads to have ownership of a resource and to be in
need of the other resource. Figure 6.7 shows the threads asking for the shared resources
in the correct order. While this will not totally eliminate the possibility of deadlock, it
does reduce it. It is still possible for more complex dependency chains to be formed,
but the discussion is beyond the scope of this book.

Once a resource is attained and processing is complete, it is important to release the
resources in the reverse order that they were acquired. This works much like a stack.
In figure 6.6 we did not release the resources in the correct order.

It is also a good idea to wait before reclaiming a resource. Failure to do so may cause
starvation of a thread for a particular resource. Even though a thread is releasing a
resource, if the thread immediately reacquires it no other threads will have an oppor-
tunity to utilize that resource.

Resources should be acquired as late in processing as possible and be released as
soon as possible. This minimizes contention for those resources and increases concur-
rency. This goes with acquiring only resources that you are certain you will need. A
common mistake is to acquire a resource that might be needed. It is better to wait until
you are certain you need the resource before acquiring it.

Figure 6.7 Minimizing deadlock
108 CHAPTER 6 COMMUNICATING WITH THREADS

Net_Dennis.book Page 109 Thursday, October 31, 2002 4:04 PM
Deadlock is a fairly simple thing. It requires a minimum of two threads and two resources.
It also is fairly easy to avoid if the proper steps are taken. Figure 6.8 restates what a
deadlock condition looks like.

Sometimes the best approach is to revisit the level of locking being performed. Chapter 7
discusses the various forms of locking. But it might be that by combining, or even
breaking down, the items being locked, overall concurrency can be increased while the
probability of deadlock is decreased.

6.3 SUMMARY

In this chapter we discussed how threads communicate. We looked at the two common
issues associated with multithreaded development: deadlock and race conditions. The
next chapter will provide more tools to help you deal with those concurrency issues.

You’ll likely notice that static methods associated with threads have not been used
to this point. There are times that threads using static methods make sense. The majority
of the time a thread should be associated with an instance—not all instances—of a
class. An example of when a static method should be used is when a thread, or a group
of threads, will process all messages. This can greatly simplify termination issues and
minimize the cost of creating new threads. This is essentially how the ThreadPool
class we discuss in chapter 10 is implemented.

You’ve seen how threads can communicate. Now we can move on to discuss how
we can restrict that communication using concurrency control mechanisms.

ST
EP

S
TO

 M
IN

IM
IZ

E
 D

EA
DL

OC
K • Always acquire resources in the same order.

• Always release resources in the reverse order of acquisition.
• Minimize indefinite waits for resources.
• Acquire resources no sooner than needed and release as soon as possible.
• Only acquire resources when you are certain you will need them.
• If unable to acquire a resource, release all other acquired resources and try

again later.
• Combine to less atomic elements, reducing the possibility of deadlock but

also decreasing the overall concurrency. This is discussed in section 7.3.

Figure 6.8 Deadlock demonstrated
SUMMARY 109

Net_Dennis.book Page 110 Thursday, October 31, 2002 4:04 PM
C H A P T E R 7

Concurrency control

7.1 What does thread-safe mean? 111
7.2 Atomic operations 120
7.3 The Lock and SyncLock

keywords 125

7.4 The Monitor class 128
7.5 Digging deeper into

concurrency control 137
7.6 Summary 141
Controlling thread interaction is a key element of multithreaded development. Con-
currency control is making sure that only a single thread is accessing a shared resource
at a single time. If multiple threads interact with a resource simultaneously, undesirable
results can occur. To avoid conflicts we must address the concept of thread safety—a
focus of this chapter.

Collections are a valuable construct: It is difficult to develop an application of any
complexity without using a collection of some sort. In order to support multithreaded
applications, collections have a static method that converts a collection to being thread-safe.
Multiple threads can access a thread-safe collection without fear that data will be lost
or that the program will encounter an unexpected error.

One means of being thread-safe is to use only atomic operations, referred to as inter-
locked in the .NET framework. Using atomic operations ensures that a unit of work
will not be interrupted. This is important because if a thread is interrupted partway
through an operation, the values that existed when it started that operation may
change without its knowledge. This leads to race conditions.

A more powerful way of dealing with thread safety is to use synchronized regions
of code. This is accomplished using the lock and SyncLock keywords or by using
the Monitor Enter and Exit methods. This allows a region of code to be marked
in such a way that only one thread can execute in that region at a given point in time.
110

Net_Dennis.book Page 111 Thursday, October 31, 2002 4:04 PM
The Monitor class provides other methods that allow for a high degree of control
over multiple threads. They allow pausing execution of a thread in such a way that some
other thread can signal when it is time for it to do additional work. Optionally, a timeout
can be specified that results in a construct that is quite similar to placing the Sleep
method in a loop.

C# provides the volatile keyword for giving the compiler a hint as to the syn-
chronous nature of the variable. When a variable is marked as volatile, certain types
of optimizations will not be performed on instructions that access that variable. This
approach is useful but does not ensure thread safety.

Next, we cover the synchronization supplied by COM+. .NET makes it easy to utilize
that functionality. When you use the COM+ approach, an instance of a class can be
marked as requiring synchronization. This will ensure that only one thread at a time
accesses the methods and properties of the object. This is a simple form of synchroniza-
tion, but it does not come without a performance penalty. With the COM+ approach,
performance is roughly an order of magnitude worse than with synchronous locks.

We close the chapter with a discussion of when to perform optimizations. This is
a key concept to grasp. Making something faster that does not execute for very long
doesn’t increase overall performance significantly. Optimizations should be performed
when they can produce measurable results. Optimizing an infrequently executed sec-
tion of code only adds complexity, and likely bugs.

7.1 WHAT DOES THREAD-SAFE MEAN?
In the last chapter we saw how queues can be used as a means of thread communication,
and we briefly discussed the issue of concurrency control. Related to concurrency con-
trol is the concept of thread safety. Thread safety implies that a method or an instance
of an object can be used on multiple threads at the same time without undesirable
events such as crashes, race conditions, and deadlocks occurring.

Thread-Safe A class or method is classified as thread-safe if multiple threads can interact
with it simultaneously without ill effects.

Since not being thread-safe can cause such undesirable things to happen, why not make
everything thread-safe? Thread safety does not come without a performance penalty.
The majority of programs developed are single-threaded, meaning that the most
objects and methods are called by only one thread. In that case there is no reason to
make a method or object thread-safe. It would be an unnecessary and unreasonable
performance penalty to make all objects thread-safe.

Thread safety ties in closely with race conditions. Race conditions are the cause of
many of the problems with multithreading.

7.1.1 Race conditions in collections

To see a race condition in action, let’s create three threads. Two threads are tasked with
filling a queue. The third thread’s job is to try to keep the same queue empty. Figure 7.1
shows the logical layout of the example.
WHAT DOES THREAD-SAFE MEAN? 111

Net_Dennis.book Page 112 Thursday, October 31, 2002 4:04 PM
Queues contain references to objects. In this case, we’ll be working with a structure
named Entry. Listing 7.1 shows the definition of the Entry. Each Entry structure
contains a thread name and a counter value. When an Entry is created the name of
the thread is passed in, along with a counter value, to make it easy to determine where
a particular Entry came from.

Public Structure Entry
 Public Sub New(ByVal ThreadName As String, ByVal Counter As Long)
 Me.ThreadName = ThreadName
 Me.Counter = Counter
 End Sub
 Public ThreadName As String
 Public Counter As Long
 Public Overrides Function ToString() As String
 Return ThreadName + " " + Counter.ToString()
 End Function
End Structure

Structures have been in Visual Basic for some time; a major change in VB.NET is that
a structure can have constructors. The New method is invoked when an instance of
the structure is created. Listing 7.2 contains the code that creates an instance of the
Entry and adds it to the queue.

Private Sub ThreadMethod()
 Try
 Dim i As Long
 Dim AnEntry As Entry
 For i = 1 To TextBoxNumberOfElements.Text
 AnEntry = New Entry(Thread.CurrentThread.Name, i)
 TheQueue.Enqueue(AnEntry)
 If (i Mod 1000) = 0 Then
 Thread.Sleep(100)
 End If

Figure 7.1 Two threads filling a queue while a third empties it

Listing 7.1 Definition of the Entry structure used to populate the queue (VB.NET)

Stores a thread-
specific counter

Saves the name of
the thread that
created the Entry

Listing 7.2 The method executed by both writing threads (VB.NET)

Creates a new
Entry to be added
to the queue

Adds the newly
created Entry
to the queue
112 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 113 Thursday, October 31, 2002 4:04 PM
 Next
 Dim updateit As TextBoxUpdater
 updateit = New TextBoxUpdater(AddressOf UpdateControl)
 Dim Message As String
 Message = "Thread " + Thread.CurrentThread.Name + " Finished" + vbCrLf
 Dim args As Object() = {TextBoxOutput, Message}
 TextBoxOutput.Invoke(updateit, args)
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try
 End Sub

The method repeats until the number of entries added to the queue is the same as the
value contained in the TextBoxNumberOfElements textbox. Once the thread has
added all of the entries to the queue, it writes a message to the TextBoxOutput textbox
control, then terminates. Listing 7.3 shows how we create the two writing threads.

. . .
 Thread1 = New Thread(AddressOf ThreadMethod)
 Thread1.Name = "1"
 Thread1.IsBackground = True
 Thread2 = New Thread(AddressOf ThreadMethod)
 Thread2.IsBackground = True
 Thread2.Name = "2"
 Thread1.Start()
 Thread2.Start()
. . .

Notice that both threads use the method ThreadMethod to populate the queue.
ThreadMethod uses the name of the thread that’s assigned when the thread is cre-
ated to pass in to the constructor of the Entry structure. We use a third thread to keep
the queue empty. That thread is created in much the same way, as listing 7.4 shows.

. . .
 ThreadRead = New Thread(AddressOf ThreadReadMethod)
 ThreadRead.IsBackground = True
 ThreadRead.Name = "Reader"
 ThreadRead.Start()
. . .

The ThreadReadMethod checks to see if TheQueue contains any entries; if it does,
it retrieves the entry. The thread sleeps for one tenth of a second between checking to
see if there’s an entry to remove.

Listing 7.3 Code that creates the two writing threads (VB.NET)

Listing 7.4 Creation of the reading thread (VB.NET)
WHAT DOES THREAD-SAFE MEAN? 113

Net_Dennis.book Page 114 Thursday, October 31, 2002 4:04 PM
Private Sub ThreadReadMethod()
 Dim AnEntry As Entry
 Try
 While True
 If TheQueue.Count > 0 Then
 AnEntry = CType(TheQueue.Dequeue(), Entry)
 End If
 Thread.Sleep(100)
 End While
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try
End Sub

When this example is executed on a machine with multiple processors, the error message
shown in figure 7.2 will almost certainly happen. When the example is executed on a
single-processor machine, the error will still occur but not as often.

The text of this message is typical of errors associated with race conditions. The two
writer threads most likely attempted to add an entry to the queue at the same time. The
steps leading up to the error probably went something like this. One of the threads
attempts to add an entry to the queue (figure 7.3).

Listing 7.5 The method that the reading thread executes (VB.NET)

Figure 7.2 Error message indicating a race condition

Figure 7.3

A thread attempts

to add a new entry

to the queue.
114 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 115 Thursday, October 31, 2002 4:04 PM
The queue isn’t large enough to hold the new entry so it must be enlarged to make
room for the entry. Queues are generally implemented on top of a more basic structure
like an array. The array has a certain size available to it initially, and is grown as needed
to accommodate more entries. Figure 7.4 shows a thread causing the array to be increased
in size.

Thread 2 also has an entry it would like to add to the queue. It arrives just after
Thread 1 and sees that there is room in the queue for its entry (figure 7.5).

Since the array is large enough for the new entry, Thread 2 can place its entry in the
queue. It uses the slot that was allocated as a result of Thread 1’s request (figure 7.6).

Figure 7.5

Thread 2 needs

to add entry E to

the queue.

Figure 7.4

Thread 1 causes the

underlying array of the

queue to be enlarged.

Figure 7.6

Since there is space

available in the queue

Thread 2 can enqueue E.
WHAT DOES THREAD-SAFE MEAN? 115

Net_Dennis.book Page 116 Thursday, October 31, 2002 4:04 PM
Thread 1 attempts to add D to the queue and sees that there is no room (figure 7.7).
This causes the error message in figure 7.2.

Why doesn’t the queue attempt to allocate space for Thread 1 again? As long as a single
thread accesses the collection, there is no reason to assume that the space allocated would
no longer be available. When an unforeseeable situation occurs, the best thing to do is
to throw an exception. Additionally, if the Enqueue method contained retry logic, it
is possible that something much worse than an exception, such as an infinite loop or
thread starvation, could occur. In the next section we see how we can use collections
safely in a multithreaded environment.

7.1.2 Making collections thread-safe using Synchronized

We’ve seen that the Queue class in the Collections namespace is not thread-safe.
This is the general rule for collections, with the exceptions of the Hashtable and
ArrayList classes. Hashtable is thread-safe for multiple readers and a single
writer. Multiple threads can read from the same Hashtable safely as long as no more
than one thread is updating it. This is most likely because a reader-writer lock guards
the Hashtable’s data. In the next chapter we’ll discuss reader-writer locks. The
ArrayList class is thread-safe for multiple readers. This means that multiple
threads can be reading from the same ArrayList as long as no thread attempts to
update it.

In the last section we saw how the Queue class is not thread-safe. Fortunately it is
easy to make a Collection thread-safe. The static/shared Synchronized method
of the Collection class returns a collection that is thread-safe.

. . .
private void Form1_Load(object sender, System.EventArgs e)
{
 UnsafeQueue= new Queue();
 TheQueue = Queue.Synchronized(UnsafeQueue);
}
. . .

Figure 7.7

Thread 1 tries to add

D to the queue and

determines there is no

room. This causes an

exception to be raised.

Listing 7.6 Code that creates a thread-safe queue (C#)
116 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 117 Thursday, October 31, 2002 4:04 PM
The listing shows how to convert a Queue that is not synchronized, and thus not
thread-safe, to one that is. As a matter of practice it is better to not store the reference
to the unsafe queue in a variable. So instead, the following should be used:

TheQueue = Queue.Synchronized(new Queue());

This removes the possibility of someone inadvertently using the unsafe queue. Addition-
ally, the code is a bit smaller and easier to follow. If at a later date it is determined that the
queue need not be thread-safe, it is easy to remove the call to Queue.Synchronized
and revert to the unsafe queue.

Synchronized The Synchronized method is a way of making a collection thread-safe.
It is a static/shared method on Collection classes that accepts an instance
of the collection and returns a reference to a thread-safe object.

Figure 7.8 shows the logical flow of the example using a synchronized queue. Think
of synchronized objects as intersections with yield signs. Only one thread at a time
can go through the “intersection.” If no other threads are present, there is no need to
stop. The threads only need to stop when some other thread is accessing the object.
When the thread is yielding, it goes to the WaitSleepJoin state.

When accessing collections from multiple threads, synchronized access is a must.
Synchronization is not free; there is a very real performance cost. If multiple threads can
manipulate a collection, it must be thread-safe. The question is simply do you want a
stable program? If so, then you must make shared collections thread-safe. The alternative
is to redesign the solution so that multiple threads cannot access the collection.

Figure 7.9 shows the impact of using synchronized collections. It shows that synchro-
nized queues are at least two and a half times slower enqueuing and dequeuing elements
than using the unsynchronized counterparts. This is a small price to pay for thread safety,
and if the objects are accessed from multiple threads they must be synchronized.

The X-axis represents the number of elements that were queued and then dequeued.
The Y-axis represents how many seconds the operation took. The unsynchronized
object is consistently two times faster than the synchronized object.

Figure 7.8 Using synchronized queues
WHAT DOES THREAD-SAFE MEAN? 117

Net_Dennis.book Page 118 Thursday, October 31, 2002 4:04 PM
7.1.3 Thread safety in libraries

It is important when doing multithreaded development to know what methods are
and are not thread-safe. In .NET all public static methods are thread-safe. As a general
rule, all others are not. Some commonly used thread-safe classes are:

When you’re developing your own libraries, it is important that a thread-safe method
be accurately documented as being thread-safe. Without clear documentation the best
bet is to assume that the method is not thread-safe. This means that if you are inter-
acting with a method that is not thread-safe, you must take measures to ensure that
only one thread at a time interacts with that method. We’ll cover ways of accomplish-
ing this in this chapter.

TIP When working with an object, assume that it is not thread-safe until you
can determine otherwise.

It is important to note that the System.Windows.Form.Control class is not
thread-safe. The Win32 platform is not thread-safe. In order to interact with Win-
dows Forms and Controls from multiple threads, you must use either the Invoke or
BeginInvoke method.

Figure 7.9 Graph of the cost of synchronization

System.Console System.Diagnostics.Debug

System.Enum System.Diagnostics.Trace

System.Text.Encoding System.Diagnostics.PerformanceCounter

Windows
Forms

Windows Forms are not thread-safe. Accessing a form or control from differ-
ent threads will likely cause the application to become unstable and terminate.
118 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 119 Thursday, October 31, 2002 4:04 PM
You may be feeling a bit overwhelmed at this point. Not to worry. By following a few
guidelines, you will be able to write high-performance multithreaded applications that
are scalable. The basic rule is to minimize the amount of cross-thread communication
that occurs. Additionally, all access to a class’s data members should be done through
properties or methods. This will allow you to protect those data elements from con-
currency issues and make your objects and methods thread-safe.

7.1.4 Understanding and detecting thread boundaries

When doing multithreaded development, you should know where the thread bound-
aries are. In figure 7.10 the thread boundary falls on the queue. A thread boundary
exists at a point where two or more threads can access a common element. By keeping
those boundaries in methods and properties, you minimize the total number of bound-
aries. This allows you to focus your attention on those places where you know inter-
actions occur, rather than protecting an element from interaction from any number
of points.

Think of it in terms of land. If a piece of property has a fence, it is much easier to
secure than land that does not because the fence restricts access to the property. Fences
generally have gates that allow access to the area contained within the fence. In multi-
threaded development, we use classes to restrict access to our data members. We generally
call it encapsulation. We put a gate in here and there by using properties and methods.
This allows things outside of the class to interact with things inside, but only when
we allow it. By minimizing the number of places where interaction between threads
can occur, we can greatly simplify multithreaded development (figure 7.10).

If the object or method is not thread-safe it is important that you know that. Many
threading issues remain hidden on single-processor machines only to cause grief on a
multiple-processor one. Unfortunately, this is usually in a production environment,
where failure is far more obvious than during development.

Figure 7.10 The queue lies on the thread boundary, which makes it susceptible to

concurrency issues.
WHAT DOES THREAD-SAFE MEAN? 119

Net_Dennis.book Page 120 Thursday, October 31, 2002 4:04 PM
7.2 ATOMIC OPERATIONS

One of my earliest programming assignments was to write the pseudocode to make a
peanut butter and jelly sandwich. When everyone had submitted solutions, the instruc-
tor took the class to the cafeteria and followed our pseudocode. It was quite humorous
to see the results. Many of the steps were omitted or too general to be followed. The
point of the exercise was to teach us to think in small units of work. Most actions are
made up of many smaller actions. For example, opening the jar of peanut butter
involves grasping the lid, holding it under a constant amount of pressure, and rotating
the jar. In conversation, we simply tell someone to “open the jar.” We understand that
the operation actually is made up of many smaller operations. This is just as true in
software development as it is in making a sandwich.

When one of those smaller operations is guaranteed to be completed without being
interrupted, we call that operation atomic. Recall from chapter 1 that when multiple
threads are executing on a processor there are many interrupts to an individual thread’s
execution. A thread that is executing is periodically interrupted and moved from the
processor. A different thread is then given a chance to work. This is called a context
switch. If a context switch can occur during an operation, that operation is not atomic.
It is best to assume that operations are not atomic and that a context switch can occur
during processing. In the following sections we’ll cover the necessary mechanisms to
protect data.

To understand what is happening we can look at the MSIL that corresponds to
instructions. A detailed discussion of IL is beyond the scope of this book, but it does
offer some valuable insight. Consider the following instruction:

X += 1

This produces the following MSIL:

As you can see, what we think of as being a single instruction is in reality four. It is
quite likely that after the MSIL is compiled to machine instructions that this will
change, although it may not. The point is that an instruction that on the surface
seems to be quite simple may actually be doing many things. Figure 7.11 shows how
two increment operations can interact to yield incorrect results.

Atomic
Operations

Atomic operations are statements that will always complete without inter-
ruption. This ensures that they will complete as expected without need for
synchronization.

ldloc.0 Load local variable in location zero onto the stack

ldc.i4.1 Load the value 1 into the stack

add.ovf Add the top two elements of the stack and put the result back onto the stack

stloc.0 Save the top value in the stack to local variable in location zero
120 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 121 Thursday, October 31, 2002 4:04 PM
If steps 1a and 1b happen at the same time, or roughly the same time, a race condition
will occur because the increment operation is not an atomic operation. In order for
the class variable to be incremented, it must first be on the thread’s stack. During the
time it is on the stack of a thread, a different thread may get a copy of the value. If the
operation were atomic, Thread B would not be able to access the class variable until
Thread A had completed its interaction with it.

ILDASM ILDASM is a tool for disassembling a .NET program to IL. This allows analysis
of the code generated by the compiler, and can yield insight, such as what
operations are likely to be thread-safe.

To view the IL of a program, use the ildasm.exe program that’s located in the Frame-
work’s bin directory. It allows a compiled .NET program to be reduced to IL for analysis.

7.2.1 The Interlocked class

We saw in the last section how the += and ++ operators are not atomic and thus not
thread-safe. The Interlocked class provides several static methods that perform
atomic operations. When more than one thing is interlocked, it means that an action
on one is constrained or restricted by actions on the other. For example, if two people
are locked together with handcuffs and one tries to go north while the other tries to
go south, there will be a constraining result.

Figure 7.11 If operations are not atomic, a value can be changed on one

thread without another thread’s knowledge.
ATOMIC OPERATIONS 121

Net_Dennis.book Page 122 Thursday, October 31, 2002 4:04 PM
The Increment and Decrement methods

A very common operation is to increase and decrease a value by 1. It is so common that
C++ and C# include the ++ and – operators. To accomplish an atomic increment, we
can use the Increment method of the Interlocked class. The method accepts a
reference to an integer or a long. The variable passed in is incremented in place and
its new value is the return value for the method (listing 7.7).

private void ThreadMethod()
{
 try
 {
 for (long i = 0 ;i < NumberOfIterations;i++)
 {
 Interlocked.Increment(ref ActualValue);
 }
 }
 catch(Exception ex)
 {
 Trace.WriteLine(Thread.CurrentThread.Name + " " + ex.Message);
 }
}

In listing 7.7 if the value before the Increment method executes is 5, after it executes
the ActualValue variable will contain 6 and 6 is the return value for the Increment
method. In the example, the return value is not being used.

Increment Increment is a static method of the Interlocked class that increases
the value of the variable passed in by one. It is a thread-safe method since
it is guaranteed to perform its operation without being interrupted.

By examining the following statement using ILDASM, we can learn how the inter-
locked operation works:

System.Threading.Interlocked.Increment(ref a);

Notice that the actual increment is a single instruction, compared to the multiple
instructions in the previous section.

Decrement Decrement is an atomic static method of the Interlocked class that
decreases the value of the variable passed in by 1. It is the converse of the
Increment method.

Listing 7.7 A method executed by a thread that increments a value

NumberOfIterations (C#)

call int32 [mscorlib]System.Thread-
ing.Interlocked::Increment(int32&)

Invokes the Interlocked method of MSCORLIB

pop Removes the top element from the stack
122 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 123 Thursday, October 31, 2002 4:04 PM
In a single-threaded environment, the following statements will result in the variable
being returned to the value it was before they executed:

Interlocked.Increment(ref ActualValue);
Interlocked.Decrement(ref ActualValue);

Figure 7.12 shows how that even though each thread executes its increments and dec-
rements with interrupts in between, the value at the end of the execution is correctly
the same as it was at the beginning.

As with the Synchronized collections, these methods are slower than the +=, ++, -=,
and -- operators. That is a small price to pay for stability and reliability of an application.

Exchange and CompareExchange

Suppose you wanted to assign a unique value to each instance of a particular class. The
value would serve as an ID. In our web site monitoring application the notification
queue previously contained MailMessage objects. While this was convenient, it is
more flexible for the queue to contain an object of our own design. By adding a
NotificationEntry object, we can assign each entry a unique number.

In the last section we saw how the Interlocked.Increment method can be used
to increment a variable in a thread-safe way. Another method of the Interlocked
class is Exchange. Interlocked.Exchange is essentially a thread-safe assignment
statement. It accepts two parameters: a reference to the variable being assigned to and
the variable being assigned from. It returns the value that previously occupied the first
parameter. In listing 7.8 we assign IdCounter a number based on the current date
and time.

Figure 7.12

Interlocked Increment

and Decrement
ATOMIC OPERATIONS 123

Net_Dennis.book Page 124 Thursday, October 31, 2002 4:04 PM
Shared Sub InitializeIdCounter()
 Dim BaseNumber As Integer
 DayOfIntitalization = DateTime.Now.Day
 BaseNumber = (DateTime.Now.Year - 2000) * 1000000000
 BaseNumber += DateTime.Now.Month * 10000000
 BaseNumber += DateTime.Now.Day * 100000
 BaseNumber += DateTime.Now.Hour * 1000
 BaseNumber += DateTime.Now.Minute * 10
 Interlocked.Exchange(IdCounter, BaseNumber)
End Sub

Unless the application starts, stops, and restarts in the same minute, the value of
IdCounter will be unique for each run of the program. This approach relies on the
system clock, which always carries a certain amount of risk. It is very easy to change
the date and time of the machine. IntializeIDCounter is contained in the
shared New method.

Shared Sub New()
 Trace.Assert(IdCounter = 0)
 InitializeIdCounter()
End Sub

This method is called the first time an instance of the class containing it, Notifi-
cationEntry, is instantiated.

New When a subroutine is named New in VB.NET, it is treated as a constructor.
Constructors are methods that are automatically called when an object is
instantiated.

The public New method of a class is called after the shared New method. In the public
New method, we can increment the value of IdCounter:

MessageId = Interlocked.Increment(IdCounter)

By using the Increment and Exchange methods, we can initialize and increment
the shared variable IdCounter in a thread-safe way.

It’s nice when unique identifiers can be related to something meaningful. In our
case, it would be nice if you could determine the date the entry was generated based
on the IdCounter. To do this we need to add listing 7.9 to our public New method.

While DayToReInitialize < 0
 Thread.Sleep(100)
End While
Dim ReturnValue As Integer
ReturnValue = Interlocked.CompareExchange(DayToReInitialize, _
 -1, DateTime.Now.Day)

Listing 7.8 Using Exchange to assign a variable in a thread-safe way (VB.NET)

Listing 7.9 Using CompareExchange (VB.NET)
124 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 125 Thursday, October 31, 2002 4:04 PM
If ReturnValue = -1 Then
 While (DayToReInitialize = -1)
 Thread.Sleep(100)
 End While
End If
If DayToReInitialize = -1 Then
 InitializeIdCounter()
End If

This code is a little tricky, so we’ll go over it carefully. The key element is the Compare-
Exchange instruction. It checks to see if the DayToReInitialize is equal to
today. If it is, it sets DayToReInitialize to -1. It saves the value returned from
CompareExchange to a variable so we can check it. If it is -1, some other thread
must also have determined that it’s time to reinitialize, so the current thread should
sleep until the thread doing the update is finished. If a value other than -1 is returned
and DayToReInitialize is -1 then the current thread should do the reinitializa-
tion (figure 7.13).

The CompareExchange method is relatively difficult to use. Unless the highest pos-
sible performance is needed, a different, more understandable approach should be used
such as synchronous locks, which we discuss in the next section. Locks are likely the most
common form of concurrency control. When most developers with multithreaded
experience are asked to describe multithreaded development, they will most often speak
of critical sections and locks.

7.3 THE LOCK AND SYNCLOCK KEYWORDS

Locks have become an important part of everyday life. We use locks on our houses to
keep people out who do not belong. If you only had one key, and the only way to get

Figure 7.13 Interlocked CompareExchange checks to see if the supplied value is the same as

the compare value then the new value is assigned to the variable and returned.
THE LOCK AND SYNCLOCK KEYWORDS 125

Net_Dennis.book Page 126 Thursday, October 31, 2002 4:04 PM
into the house was with the key, then only one person could be in the house at a time.
This is how a lock in the multithreaded world works.

Unlike the Interlocked mechanism, more than one line of code can be pro-
tected. This is a fairly simple solution to a complex problem.

SyncLock IdCounterObject
 If DayToReInitialize = DateTime.Now.Day Then
 InitializeIdCounter()
 End If
 MessageId = Interlocked.Increment(IdCounter)
End SyncLock

The way it works is that a thread encounters a lock (in C#) or SyncLock (in
VB.NET) statement. It checks to see if the locking object (think of it as the key) is
available. If it is not, the thread enters the WaitSleepJoin state until it can acquire
the lock. If the locking object is available, the thread acquires the lock and begins exe-
cuting the guarded instructions (figure 7.14). This is similar to the Synchronized
version of collections we discussed earlier.

Locks can only be acquired using reference types. Value types, such as long and integer,
cannot be used with locks directly. In order to lock on a value type, you must either use
the GetType statement or introduce an object to serve as the locking object. While
this introduces a certain amount of additional memory usage, it may reduce the com-
plexity of the code and yield a more maintainable solution.

Locks are a means of creating a critical section. Unlike a Win32 critical section, it is
not necessary to create a variable to serve as the key to the critical section. Instead, any
instance of an object can be used to control entering the critical section. A common
approach is to lock on the instance of the object itself using the me/this statement.
Many of the examples you will see use this form of locking. This is the simplest form
of synchronization control. It creates a high degree of control over access but at the
expense of flexibility. Under some circumstances this is a valid solution. Other times a
more granular approach is required.

Critical
Section

A critical section is a region of code, that is mutually exclusive. This means
that while one thread is executing that region of code no other thread can.
Critical sections are created using the lock and SyncLock constructs.

Figure 7.14 How a lock is used to coordinate two threads.
126 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 127 Thursday, October 31, 2002 4:04 PM
SyncLock SyncLock is a Visual Basic keyword that is used as a synchronization mech-
anism to create a section of code that only a single thread can access at a
time. This is accomplished by acquiring a lock on an object. If the object is
currently locked, the thread must wait until the lock is released.

Suppose you had a class with three data elements in it. One approach would be to
restrict access based on the class as a whole. This would mean that only one of the
three data elements could be changed at once. If these elements were independent,
this might be too restrictive. An alternative would be to have three objects that serve
as locks. In order to access one of the data elements the corresponding lock would
first be acquired. Figure 7.15 graphically demonstrates this design tradeoff.

This introduces the concept of concurrency. Concurrency is a measure of how many
things can happen at once. A high degree of concurrency will often produce higher
performance than a low degree. The tradeoff is between concurrency and the risk of
race conditions, deadlocks, and complexity.

In the previous chapter we discussed deadlocks. Deadlocks are a very real problem
with SyncLocks. Using the lock/SyncLock statement there is no way to time out
a request for a resource. So if a thread monopolizes a resource, all other threads requesting
that resource will be in a WaitSleepJoin state until the resource becomes available.
To reduce the possibility of deadlock, the lock is released whenever the thread exits the
locked region. This is true if an exception is raised or processing completes normally.

The design constraints regarding deadlock should always be followed when using the
lock/SyncLock statements. If used correctly, lock/SyncLock is a powerful means
of controlling synchronization.

You may be wondering how lock/SyncLock works; we’ll cover that in the
next section.

Figure 7.15 A single lock can be used to guard multiple items or a lock can be used to protect

each item independently.
THE LOCK AND SYNCLOCK KEYWORDS 127

Net_Dennis.book Page 128 Thursday, October 31, 2002 4:04 PM
7.4 THE MONITOR CLASS

During grade school there were generally people tasked with the job of hall monitor.
A hall monitor attempts to make sure that students and visitors are in the right places
at the right time. If you walk into a strange school and start roaming the halls, you’re
likely to meet a hall monitor. A monitor is something that watches over something else.
What the monitor watches might be the flow of students and visitors in the hall of a
school or, in the case of multithreaded development, the access to resources by threads.
Monitor is a class in the Threading namespace that contains methods for capturing
and releasing synchronous locks.

7.4.1 The Enter and Exit methods

Monitor.Enter is called when a lock is requested. It blocks and doesn’t return until
the lock has been granted. If the thread that is calling Enter already has the lock it is
requesting, the lock count for that object is incremented and the thread is allowed to
pass. If the thread that is calling Enter does not have the lock and another thread
does, it will wait until that other thread releases the lock by calling Monitor.Exit.
If the lock count for the parameter passed into Enter is zero, the current thread is
granted ownership of that lock and the lock count is incremented to one.

Compared to synchronous locks

We discussed what the lock/SyncLock method does in section 7.3. If you’re like
me, you want to know how things work. SyncLocks are implemented using the
Monitor.Enter and Monitor.Exit methods. Table 7.1 shows two segments of
code that produce almost identical MSIL.

There are two things to notice about the code in table 7.1. The first is that the Mon-
itor.Enter instruction is not inside the try block. There are two exceptions that
Enter can throw: ArgumentNullException and ArgumentException.

ArgumentNullException is thrown whenever the parameter passed to the
Enter method is null. In this case calling Exit would be inappropriate. Argument-
Exception is raised when the parameter to Enter is a value type, for instance an

Table 7.1 How the Lock Method Is Implemented Using the Monitor Enter and Exit Methods

CLock.cs
object o = new object();
lock(o)
{
 o=123;
}

CEnterExit.cs
object objLock = new object();
object tmpObject = objLock;
Monitor.Enter(tmpObject);
try
{
 objLock =123;
}
finally
{
 Monitor.Exit(tmpObject);
}

These two pieces of code
produce virtually identical MSIL.
The lock statement is
implemented using
Monitor.Enter and Monitor.Exit.
128 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 129 Thursday, October 31, 2002 4:04 PM
integer. If this were the case, then calling Exit on the same value would result in
another exception. It is better to deal with the invalid parameter earlier than later.
Another thing to notice is the introduction of the tmpObject variable. This is intro-
duced to deal with the case in which the value that is being locked on changes.

If the tmpObject variable is left out, you have the code in listing 7.10.

public void EnterExit_NoTemp()
{
 object objLock = new object();
 Monitor.Enter(objLock);
 try
 {
 objLock =123;
 }
 finally
 {
 Monitor.Exit(objLock);
 }

}

When the Monitor.Exit statement is executed, a SynchronizationLockEx-
ception is generated. This is because at the point the Exit statement is executed, the
objLock variable has not been locked on. Note that adding a catch clause to the
try block would not catch this exception since the exception is raised in the finally
block. To capture the exception, and possibly reduce the time needed to track down
the bug, enclose the entire section above in a try block as seen in listing 7.11.

try
{
 object objLock = new object();
 Monitor.Enter(objLock);
 try
 {
 objLock=123;
 }
 finally
 {
 Monitor.Exit(objLock);
 }
}
catch(Exception ex)
{
 Console.WriteLine(ex.Message);
}

Listing 7.10 The mistake of assigning a value to something being locked upon (C#)

objLock is not the
same in these two
instructions

Listing 7.11 Exception handling reduces the time to track down a problem (C#).

The exception will
be thrown in the
finally clause
THE MONITOR CLASS 129

Net_Dennis.book Page 130 Thursday, October 31, 2002 4:04 PM
This will allow for earlier detection of this kind of error. The following guidelines for
using Enter and Exit should be used:

• To release a lock, call Exit the same number of times that Enter has been called.

• Always place Exit in a finally clause and all code that should happen within
the synchronized region inside the try block.

• Ensure that the object passed to Enter is the same one that is passed to Exit.

• Ensure that the object is initialized before calling Enter.

• Always call Enter before calling Exit.

• Avoid changing the value of an object being locked on.

• Use a variable that is dedicated to being locked upon as the locking mechanism.

These guidelines are general, but if they are followed the amount of debugging required
will be greatly reduced.

Creating critical sections

The Enter and Exit methods are used to create critical sections of code. We use
critical sections as a means of protecting a shared resource from interaction by multiple
threads. Only one thread may be in a critical section at a time. A thread enters the crit-
ical section when it invokes the Enter method and is granted a lock on the locking
object. A thread exits the critical section at the point it invokes the Exit method the
same number of times that it had previously invoked the Enter method.

This is essentially the same way that the Win32 critical section object works. To
use a Win32 critical section you must first create the critical section object using the
InitializeCriticalSection API call. InitializeCriticalSection
allocates an area of memory that is used by EnterCriticalSection and Exit-
CriticalSection. This is different than the .NET approach, which allows any non-
value type object to be used as the locking mechanism.

Exit must be called as many times as Enter is called to release a lock. Unlike the
synchronous lock, exiting the scope where the lock was acquired does not release the
lock. Care should be taken to ensure that a thread releases any owned locks before it
terminates. Because of the indeterminate nature of the .NET framework, the results of
terminating a thread that is in a critical section are not predictable.

7.4.2 The TryEnter method

We’ve seen how Monitor Enter and Exit work when things go well, but what
happens if one of the threads doesn’t release the lock when finished with it? When
any other thread calls the Enter method, it will be blocked indefinably. This means
that if one thread fails to release a lock all threads that try to Enter that lock will
hang (listing 7.12).
130 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 131 Thursday, October 31, 2002 4:04 PM
Private Sub TryEnterMethod()
 Dim MyName As String
 MyName = Thread.CurrentThread.Name
 Dim Entered As Boolean
 While (True)
 TryEnterLocation = "Before TryEnter " + Now.ToString()
 Entered = Monitor.TryEnter(LockingObject, 2000)
 TryEnterLocation = "After TryEnter " + Now.ToString()
 If Entered Then
 SharedString = MyName + " " + Now.ToString()
 TryEnterLocation = "In Lock " + Now.ToString()
 Thread.Sleep(1000)
 Monitor.Exit(LockingObject)
 TryEnterLocation = "After Exit " + Now.ToString()
 Else
 TryEnterLocation = "Unable to acquire lock " + Now.ToString()
 Debug.WriteLine(MyName + " : Unable to acquire lock")
 End If
 Thread.Sleep(1000)
 End While
End Sub

Fortunately the TryEnter method is available. TryEnter comes in three different
flavors. The TryEnter method, in listing 7.12, attempts to acquire a synchronous
lock on the supplied parameter. If it can acquire the lock, the method returns true. If
some other thread has the lock, the method waits for two seconds and then returns
false. This allows a thread to wait for a period of time and, if the lock doesn’t become
available, to move on and do other things.

Such timeout-based processing is very powerful. For instance, you could have a thread
running that simply tried to acquire a frequently used lock on a regular interval. If unable
to acquire the lock, it might signal instability of the application or system. The thread
doing the checking could then log the fact that the system is unresponsive to the event log.

Another version of the TryEnter method accepts a TimeSpan as the timeout value.
As we discussed in chapter 4, TimeSpan objects allow for greater flexibility in speci-
fying time duration. The TimeSpan version of the method also returns true if the
TryEnter method was able to acquire the lock and false if not.

Listing 7.12 The importance of releasing locks (VB.NET)

Monitor.Try-
Enter

Monitor.TryEnter is a static method that allows a thread to request a
lock while optionally specifying a timeout.

Variations
of TryEnter

• TryEnter(object)
• TryEnter(object, TimeSpan)
• TryEnter(object, Integer)

Returns true if the
lock is acquired

Is called if the
lock is acquired

Executes if the lock
was not acquired
THE MONITOR CLASS 131

Net_Dennis.book Page 132 Thursday, October 31, 2002 4:04 PM
The last version of the TryEnter method accepts only the object being locked on
as the parameter. This version of the method returns immediately if it is unable to acquire
the lock rather than waiting a certain amount. This is identical to calling TryEnter
with zero as the duration in milliseconds.

Suppose that you wanted to know if a lock were available. The following creates
a property that indicates the availability of the lock:

Public ReadOnly Property LockAvailable()
Get
 Dim bAvailable As Boolean
 bAvailable = Monitor.TryEnter(LockingObject)
 If bAvailable Then
 Monitor.Exit(LockingObject)
 Return True
 End If
 Return False
End Get
End Property

To tell if the lock is available you must first try to acquire it. If successful, we release it
and return true. Otherwise, we return false. It is important to release the lock as soon
as it is acquired. We would not want our checking the availability of the lock to make
it unavailable for long periods of time.

It is important to always release a lock after it is no longer needed. The following
method will acquire the lock and never release it. This will keep all other threads from
using the lock:

Private Sub BadThreadMethod()
 Thread.Sleep(60000)
 Dim MyName As String
 MyName = Thread.CurrentThread.Name
 While (True)
 BadThreadLocation = "Before Enter " + Now.ToString()
 Monitor.Enter(LockingObject)
 BadThreadLocation = "In Lock " + Now.ToString()
 SharedString = MyName + " " + Now.ToString()
 Thread.Sleep(1000)
 End While
End Sub

Instead, something similar to the following should be used:

Private Sub GoodThreadMethod()
 Dim MyName As String
 MyName = Thread.CurrentThread.Name
 While (True)
 GoodThreadLocation = "Before Enter " + Now.ToString()
 Monitor.Enter(LockingObject)
 Try
 GoodThreadLocation = "In Lock " + Now.ToString()
 SharedString = MyName + " " + Now.ToString()
132 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 133 Thursday, October 31, 2002 4:04 PM
 Thread.Sleep(500)
 Finally
 Monitor.Exit(LockingObject)
 End Try
 GoodThreadLocation = "After Exit " + Now.ToString()
 Thread.Sleep(2000)
 End While
 End Sub

Notice that the lock is released in the Finally clause. This ensures that if an excep-
tion occurs while the lock is held it is released.

7.4.3 Wait and Pulse

Until now our thread methods relied on Sleep to pause between executions. Sleep
should not be viewed as a synchronization mechanism. Attempting to do so will likely
result in race conditions and inefficient code. Suppose that you wanted to add an entry
to a queue and then signal that processing should begin on that item. This can be done
in a nonblocking way by using the Wait and Pulse methods. Figure 7.16 demon-
strates the steps involved with using Wait and Pulse.

Step 1 involves Thread A acquiring a lock to the shared locking object. Once that lock
is acquired, the Wait method of the Monitor class is used on the shared locking
object. This places Thread A into the WaitSleepJoin state. Recall that in this state
the thread is essentially idle. The first two lines of the following code example demon-
strate steps 1 and 2. In the following example QueueWaitLock is the shared locking
object referred to in the diagram.

Monitor.Enter(QueueWaitLock);
Result= Monitor.Wait(QueueWaitLock,60000);
if (Result)

Figure 7.16 Steps involved in using Pulse and Wait
THE MONITOR CLASS 133

Net_Dennis.book Page 134 Thursday, October 31, 2002 4:04 PM
{
 Debug.WriteLine("Pulsed");
}
else
{
 Debug.WriteLine("Timed out");
}
Monitor.Exit(QueueWaitLock);

Both Wait and Pulse must be invoked from within a region of code guarded by a
synchronization block. All this means is that a Monitor.Enter and Moni-
tor.Exit must surround the Monitor.Wait and Monitor.Pulse methods.
The motivation for this is to eliminate the possibility of a race condition occurring.
By ensuring that only one thread at a time can call Wait or Pulse, the chance of a
race condition occurring is eliminated. Additionally, the same object that is locked on
using the Monitor.Enter method must also be the object that is passed to the Pulse
and Wait methods.

Pulse signals one thread that is waiting on the synchronized object. Like Wait,
Pulse must be invoked from within a synchronized section of code.

The process begins with acquiring a lock on the object being waited on. This corre-
sponds to step 3 in the diagram. Once acquired, the Pulse method is invoked (step 4).
After Pulse the lock should be released (step 5). The following code example demon-
strates steps 3–5 in the diagram at the start of this module. TryEnter is used in place
of Enter.

Entered = Monitor.TryEnter(QueueWaitLock,1000);
if (Entered)
{
 Monitor.Pulse(QueueWaitLock);
 Monitor.Exit(QueueWaitLock);
}
else
{
 Trace.WriteLine("Unable to add entry");
}

Notice that we use TryEnter to attempt to acquire the lock. We wait for at most
one second for the lock. If we are unable to acquire the lock, we log the condition and

Monitor.Wait Monitor.Wait is a static method that allows a thread to enter a Wait-
SleepJoin state. The thread will exit the WaitSleepJoin state when
the object being waited on is signaled using the Pulse or PulseAll
method or an optional timeout value expires.

Monitor.Pulse Monitor.Pulse is a static method of the Monitor class that allows a
thread to signal one of the threads that have previously called Wait on a
shared object.
134 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 135 Thursday, October 31, 2002 4:04 PM
return. This prevents a thread from getting stuck waiting on another thread that may
not be responding.

Once a thread invokes Pulse, it must call the Monitor.Exit method to allow those
threads that are waiting on the object to continue. To be precise, if step 5 in figure 7.16
does not occur, neither will step 6. At the point Wait is invoked, the lock on the shared
locking object is released automatically, allowing a different thread to acquire a lock
on the shared locking object and perform a Pulse. For the thread that was in the
WaitSleepJoin state to continue, Thread A in our example, it must reacquire a lock,
on the shared locking object. For it to successfully reacquire the lock the Pulsing thread,
Thread B, must release the lock.

The steps the waiting thread goes through are outlined in figure 7.17.

ST
EP

S
TO

 W
AI

T 1 Acquire a lock on the waiting object using the Enter method.

2 Invoke Wait with an optional timeout.

3 Release the lock using the Exit method.

ST
EP

S
TO

 P
UL

SE 1 Acquire a lock on the waiting object using the Enter method.

2 Invoke the Pulse method.

3 Release the lock using the Exit method.

Figure 7.17 The states a thread goes through when Wait and Pulse are used
THE MONITOR CLASS 135

Net_Dennis.book Page 136 Thursday, October 31, 2002 4:04 PM
A thread goes through distinct states when Wait and Pulse are used. When the Wait
statement is executed, the thread enters the waiting queue. The thread exits the waiting
queue if it receives a pulse, or if a timeout occurs. Once it exits the waiting queue, it
is added to the ready queue. When it can reacquire the lock, it will resume execution.

We’ve seen how a single thread can be controlled using Pulse; now we’ll examine
how multiple threads can respond to PulseAll.

7.4.4 The PulseAll method

Suppose that you receive a phone call from a client or supervisor wanting to know if
all of the organization’s web sites are functioning properly. Rather than wait for the
next polling interval, you would like to check the sites immediately. One way to do
this is to use Thread.Interrupt. This triggers an interrupt on the thread that it
is associated with the instance of the Thread object on which it is invoked. Each
thread would need to be interrupted.

Similarly, the Pulse and Wait approach we covered in the last chapter could be used.
Instead of having a Thread.Sleep statement, you would have a Monitor.Wait
statement. Unless the object that is being waited on is pulsed, Wait with a timeout
value functions like the Sleep method:

Thread.Sleep(mSleepTime)

Thread.Sleep can be replaced with the following lines:

SyncLock WaitLockObject
 Monitor.Wait(WaitLockObject, mWaitTime)
End SyncLock

WaitLockObject is a shared/static object. Recall from the last section that in order
to Wait on an object the thread must first enter a synchronized region of code. One
way to do this is to use the SyncLock statement. This is equivalent to calling Moni-
tor.Enter and Monitor.Exit.

Since WaitLockObject is shared/static, there is only one instance of it for all
instances of the WebSiteMonitor class. To signal those threads waiting for the lock,
we use the PulseAll method which alerts all threads waiting on a lock that the state
of the object has changed and that they should resume processing. The differences
between Pulse and PulseAll are shown in figure 7.18.

PulseAll empties the waiting queue, moving all entries into the ready queue. As soon
as each of the threads in the ready queue are able to reacquire the lock, they begin executing.

Wait, Pulse, and PulseAll can only be called successfully if the synchronization
lock around them locks on the same object that is passed in as the parameter. The fol-
lowing example demonstrates the incorrect way to call PulseAll:

Synchroniza-
tion Lock
Exception

A synchronization lock exception is thrown whenever an attempt is made
to invoke Pulse or Wait without having first acquired a lock.
136 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 137 Thursday, October 31, 2002 4:04 PM
SyncLock LockObjectOne
 Try
 Monitor.PulseAll(LockObjectTwo)
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
End SyncLock

Notice that the SyncLock is performed on LockObjectOne while PulseAll
uses LockObjectTwo. This causes a SynchronizationLockException to be
raised. The correct code is:

SyncLock LockObjectThree
 Try
 Monitor.Wait(LockObjectThree)
 MsgBox("Good Thread After Wait")
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
End SyncLock

7.5 DIGGING DEEPER INTO
CONCURRENCY CONTROL

There is much more to currency control than the basics we’ve covered so far. In this
section we cover those elements that are a little less frequently used.

7.5.1 C#’s volatile keyword

This topic is restricted to C#. VB.NET does not support the volatile keyword. Not to
worry, very few situations require its use. In general it is easier to use the other synchroni-
zation mechanisms we’ve covered in this chapter. This topic is covered for completeness.

The most important thing to know about a volatile field is that it is not thread-safe. If
two threads attempt to update a volatile field at the same time, bad things will

Figure 7.18 The difference between Pulse and PulseAll

The Volatile
Keyword

Volatile is a hint to the compiler that a value may change without its
knowledge and that it should not make assumptions regarding the value
during optimization.
DIGGING DEEPER INTO CONCURRENCY CONTROL 137

Net_Dennis.book Page 138 Thursday, October 31, 2002 4:04 PM
likely happen. By using the volatile statement you’re telling the compiler that this
variable’s value may change in an unforeseen way. This keeps the compiler from opti-
mizing instructions that access the variable.

GUIDELINES • Making a field volatile does not make it thread-safe.

• All fields enclosed in a synchronization block and accessed by mul-
tiple threads should be volatile.

• A volatile field cannot be passed as a reference. This means that an
interlocked method cannot be used with a volatile field.

Compilers often perform optimizations to increase performance. One of the ways it
optimizes is by placing frequently used variables into registers. A register is a location
in the processor that can be accessed quickly. Once the value is in the register, the
compiler assumes that nothing else changes the value of the variable. This means the
generated code only accesses main memory when it knows it needs to retrieve the
value. In the case of multithreaded applications, a different thread may change the
value after the optimized code has read it in. The optimized code might not notice
the change in the value. Listing 7.13 demonstrates the use volatile.

private volatile int CurrentThreadCode;
. . .
System.Random rnd = new System.Random();
int RandomIndex;
int TickCount;
do
 RandomIndex= rnd.Next(NumberOfListeningThreads);
while (CurrentRandomIndex ==RandomIndex);
CurrentRandomIndex =RandomIndex;
TickCount =Environment.TickCount;
 CurrentThreadCode =
 ListeningThreads[RandomIndex].GetHashCode();
. . .
while(true)
{
 if (CurrentThreadCode == MyId)
 {
. . .

One form of optimization that causes multithreaded applications grief is reordering
instructions. This makes most developers a little nervous. We like to think that if we do
an assignment and then a test that the test instruction will always occur after the assign-
ment. Some processors reorder instructions. Those processors are smart enough to do
this in such a way that the outcome of the program is the same as if the instructions
had not been reordered.

Listing 7.13 The use of the volatile keyword (C#)
138 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 139 Thursday, October 31, 2002 4:04 PM
When a variable is marked as being volatile, the compiler ensures that all accesses
to that variable are not reordered. Additionally, it ensures that each read of the variable
comes from memory, not from a register. Marking a variable as volatile does not
make it thread-safe. If more than one thread is writing to the value, a synchronization
lock should be used. The situation where volatile can safely be used is when one
or more threads are reading the value while only one thread is updating it. If a syn-
chronization lock is used, there is no reason to use volatile.

Interlocked methods do not work with volatile variables. The reason is that the inter-
locked methods accept references to variables as their parameters. Volatile variables
cannot be passed as references. The following line generates a compiler error:
Interlocked.Increment(ref CurrentThreadCode);
// Produces The following Error:
// Cannot pass volatile field
// 'VolatileExample.Form1.CurrentThreadCode'
// as ref or out, or take its address

Only certain types of variables can be volatile. Only class fields can be marked as vola-
tile. Since a local variable is usually accessed by a single thread this is not too restrictive.

The code for this module is available from the publisher’s web site. An alternative
solution is presented that uses Monitor.Wait and Pulse instead of the volatile
field. The code is simpler and easier to understand. Additionally, the listening threads
notice the change in the variable more quickly than they do in the volatile version. Simple
is generally good. Simple things are easy to understand and therefore easier to maintain.

7.5.2 COM+-based synchronization

COM+ is a set of runtime services, easily accessed via .NET, that facilitates developing
enterprise applications. One of the services COM+ supplies is synchronization. COM+
uses the concept of a context as its means of synchronizing access to objects. To set
the Synchronization attribute the class must be derived from the Context-
BoundObject class, or a class derived from ContextBoundObject.

VO
LA

TI
LE

RE

ST
RI

CT
IO

NS

• Only fields are allowed to be volatile
• A volatile field can only be one of the following:

• Reference type
• Unsafe pointer
• sbyte, byte, short, ushort, int, uint, char, float, bool
• An enum type based on one of the allowed discrete value types

WHEN
TO USE

VOLATILE

• A variable is accessed from multiple threads.
• No Synchronization mechanisms are being used.
• Only one thread will update the value.

Context-
BoundObject

ContextBoundObject is the base class that all objects that are bound
to a particular context are inherited from.
DIGGING DEEPER INTO CONCURRENCY CONTROL 139

Net_Dennis.book Page 140 Thursday, October 31, 2002 4:04 PM
Imports System.Runtime.Remoting.Contexts

<Synchronization()> Public Class Data
 Inherits ContextBoundObject
 Dim x As Integer
 Public Function Inc() As Integer
 x += 1
 Return x
 End Function
 Public Property Count()
 Get
 Return x
 End Get
 Set(ByVal Value)
 x = Value
 End Set
 End Property
End Class

In our example, the class Data inherits directly from ContextBoundObject. The
<Synchronization()> attribute tells the compiler that all access to instances of
data must occur in a serialized way. To accomplish this a proxy is created to cross from
the default context to the context containing the instance of Data.

For more information on this topic, the reader is encouraged to learn about COM+. An
in-depth discussion is beyond the scope of this book. The key point is that it is a simple
way to make objects thread-safe. That simplicity is not without cost. The cost of mar-
shaling values across the context boundaries is significant. Depending on the frequency
of those calls across the boundary, performance can be an order of magnitude worse
when compared to using synchronization locks. Figure 7.19 shows how COM+ per-
forms synchronization.

When faced with the decision to make an object context bound and restricting the
process to a single processor, you should use benchmarks to aid in making the decision.
The key metric to consider is the frequency of calls to their duration. The following
simple formula can be used to determine the percentage that the overhead is contributing
to the overall execution time:

Percentage = Call Overhead / (Call Overhead + Call Duration)

Suppose that calling an object in a bound context takes an additional second to occur
when compared to calling an object in the same context. Suppose that the time each
call takes to complete is 60 seconds.

Listing 7.14 Synchronized classes utilize a proxy to access each method (VB.NET)

ContextBound-
Objects

Use Proxies

All calls to objects derived from ContextBoundObjects go through a
proxy. This increases the time for each call to complete.

Marks the entire class
for synchronization

Synchronized classes must be derived
from ContextBoundObject, or from
a class derived from it, to utilize
context-based synchronization
140 CHAPTER 7 CONCURRENCY CONTROL

Net_Dennis.book Page 141 Thursday, October 31, 2002 4:04 PM
Percentage = 1 / (1 + 60) = 1.6%

That’s less than 2 percent of the total time per call, not a bad price to pay for the sim-
plicity. Suppose instead the call only takes five seconds to complete:

Percentage = 1 / (1 + 5) = 16.7%

The percentage changes to about 17 percent. Depending on performance needs, that
may be too high of a price to pay.

7.6 SUMMARY

In this chapter we’ve discussed how to effectively manage thread interactions. We’ve
seen that traditional software development concepts, such as encapsulation, can be
used in multithreaded development. We’ve discussed the most common forms of
access control, and explored some less commonly used mechanisms, such as inter-
locked operations. One of the most important things to get from this chapter is being
able to identify where concurrency control is needed, by identifying the thread
boundaries we discussed in section 7.1.4. Once you know where the moving parts
contact each other, you can use one of the means we discussed to make sure that con-
tact happens in a controlled way. In the next chapter we explore a different type of
synchronization control known as a wait handle.

Figure 7.19 How a synchronized context is implemented
SUMMARY 141

Net_Dennis.book Page 142 Thursday, October 31, 2002 4:04 PM
C H A P T E R 8

WaitHandle classes

8.1 The WaitHandle class 143
8.2 The AutoResetEvent class 145
8.3 WaitHandle 147
8.4 ManualResetEvent 154

8.5 Mutex class: WaitOne and
ReleaseMutex 156

8.6 Summary 159
WaitHandle-derived classes provide a means of constructing powerful synchronization
mechanisms. In this chapter we will cover ManualResetEvent, AutoResetEvent,
and Mutex.

Just as the Monitor class allows for a thread to wait to acquire a lock on an object,
the AutoResetEvent allows a thread to wait for a class derived from WaitHandle
to become signaled. Each object derived from WaitHandle has two states: signaled and
unsignaled. When an AutoResetEvent becomes signaled, any thread waiting for that
event is released from the WaitSleepJoin state, triggering the AutoResetEvent
to return to the unsignaled state.

WaitHandle-derived classes have advantages over the Monitor class. One is that
it is possible to wait for multiple WaitHandle-derived classes. Using the WaitAll
method, a thread can wait until all WaitHandle-derived classes in an array, or for
only one, to become signaled. More important, WaitHandle-derived classes allow for
interaction between managed and unmanaged code because they expose underlying
OS handles.

ManualResetEvent is similar to AutoResetEvent, but it differs in its behavior
when a thread is waiting. Unlike the AutoResetEvent class that returns to the unsig-
naled state, ManualResetEvents remain in the signaled state. The Reset method
changes ManualResetEvent from signaled to unsignaled.
142

Net_Dennis.book Page 143 Thursday, October 31, 2002 4:04 PM
The Mutex object is similar to the Monitor object in that it controls access of
threads to regions of code. It differs in that it can control access to regions of code in
different processes. This allows for robust synchronization at a process level, as well as
a thread level.

The examples used in this chapter relate to matrix multiplication. Matrix multi-
plication is the process of combining two matrices to produce a third. The number of
columns in the first matrix must equal the number of rows in the second. The resulting
matrix will have the same number of rows that the first matrix has and the number
of the columns that the second has.

Figure 8.1 shows how one matrix is multiplied by the second to produce the third.
Notice that to produce the top-left cell of the result matrix, we start by multiplying
the cell in the top-left in the first matrix by the top-left in the second. We then add
that result to the product of the cell in the first row, second column in the first matrix
times the cell in the first column, second row in the second, and so on. Matrix mul-
tiplication is being used because it is a relatively common mathematical construct used
in many fields. Operations research, computer graphics, statistics, and engineering all
use matrix multiplication.

8.1 THE WAITHANDLE CLASS

The WaitHandle class (figure 8.2) allows for a form of manual synchronization;
manual in the sense that you, the developer, need to do most of the work. The previous
chapter introduced automatic synchronization. This chapter focuses on more powerful,
and fundamental, constructs of synchronization.

As you can see in figure 8.2 WaitHandle is an abstract base class and, because it is,
instances of it cannot be created. To utilize the methods of WaitHandle, either we must
use static/shared methods or an instance of a class derived from it must be instantiated.

The WaitHandle class is a wrapper around the Win32 synchronization handles.
All classes derived from WaitHandle support multiple wait operations. Because these
classes are closely tied to Win32 objects, they are less portable than the Monitor class.

Figure 8.1 Matrix multiplication explained

WaitHandle
Class

WaitHandle is an abstract base class that allows for the creation of synchro-
nization mechanisms. The three mechanisms that are derived from Wait-
Handle are Mutex, AutoResetEvent, and ManualResetEvent.
THE WAITHANDLE CLASS 143

Net_Dennis.book Page 144 Thursday, October 31, 2002 4:04 PM
The only property that the WaitHandle class exposes is Handle, which may be used
to get or set the underlying OS handle. WaitTimeout is a public field that contains
the value that the WaitAny method returns when it times out. WaitAny, WaitOne,
and WaitAll are the most important methods in the WaitHandle class. We will
cover each of these in detail in this chapter.

An important concept when dealing with the manual synchronization classes is
object signaling. When an object is signaled, it can be thought of as being in an on state.

ManualResetEvent can be thought of as opening a door. Until the door is closed
there is no limit on the number of people who can go through it. The Set and Reset
methods are used to change the event’s signaled state. We’ll cover it in detail later, but
for now think of it as being somewhat similar to the Monitor.Wait method used
with the Monitor.PulseAll method.

AutoResetEvent is similar to calling Monitor.Pulse on an object being
waited on. It allows one thread to proceed and changes its signaled state from signaled
to unsignaled. It is very similar to the ManualResetEvent class, except that when
a thread exits from the WaitOne method, the object is no longer signaled. It is as
though a call to Reset is automatically made when the WaitOne method exits.

Mutex is used to create a mutually exclusive region of code. It can also be used to cre-
ate mutually exclusive regions of code that exist in different processes. This sort of cross-
process exclusion is a very powerful mechanism. Mutex is similar to Monitor.Enter
and Exit except that Mutex can span multiple processes. To enter Mutex a call is
made to WaitOne. To enter Mutex the object must be signaled; to exit a call is made
to ReleaseMutex. Calling the ReleaseMutex method results in the instance of
Mutex becoming signaled.

Figure 8.2 UML diagram of the WaitHandle class
144 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 145 Thursday, October 31, 2002 4:04 PM
Each of these objects can be used in the static WaitAny and WaitAll methods
of the WaitHandle class. WaitAny allows for waiting until one of many objects
becomes signaled. An example of when this would be useful is a search algorithm.
When one of the threads finds the answer, it’s time to stop looking. WaitAll is a way
of waiting for all objects in a set to be signaled before allowing processing to continue.
This is useful when work is split up among multiple threads and processing cannot
continue until all threads have completed their work.

This section is intended to introduce each of the WaitHandle classes. We will
cover each in detail in the next sections. The important thing to understand is that a
WaitHandle-derived object is either signaled or not. Think of this as a Boolean vari-
able. It is either on or off.

These classes are less intuitive than the Monitor class. They provide a great deal of
power over the synchronization of threads. If the Monitor class is not sufficient, these
classes provide the capability of creating very powerful synchronization constructs.

8.2 THE AUTORESETEVENT CLASS

AutoResetEvent is a form of thread synchronization that alternates between a sig-
naled state and an unsignaled one. Think of it as acting much like the toll turnstile at
the subway station. To get past the turnstile someone must first deposit the correct fare.
Once the fare has been deposited, only one person may enter. The turnstile switches
from the state where it allows the person to enter to the state where it does not as
soon as one person has entered. In this analogy, the turnstile is in a signaled state once
someone deposits the fare. It switches to the unsignaled state as soon as someone passes
through the turnstile.

The AutoResetEvent class contains the Set and Reset methods. Invoking Set
results in the instance of the AutoResetEvent class becoming signaled. Invoking
Reset can be used to change the instance of the AutoResetEvent class to unsignaled.

8.2.1 Using the Set method

AutoResetEvent.Set is the method to insert the token, so to speak. Set ensures
that the state of the instance of the AutoResetEvent is signaled. If the state is sig-
naled before Set is called, it will remain signaled. This toll turnstile does not give
change. If more than one call to Set is made, the result will be the same: exactly one
thread will be allowed to pass.

Set Set is a method of AutoResetEvent that changes the state of an instance
of that class to signaled. If the instance of AutoResetEvent is already sig-
naled, the method has no effect.

Auto-
ResetEvent

AutoResetEvent is a class that is derived from WaitHandle. It is a thread
synchronization mechanism that is in one of two states. When it is signaled,
any thread that calls, or has called, WaitOne will be allowed to proceed,
automatically resetting the class to the unsignaled state.
THE AUTORESETEVENT CLASS 145

Net_Dennis.book Page 146 Thursday, October 31, 2002 4:04 PM
AutoResetEvent will automatically switch from signaled to unsignaled as soon as
a thread calls WaitOne, or some other wait method that we will cover later in the
chapter. WaitOne is similar to getting in line to go through the turnstile. If Set is
called before WaitOne, it is the same result as paying the fare before anyone is in
line. As soon as they walk up they are allowed to proceed.

One way that AutoResetEvent is very different than the typical subway turnstile
is that there is no orderly progression. This means that there is no way of determining
the order in which multiple threads waiting for a shared AutoResetEvent object will
be released when the Set method is invoked. The behavior of AutoResetObject
on a single-processor machine is often quite different than its behavior on a multiple-
processor machine. This reinforces the importance of regular testing during develop-
ment on hardware that is similar to the targeted platform.

Another way AutoResetEvent differs from the subway turnstile is that the
threads waiting do not change the state of AutoResetEvent. They do not deposit
their own token in the turnstile. Someone else must do it for them, since they are in a
WaitSleepJoin state while they are waiting.

Do not assume that one thread will execute before or after a different thread that
is also waiting on a shared AutoResetEvent. When AutoResetEvent is signaled
and one or more thread is waiting, all that is guaranteed is that a single thread will be
released and that AutoResetEvent will return to the unsignaled state.

8.2.2 Using the Reset method

The Reset method changes the signaled state of AutoResetEvent to unsignaled.
This is done automatically when a thread is released from the WaitSleepJoin
state. There may be circumstances when no thread is waiting and it is set to signaled.
Before a thread waits on that event, it may be determined that it should no longer be
signaled. In that case, calling Reset will change the state back to unsignaled.

Reset Reset is a method of the AutoResetEvent class that changes the state of
an instance of that class to unsignaled. Calling the method is generally not
required since the release of a thread from the WaitSleepJoin state au-
tomatically changes the state of AutoResetEvent to unsignaled.

The constructor of AutoResetEvent contains a parameter that controls the initial
state of the instance of the class. If False is passed in, the instance of the AutoReset-
Event class is initially unsignaled. If True is passed in, it is initially signaled.

Listing 8.1 demonstrates the Set method of the AutoResetEvent class.

 Private UpdateUIEvent As AutoResetEvent
. . .
 UpdateUIEvent = New AutoResetEvent(False)
. . .
 Dim M1 As ClassSimpleMatrix

Listing 8.1 Using WaitOne and Set to update the display (VB.NET)
146 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 147 Thursday, October 31, 2002 4:04 PM
 Dim M2 As ClassSimpleMatrix
 Dim M1Cols, M1Rows As Long
 Dim M2Cols, M2Rows As Long
. . .
 M1 = New ClassSimpleMatrix(M1Cols, M1Rows)
 M2 = New ClassSimpleMatrix(M2Cols, M2Rows)
 M1.Randomize(100)
 M2.Randomize(100)
 M3 = M1.Multiply(M2)
 UpdateUIEvent.Set()
. . .
 Private Sub UpdateUI()
 While (True)
 UpdateUIEvent.WaitOne()
 If Not M3 Is Nothing Then
 If (listView1.InvokeRequired) Then
 Dim args As Object() = {listView1, M3}
 Dim updateit As ListViewUpdater
 updateit = AddressOf UpdateListViewWithMatrix
 listView1.Invoke(updateit, args)
 Else
 UpdateListViewWithMatrix(listView1, M3)
 End If
 End If
 End While
 End Sub

Since the AutoResetEvent class is derived from the WaitHandle class it is
important to understand the methods of WaitHandle. Section 8.3 discusses the
WaitHandle class in detail.

8.3 WAITHANDLE

WaitHandle is an abstract base class. This means that no instance of it can be created.
Classes that are derived from WaitHandle can be created, assuming they are not
abstract base classes themselves. In section 8.2 we discussed one class that is derived
from WaitHandle, the AutoResetEvent class. In this section we discuss three of
the methods of the WaitHandle class: WaitOne, WaitAll, and WaitAny.

8.3.1 WaitOne

WaitOne is used to wait for a class that’s derived from WaitHandle to reach a sig-
naled state. In the last section we covered one way AutoResetEvent, which is
derived from WaitHandle, becomes signaled.

WaitOne WaitOne is an instance method of all classes derived from WaitHandle.
It attempts to put the instance of the object it is associated with into the
WaitSleepJoin state. If it is successful it returns true; otherwise, it returns
false. A timeout value can optionally be included.

Change to
signaled

Wait until
UpdateUIEvent.Set
is called
WAITHANDLE 147

Net_Dennis.book Page 148 Thursday, October 31, 2002 4:04 PM
WaitOne returns a Boolean value that indicates it is signaled. In the case where
WaitOne is invoked with no parameters, it will always return true because it blocks
until it becomes signaled. If it returns, it must have been signaled. So in the next
example ReceivedSignal will always be true:

Bool ReceivedSignal = TheEvent.WaitOne();

The other versions of WaitOne accept two parameters. The first parameter is a timeout
value, either an integer or a TimeSpan object. If it is an integer, the value indicates
how many milliseconds to wait. If the instance of AutoResetEvent becomes sig-
naled before the timeout period WaitOne will return true.

The second parameter, exitContext, to the timed-out version of WaitOne is a
Boolean that controls how WaitOne behaves when it is invoked from within a syn-
chronized context. If the second parameter is false, WaitOne behaves the same as it
does when it is called with no parameters, except a timeout value can be specified. If the
exitContext parameter is true and the WaitOne method is invoked from within a
synchronized context, the context is exited before the thread enters the WaitSleep-
Join state. The context is then reentered when the thread exits the WaitSleepJoin
state. Unless the COM+ approach to synchronization is being used, there is no reason
to be concerned with this parameter. If the Synchronization attribute is being
used on the class, then the value should be set to true.

private void ThreadMethod()
 {
 try
 {
 bool ReceivedSignal;
 for (int i=0;i<10;i++)
 {
 // ExitContext is true == Deadlock
 ReceivedSignal =TheEvent.WaitOne(2000,ExitContext);
 if (ReceivedSignal)
 {
 Console.WriteLine("received signal");
 }

exitContext
Parameter

The exitContext parameter of WaitOne controls how the method
behaves when invoked from within a synchronized context. If WaitOne is
invoked in a synchronized context and the exitContext parameter is
not true, deadlock will likely occur.

Listing 8.2 Specifying if the current context should be exited before the wait

begins (C#)

Exit the context
before the wait

begins
148 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 149 Thursday, October 31, 2002 4:04 PM
 else
 {
 Console.WriteLine("Timed Out");
 }
 }
 }

If the Synchronization attribute is set and the class is derived from Context-
BoundObject, then any wait methods should have the exitContext flag set to
true. Failure to do so results in a deadlock (figure 8.3). If the waiting thread enters the
WaitSleepJoin state before exiting the synchronized context no other thread can
enter that context until the waiting thread exits. If WaitOne is used, the thread will
never exit and the process will need to be terminated.

If this form of synchronization is being used, ensure that the Synchronization
attribute on the class indicates that the class should be reentrant. Waiting in a syn-
chronized context should be avoided; in those cases where it cannot, ensure that the
exitContext parameter is set to true.

Figure 8.3 is a simplified version of the context bound object’s issue with waiting
on events.

The other forms of the wait methods also contain the exitContext parameter. The
behavior is the same for each of those methods.

8.3.2 WaitAll

Suppose that you have a large amount of work to accomplish. It would be nice to split
it up among multiple threads. Since there is no guarantee that the threads will end their
work at the same time, it is important to have a means to wait for all of them to finish.
WaitAll is a shared/static method on the WaitHandle class. It allows the caller to
wait until all elements in an array of WaitHandle-derived classes become signaled.

Figure 8.3 Context synchronization can result in deadlock if the correct value is not passed to

exitContext.
WAITHANDLE 149

Net_Dennis.book Page 150 Thursday, October 31, 2002 4:04 PM
WaitAll WaitAll is a shared/static method of the WaitHandle class. It has three
forms, all of which accept an array of WaitHandle-derived objects. An op-
tional timeout and exitContext parameter can also be passed.

In Listing 8.3 the call to WaitHandle.WaitAll will only return if all elements in
FinishedState become signaled.

. . .
 Private finishedState() As AutoResetEvent
. . .
 Private Sub ManagerMethod()
 Dim i As Long
 Dim signaled As Boolean
 Dim tmpObject As Object
 While True
 signaled = workAvailable.WaitOne(1000, False)
 If signaled Then
 WaitHandle.WaitAll(finishedState)
 ' Wait for all threads to finish their work
 If Not notify Is Nothing Then
 ' Gather up the results and send them back
 resultObjects = New ArrayList()
 For i = 0 To workers.Length - 1
 tmpObject = workers(i).GetResults
 While Not tmpObject Is Nothing
 resultObjects.Add(tmpObject)
 tmpObject = workers(i).GetResults
 End While
 Next
 notify(resultObjects)
 notify = Nothing
 End If
 finishedWithWork.Set()
 End If
 End While
End Sub

Listing 8.3 is from a class library that creates a configurable number of threads and
distributes work to each. This is very similar to ThreadPool, discussed in chapter 10.
The basic architecture of the component is described in figure 8.4.

The class library consists of a manager class that manages a collection of threads. This
allows the complexity of thread management to be encapsulated in a single location. The
manager distributes work to each thread and then waits until they all finish their work.
The WaitAll method is used to wait until each thread signals their work is finished
using their AutoResetEvent. When all threads have finished executing, the manager
thread collects the results and invokes a delegate that returns them to the calling class.

Listing 8.3 WaitAll is used to wait for all objects to become signaled. (VB.NET)

Allocates an
array to pass
to WaitAll

Returns when all
elements become
signaled
150 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 151 Thursday, October 31, 2002 4:04 PM
Matrix multiplication is a good candidate for distributing work to threads. Recall that
each output cell is calculated independently. Figure 8.5 shows how the highlighted cell
can be calculated on a thread independent of other calculations.

WaitAll allows for timed-out operation in the same way WaitOne does. A timeout
value can be specified, either as an integer indicating the number of milliseconds or as
a TimeSpan object. The ExitContext parameter is also present. Its behavior is
the same as it is for WaitOne.

8.3.3 WaitAny

Suppose that you wanted to know when one AutoResetEvent, out of many,
becomes signaled. The WaitHandle.WaitAny method accepts an array of Wait-
Handle objects and waits until one of them becomes signaled or an optional time-
out expires. If one of the elements in the array becomes signaled, the index of that

W
AI

TA
LL

RE

ST
RI

CT
IO

NS

• The number of objects that can be waited on depends on the OS. Under
current Windows systems it is 64.

• Duplicate WaitHandle objects are not allowed.
• Null objects are not allowed in the array of WaitHandle objects.
• All objects in the array must be derived from WaitHandle, directly or

indirectly.

Figure 8.4 High-level architecture of a ThreadPool-like implementation.

Figure 8.5 Since the output for the top-right cell does not depend on any other output cell, it

can be calculated independently.
WAITHANDLE 151

Net_Dennis.book Page 152 Thursday, October 31, 2002 4:04 PM
element is returned. If no element becomes signaled and a timeout occurs, the con-
stant WaitHandle.WaitTimeout is returned. If more than one element becomes
signaled, the return value is the index of the lowest element to become signaled.

WaitAny WaitAny is a static method of the WaitHandle class. It accepts an array
of WaitHandle references. If one of the WaitHandles in the array be-
comes signaled, its index is returned. If a timeout is specified and no
WaitHandle becomes signaled during the timeout period, the constant
WaitHandle.WaitTimeout is returned.

Suppose you had an array of WaitHandle-derived objects that contained five ele-
ments. If elements two and four become signaled during a call to WaitAny on that
array, the return value would be 1. The return value is the zero-based index, so the
second element would correspond to a return value of 1.

The example from the last section was a component that allowed for easy distribution
of work among multiple threads. It relied on each worker thread having a queue to
store work in. This allowed more than 64 tasks to be queued up at once. Figure 8.6
shows a different architecture.

Instead of the queue being in the worker class, it is in the manager class. This allows
for more flexibility. Suppose you only wanted to process work until a solution is found.
Using the manager as the means of distributing the work makes this much simpler.
The way the manager works is that a collection of work items is added using the
DoWork method. These entries are added to the manager’s work queue and the man-
ager is informed that there is work to do. It does a WaitAny on the workers to find
one which is ReadyForWork. When one is found, work is assigned to it from the
work queue. Once the thread has completed its work, it sends ReadyForWork back

WaitAny
Restrictions

WaitAny is bound by the same restrictions as WaitAll.

Figure 8.6 A refined manager/worker architecture
152 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 153 Thursday, October 31, 2002 4:04 PM
to the signaled state and the manager picks up the completed element. Listing 8.4
demonstrates the basic elements of the architecture presented in figure 8.5.

. . .
private AutoResetEvent[] FinishedState;
. . .
FinishedState = new AutoResetEvent[HowManyWorkers];
for (long i = 0;i<HowManyWorkers ;i++)
{
 Workers[i] = new ClassWorkUnit("Worker" + i.ToString());
 FinishedState[i] = Workers[i].Finished;
}
. . .
bool Signaled ;
int ThreadReadyForWork;
while (true)
{
 Signaled = WorkAvailable.WaitOne(100, false);
 if (Signaled)
 {
 ThreadReadyForWork= WaitHandle.WaitAny(FinishedState,100,false);
 if (ThreadReadyForWork != WaitHandle.WaitTimeout)
 {
 Unit WorkUnit = Workers[ThreadReadyForWork].GetResults();
 if (WorkUnit != null)
 CompletedQueue.Enqueue(WorkUnit);
 WorkUnit =null;
 if (WorkQueue.Count > 0)
 {
 WorkUnit = (Unit) WorkQueue.Dequeue();
 if (WorkUnit != null)
 Workers[ThreadReadyForWork].Work(WorkUnit);
 }

The basic concept is that the worker thread waits for an AutoResetEvent to become
signaled saying that there is work to do. Once it completes that work, it sets Ready-
ForWork to signaled. One interesting point with this approach is that ReadyForWork
is created initially signaled. The following statement creates the AutoResetEvent
and sets it to being initially signaled:

ReadyForWork = new AutoResetEvent(true);

As stated earlier, if more than one element in the array being waited upon becomes
signaled, the lowest index corresponding to a signaled object will be returned. Figure 8.7
demonstrates this concept.

We’ve examined the methods of the WaitHandle class; now let’s look at the
ManualResetEvent and Mutex classes that are derived from WaitHandle.

Listing 8.4 A revised work manager using queues in the manager object (C#)

Declares an array of
AutoResetEvents

Allocates the array of
AutoResetEvents

Allocates the
worker class

Assigns the element
the WaitHandle array
an AutoResetEvent

Waits for one of the
AutoResetEvents to

become signaled
WAITHANDLE 153

Net_Dennis.book Page 154 Thursday, October 31, 2002 4:04 PM
8.4 MANUALRESETEVENT

Suppose that you want to know if an AutoResetEvent object is signaled. One way
you could do this is to call WaitOne on it, passing in zero for the wait time. If the
AutoResetEvent were not signaled, it would return false. If it were signaled, it
would return true. The problem is that when an AutoResetEvent is signaled and a
wait is performed on it, the object automatically switches to being not signaled. This
means that if one thread were inspecting the state of things it would change them by
observing them. To address this and similar issues, we can use ManualResetEvent.
As the name indicates, the state of the event does not change when it is waited on. The
behavior can be thought of as being similar to a water faucet. When turned on, it will
stay on until it is turned off. This contrasts with the AutoResetEvent, which turns
itself off as soon as someone notices that it is on.

Listing 8.5 shows an example that demonstrates using a ManualResetEvent object.

Private ReadyForWork() As ManualResetEvent
. . .
ReDim ReadyForWork(HowManyWorkers - 1)
. . .
 For i = 0 To HowManyWorkers - 1
 Workers(i) = New ClassWorkUnit("Worker" + i.ToString())
 ReadyForWork(i) = Workers(i).ReadyForWork
 ResultsReady(i) = Workers(i).ResultsReady
Next
. . .
Public Function WorkerThreadAvailability() As Boolean()
Dim Results() As Boolean
ReDim Results(Workers.Length - 1)

Figure 8.7

The WaitAny method always returns

the index of the lowest signaled element

in the wait array.

Manual-
ResetEvent

The ManualResetEvent is a synchronization mechanism that remains in
a signaled state regardless of how many times a wait method is called on it.
It must be changed from the signaled state using the Reset method.

Listing 8.5 The ManualResetEvent offers greater control (VB.NET).

Declares an array of
ManualResetEvents

Resizes the array to the
number of workers

Retrieves the Worker’s
instance of the
ManualResetEvent
154 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 155 Thursday, October 31, 2002 4:04 PM
Dim i As Long
For i = 0 To Workers.Length - 1
 Results(i) = ReadyForWork(i).WaitOne(0, False)
Next
Return Results
End Function

To change an instance of the ManualResetEvent class from being signaled to not,
we use the Reset method. Reset returns a Boolean indicating the success of the
operation. As with all operations that return a value, ensure that the operation succeeds.

If Not ReadyForWorkEvent.Reset() Then
 Throw New Exception("Unable to reset ReadyForWorkEvent")
End If

Instances of the ManualResetEvent class provide a robust means of synchronizing
activity. They provide a high degree of control and are easy to use. They can be used
with the WaitOne, WaitAny, and WaitAll methods.

TIP The WaitHandle.WaitTimeout constant is currently 258.

Table 8.1 compares the results of the wait methods of AutoResetEvent and Manual-
ResetEvent.

Table 8.1 Comparison of AutoResetEvent and ManualResetEvent

Statements AutoResetEvent ManualResetEvent

Return

Code
Signaled

Return

Code
Signaled

TheEvent.Set() True Yes True Yes

TheEvent.WaitOne(0, False) True Yes True Yes

TheEvent.WaitOne(0, False) False True Yes

TheEvent.Reset() True True

TheEvent.WaitOne(0, False) False False

TheEvent.Set() True Yes True Yes

WaitHandle.WaitAny(H, 0, False) 0 Yes 0 Yes

WaitHandle.WaitAny(H, 0, False) 258 0 Yes

TheEvent.Reset() True True

WaitHandle.WaitAny(H, 0, False) 258 258

TheEvent.Set() True Yes True Yes

WaitHandle.WaitAll(H, 0, False) True Yes True Yes

WaitHandle.WaitAll(H, 0, False) False True Yes

TheEvent.Reset() True True

WaitHandle.WaitAll(H, 0, False) False False

Inspects the signaled
state of the
ManualResetEvent
MANUALRESETEVENT 155

Net_Dennis.book Page 156 Thursday, October 31, 2002 4:04 PM
The Return Code column under each type of reset event indicates the value returned
by the statement. The Signaled column indicates if the object is signaled. Notice that
ManualResetEvent’s signaled state does not change except for when Set and
Reset are invoked on it. The value 258 corresponds to the WaitHandle.Wait-
Timeout constant.

TIP If multiple threads manipulate the same ManualResetEvent, a synchro-
nization block may be needed to ensure proper execution.

Both the manual and autoreset events are useful constructs. Many things can only be
accomplished by using a ManualResetEvent. One word of warning, the following
instruction is atomic.

TestAutoEvent.WaitOne()

While similar statements with a ManualResetEvent are not.

TestManualEvent.WaitOne()
TestManualEvent.Reset()

To ensure proper execution, enclose the preceding lines in a synchronization block.

8.5 MUTEX CLASS: WAITONE AND
RELEASEMUTEX

Suppose that you wanted to use a single text file to store the output of multiple threads.
We’ve seen how race conditions can happen. Any time a shared resource is used, there
is the chance of a race condition. Since a file might be accessed not only by multiple
threads but also multiple processes, the operating system provides for various file-sharing
restrictions.

. . .
public class ClassSafeFile
{
 private string Filename;
 private Mutex TheMutex;
 public ClassSafeFile(bool UseMutex,string Filename)
 {
 if (UseMutex)
 {
 TheMutex=new Mutex(false,"Manning.Dennis.Threading.Ch8.S8");

 }
 this.Filename = Filename;
 }
 public void Write(string Contents)
 {
 int ByteCount = System.Text.Encoding.Unicode.GetByteCount(Contents);
 byte[] Bytes = System.Text.Encoding.Unicode.GetBytes(Contents);

Listing 8.6 Using a Mutex to guard a shared text file (C#)

Creates a Mutex
that is not

initially signaled
156 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 157 Thursday, October 31, 2002 4:04 PM
 FileStream TheStream;
 bool Success = true;
 if (TheMutex != null)
 {
 Success = TheMutex.WaitOne(10000,false);
 }

 if (Success)
 {
 try
 {
 TheStream = File.Open(
 Filename,
 FileMode.
 OpenOrCreate,
 FileAccess.Write,
 FileShare.Read);
 TheStream.Seek(0,SeekOrigin.End);
 TheStream.Write(Bytes,0,ByteCount);
 TheStream.Close();
 }
 finally
 {
 if (TheMutex != null)
 {
 TheMutex.ReleaseMutex();
 }
 }
 }
 else
 {
 throw new Exception("Timed out waiting for File");
 }
 }
}
. . .

Listing 8.6 allows multiple threads to read the file but only one to write. If two threads
attempt to open a file for write simultaneously, a System.IO.IOException is
raised. This exception will likely be handled by waiting for a period of time and then
attempting to open the file again. An alternative is to synchronize access to the file.

Mutex A Mutex is a named synchronization object derived from WaitHandle
that allows for creation of mutually exclusive regions of code.

A Mutex is a synchronization construct that allows for the creation of a mutually exclu-
sive region of code. A Mutex serves much of the same function as Monitor.Enter
and Monitor.Exit. If using Enter and Exit can solve a problem, they should be
used. A Mutex takes roughly two orders of magnitude longer to acquire and release a
lock than a monitor. That means that it takes roughly 100 times longer to acquire

Waits for up to 10
seconds trying to
acquire the lock

Releases the
acquired Mutex
MUTEX CLASS: WAITONE AND RELEASEMUTEX 157

Net_Dennis.book Page 158 Thursday, October 31, 2002 4:04 PM
and release a Mutex than it does to do a Monitor.Enter and Monitor.Exit.
Table 8.2 offers a comparison of the Mutex class to the Monitor class.

Mutex offers several benefits over Monitor. The biggest is that it is derived from
WaitHandle and can be used with WaitOne, WaitAny, and WaitAll. This
means that a thread can use the WaitAll method and wait until it acquires all of the
Mutex in an array. This would be very difficult to do using Monitor.

Mutex is signaled when no thread owns it. When ownership of Mutex is acquired
using one of the wait methods, it is set to unsignaled. Mutex can be created in the
unsignaled state. This means the thread that creates Mutex acquires ownership of it. To
create Mutex that is initially owned, pass in true for the initiallyOwned parameter
of the constructor. When ReleaseMutex is called, Mutex is no longer owned and
becomes signaled. Additionally, if a thread that owns Mutex terminates normally, the
Mutex is released and becomes signaled.

When Mutex is created, it is assigned a name, which should be unique. If Mutex
with the supplied name exists, it is returned; otherwise, a new Mutex is created. As long
as a thread retains a reference to the Mutex, it will continue to exist. At the point the
last thread with a reference to a Mutex terminates, the Mutex is destroyed. Addition-
ally, a thread can call the Close method on the Mutex class to release the Mutex.
Once a Mutex has been released, it cannot be used.

Since a Mutex has a name, it can be used across processes. In listing 8.6 only one thread
of one process can access the file at a point in time. The other threads will wait, for at
most ten seconds, to acquire the file. This approach can be used with any shared resource.

The cost of using Mutex is very high compared to using Monitor. The reason
for the difference in performance is that Mutex is a kernel object. Mutex is a very
powerful construct. Because of its performance it should only be used when a faster
synchronization mechanism will not suffice.

Table 8.2 Comparison of Mutex and Monitor

Monitor Mutex

High performance Y

Allows for object being initially owned Y

Timed-out lock acquisition Y Y

Waits for one of many locks Y

Waits for all of many locks Y

Cross-process support Y

Can lock on any object Y

Tests for signaled Y Y

Support for COM+ synchronization Y

Named Y

The number of releases must match the number acquires Y Y
158 CHAPTER 8 WAITHANDLE CLASSES

Net_Dennis.book Page 159 Thursday, October 31, 2002 4:04 PM
8.6 SUMMARY

In this chapter we’ve covered manual synchronization constructs. As with most things,
the manual classes offer higher flexibility at the cost of ease of use and in some cases
performance. Understanding when to use each of the synchronization classes is an
important lesson and one that will come with time. A guiding principle should be to
use the highest performance, least complex solution. There will be requirements that
dictate which sort of synchronization to use; for example, if cross-process synchroniza-
tion is required, then the Mutex class is a likely candidate for the solution. Likewise,
if a single process is involved and the highest level of performance is required, likely a
Monitor implementation will be required.

The next chapter deals with a reader/writer lock. Reader/writer locks can be created
from synchronization primitives. They offer a solution to a very specific problem. By
being familiar with the various tools at your disposal, you’ll be able to better choose
which tool to use in a given situation.
SUMMARY 159

Net_Dennis.book Page 160 Thursday, October 31, 2002 4:04 PM
C H A P T E R 9

Reader/Writer lock

9.1 Acquiring a read lock from a ReaderWriterLock 161
9.2 Acquiring a writer lock from a ReaderWriterLock 166
9.3 ReleaseLock and RestoreLock 179
9.4 Summary 181
ReaderWriterLock is a synchronization mechanism allowing access to data. It
allows multiple threads to read the data simultaneously, but only one thread at a time
to update it. While a thread is updating, no other thread can read the data. The name
is misleading. It may cause you to think there are two locks; in reality there is a single
lock that restricts both reading and writing.

Think of how a conversation in a group generally goes. One person talks while the
others listen. Think of how inefficient a conversation would be if only one person
could talk to one person in a group at a given time. This is the very reason that con-
ference calls are used. In business, it is often beneficial to have a single conference call,
involving all of the parties at once, rather than have multiple person-to-person calls.
A ReaderWriterLock allows multiple threads to read data at the same time. The
only restriction is that a thread cannot modify the data while someone is reading it.

The majority of data accesses are reads, but occasionally a thread needs to change a
value. This is problematic in that one thread may modify a data element while another
one is accessing it. To combat this, the choices are to protect the element with a syn-
chronization lock, such as lock and SyncLock, or to use ReaderWriterLock.
160

Net_Dennis.book Page 161 Thursday, October 31, 2002 4:04 PM
This chapter uses a simulated auction to demonstrate this concept. To test our syn-
chronization system we can utilize multiple threads. Each thread will have a list of items
it is instructed to acquire, along with an allotment of bidding points. Since an auction
involves many reads to data and a few writes, it is ideal for demonstrating the concepts
of a reader/writer lock.

The .NET implementation of ReaderWriterLock is efficient enough for highly
granular use. In our example, each auction item has its own ReaderWriterLock,
allowing for a higher level concurrency and ensuring fairness in lock allocation
between threads. When a thread requests a write lock, no other threads will be granted
a read lock until the write lock request is satisfied.

The ReaderWriterLock is a very useful construct. Most environments force
developers to write their own or purchase a third-party tool, but the .NET platform
makes this construct available for general use. ReaderWriterLocks are a powerful
tool for selectively guarding data.

9.1 ACQUIRING A READ LOCK FROM
A READERWRITERLOCK

The read portion of the ReaderWriterLock is the means that a thread uses to indi-
cate that it is reading the protected data. This is needed because the determination of
whether a thread can write to the protected data is based on the presence of one or
more threads reading it. It doesn’t make much sense for a read lock to be used with-
out a write lock. If no thread is changing the data, there isn’t much need in restricting
access to it, since the data must be constant in nature. Figure 9.1 presents the logical
structure of a ReaderWriterLock.

Remember that all access to a data element must be restricted to effectively protect
the data. If there are ten ways to examine and three ways to update a data element, but
only nine of the possible reading paths are protected, the concurrency issues that the
ReaderWriterLock is supposed to be avoiding will still occur.

Figure 9.1 Logical structure of the ReaderWriterLock
ACQUIRING A READ LOCK FROM A READERWRITERLOCK 161

Net_Dennis.book Page 162 Thursday, October 31, 2002 4:04 PM
9.1.1 Acquiring and releasing a reader lock

Suppose that you wanted to control access to data elements so that multiple consumers
of that data could read it concurrently without data corruption. One way to do this is
to use a ReaderWriterLock.

A ReaderWriterLock selectively allows access to data. It allows multiple threads
to acquire a reader lock, which is acquired when the thread will be performing only
read operations. Nothing keeps an errant thread from acquiring a reader lock and
performing write operations. Care should be taken to ensure that only read opera-
tions occur in a region guarded by a read lock.

The power of a ReaderWriterLock is that it allows read operations to be log-
ically separated from write operations. Since multiple read operations do not result in
data corruption, there is no reason that multiple threads cannot simultaneously read
a variable without ill effects.

To acquire a read lock, we invoke the AcquireReadLock method on the instance
of the lock we wish to acquire. AcquireReadLock accepts a timeout value as its
only parameter. As with many other synchronization methods, the timeout can either
be an integer specifying the number of milliseconds to wait or an instance of the
TimeSpan class.

In listing 9.1, we pass in the constant Timeout.Infinite to indicate we wish
to wait indefinitely until we are able to acquire a read lock. We are assured that when
the method returns we have acquired a read lock. As a general rule, using Time-
out.Infinite is a bad idea. A better approach is to supply a timeout value because
it removes the possibility of a ReaderWriterLock-related deadlock. To keep this
chapter’s examples simple, we use Timeout.Infinite.

Once a thread has acquired a read lock, it can perform any reads that are required, and
once those reads are complete it should release the lock using the ReleaseReadLock
method. The number of calls to ReleaseReadLock must match the number of calls
to AcquireReadLock. If a thread fails to release the lock the same number of times
it acquires the lock a write lock will not be granted to other threads. This will lead to
deadlock if Timeout.Infinite is being used, as well as stopping the granting of
any write locks.

TIP When the number of releases is greater than the number of acquires, a Sys-
tem.ApplicationException is thrown.

If a thread attempts to release a lock that it does not own, an exception is generated
with the message “Attempt to release mutex not owned by caller.” This might make you
think that the ReaderWriterLock is implemented using the Mutex synchroniza-
tion primitive we covered in section 8.5; however, it is not. This is a case of a somewhat

Reader-
WriterLock

A ReaderWriterLock is a synchronization mechanism that allows con-
current data reading but restricts data writing to occur only when no readers
are present.
162 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 163 Thursday, October 31, 2002 4:04 PM
misleading error message. If this exception is encountered, it indicates that the number
of releases is greater than the number of acquires.

Private ItemLock As ReaderWriterLock
. . .
Public ReadOnly Property CurrentPrice() As Decimal
Get
 ItemLock.AcquireReaderLock(Timeout.Infinite)
 Try
 Return TheCurrentPrice
 Finally
 ItemLock.ReleaseReaderLock()
 End Try
End Get
End Property

In Listing 9.1 notice that the ReleaseReadLock is located in a Finally state-
ment. This ensures that if an exception is generated while the thread owns the read
lock it will correctly be released. This is a good example of how Finally clauses
should be used with exception handling. Figure 9.2 shows how multiple threads can
access shared data using a ReaderWriterLock. Note that the shared data is not
actually contained within the ReaderWriterLock but is guarded by it.

Each thread acquires the lock, accesses the data, and releases the lock. Since both
threads are reading the data, there is no restriction on when the threads can access the data.

In this section we waited indefinitely to acquire the read lock. In the next section
we’ll discuss how to wait for a predetermined period of time. Once that time has
expired, we need a means of determining if we have acquired the lock. Since Acquire-
ReaderLock does not return a value, we must use the IsReaderLockHeld prop-
erty that we discuss in the next section.

Listing 9.1 Acquiring and releasing a read lock (VB.NET)

Declares the
ReaderWriterLock

Waits indefinitely
for a reader lock

Releases the
reader lock

Figure 9.2 Two threads can read the shared data using the ReaderWriterLock to protect

its value.
ACQUIRING A READ LOCK FROM A READERWRITERLOCK 163

Net_Dennis.book Page 164 Thursday, October 31, 2002 4:04 PM
9.1.2 IsReaderLockHeld

Suppose you wanted to wait a certain amount of time for a lock to be acquired. The
parameter to the AcquireReaderLock method specifies how long to wait for a
reader lock to become available. As we saw in the previous section, it can either be an
integer specifying the number of milliseconds to wait or a TimeSpan object. If the
lock is not acquired in the specified time, an ApplicationException is raised.
Listing 9.2 demonstrates one way of acquiring a reader lock and utilizing a timeout.

. . .
public decimal CurrentPrice
{
 get
 {
 do
 {
 try
 {

 ItemLock.AcquireReaderLock(1000);
 }
 catch(System.ApplicationException ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 }
 } while (!ItemLock.IsReaderLockHeld);
 try
 {
 return TheCurrentPrice;
 }
 finally
 {
 ItemLock.ReleaseReaderLock();
 }
 }
}
. . .

The code loops until it acquires the reader lock; if it takes more than one second to
acquire the lock, an ApplicationException is raised. The property IsReader-
LockHeld returns a Boolean value true if the current thread has a reader lock to the
data, false if it does not.

Listing 9.2 An improved way of acquiring a read lock (C#)

IsReader-
LockHeld

IsReaderLockHeld is a property of the ReaderWriterLock class that
indicates if the thread on which the executing code inspects the property
currently owns a reader lock.

Attempts to acquire
a reader lock

Determines if the
lock was acquired

Releases
the lock
164 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 165 Thursday, October 31, 2002 4:04 PM
Another use for the IsReaderLockHeld property is to determine if invoking the
ReleaseReaderLock method results in the lock being freed:

try
{
 return TheCurrentPrice;
}
finally
{
 ItemLock.ReleaseReaderLock();
 if (ItemLock.IsReaderLockHeld)
 {
 throw new Exception("Reader Lock still held after release");
 }
}

This can help detect situations where the number of releases is less than the number
of acquires. The closer the error-detecting code is to the error, the easier it is to detect
the error. If the error were not detected here, the mistake would likely manifest itself
by having no other thread able to access the read lock. This would make the pro-
gram hang. These sorts of issues are much more difficult to resolve without error-
detecting instructions.

TIP Use the IsReaderLockHeld property to determine if a lock is held before
AcquireReaderLock and after ReleaseReaderLock. This helps track
down the number of acquires not matching the number of releases. Since
there is a performance penatly, this sort of checking should only be per-
formed during development. Release builds should not include this check.

When faced with an inconsistent or undesirable outcome, the first step should be to
include robust error-detecting and -handling code. This is an area where exceptions
and assertions can play a key role. Additionally, it is a good idea to determine if a
thread already has a reader lock before the acquire method is called. The following
code demonstrates a more defensive way of dealing with the acquire method:

. . .
if (ItemLock.IsReaderLockHeld)
{
 throw new Exception("Reader Lock held before acquire");
}
do
{
 try
{
 ItemLock.AcquireReaderLock(1000);
. . .

The concept here is to make sure that the conditions of a thread are in the state you
think they are. If not, throw an exception to help track down the error.
ACQUIRING A READ LOCK FROM A READERWRITERLOCK 165

Net_Dennis.book Page 166 Thursday, October 31, 2002 4:04 PM
9.2 ACQUIRING A WRITER LOCK FROM
A READERWRITERLOCK

In the previous section we discussed the reader portion of ReaderWriterLock.
Now we turn to the write portion. The purpose of a write lock is to ensure that no
threads are reading data while it is being updated.

9.2.1 Acquire, release, and IsLockHeld

The goal of a write lock is to enable multiple threads to read shared date while restrict-
ing write access in a way that ensures data corruption does not occur. We have already
covered the read lock. Multiple threads can safely read data at the same time. Only one
thread can be modifying data at one time. While a thread is modifying the shared data,
no other thread can access the data without the risk of data corruption. In terms of our
simulated auction, a write lock allows a new bid to be accepted. Listing 9.3 demon-
strates the bidding process.

Public Sub Bid(ByVal Amount As Decimal, ByVal BiddersName As String)
 If ItemLock.IsWriterLockHeld Then
 Throw New Exception("Writer lock held before acquire")
 End If
 Try
 Do
 Try
 ItemLock.AcquireWriterLock(TimeoutValue)
 Catch Ex As System.ApplicationException
 System.Diagnostics.Debug.WriteLine(Ex.Message)
 End Try
 Loop While Not ItemLock.IsWriterLockHeld
 If AuctionComplete Then
 Throw New Exception("Auction has ended")
 End If
 If (Amount > TheCurrentPrice) Then
 TheCurrentPrice = Amount
 TheBiddersName = BiddersName
 Else
 Throw New Exception("Bid not higher than current price")
 End If
 Finally
 ItemLock.ReleaseWriterLock()
 If (ItemLock.IsWriterLockHeld) Then
 Throw New Exception("Writer Lock still held after release")
 End If
 End Try
End Sub

Listing 9.3 A bid must be higher than the current price (VB.NET).

If a write lock
is held, throw
an exception

Loop until the
writer lock is
acquired

Once the update is
complete, release
the writer lock

Try to acquire
the lock
166 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 167 Thursday, October 31, 2002 4:04 PM
As you can see in listing 9.3, it is similar to AcquireReadLock in that it accepts a
timeout parameter. The AcquireWriteLock method is, obviously, used to acquire
a write lock.

If the write lock cannot be acquired within the specified duration, an exception is raised.
Figure 9.3 shows the relationship between a read lock and a write lock.

At any given point a thread cannot have a write lock and some other thread have
a read lock on the same instance of the ReaderWriterLock class. When a thread
wishes to acquire a write lock, it calls AcquireWriteLock. It then must wait until
all threads that currently have read locks release them. Once all threads have released
the read locks, the requesting thread is granted its write lock. While that thread has a
write lock, no other threads will be able to acquire a read or write lock.

Acquire-
WriterLock

AcquireWriterLock is a method on the ReaderWriterLock class
that allows a thread to request ownership of a write lock. It accepts a timeout
parameter and throws an ApplicationException if the lock cannot be
acquired in the specified time period.

Figure 9.3 When a write lock has been granted, no thread will be granted a read or write lock

until it is released.
ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 167

Net_Dennis.book Page 168 Thursday, October 31, 2002 4:04 PM
To release a write lock, a thread uses the ReleaseWriterLock method of the
ReaderWriterLock class. If the thread does not own the lock, an Application-
Exception is raised with the message “Attempt to release mutex not owned by
caller.” Once the thread has released its write lock, other threads are able to acquire
their desired locks. This ensures that the data a thread is viewing doesn’t change while
it is looking at it. Care should be taken to ensure that a thread does not modify shared
data unless it currently owns a write lock.

9.2.2 UpgradeToWriterLock

There are times when it’s unclear if the lock required will be a reader or a writer. For
example, in the auction simulation, in order to determine if a new bid is higher than
the existing bid we must first look at what the current bid is (listing 9.4). Once we’ve
examined the current bid, we can see if the new bid is higher.

public void Bid(decimal Amount, string BiddersName)
{
 if (ItemLock.IsWriterLockHeld)
 {
 throw new Exception("Writer Lock held before acquire");
 }
 if (ItemLock.IsReaderLockHeld)
 {
 throw new Exception("Reader Lock held before acquire");
 }
 ItemLock.AcquireReaderLock(Timeout.Infinite);
 try
 {
 if (DateTime.Now > TheAuctionEnds)
 {
 throw new Exception("Auction has ended");
 }
 if (Amount > TheCurrentPrice)
 {
 ItemLock.UpgradeToWriterLock(60000);
 if (!ItemLock.IsWriterLockHeld)
 {
 throw new Exception("Writer Lock not held after upgrade");
 }
 if (Amount > TheCurrentPrice)
 {
 TheCurrentPrice = Amount;
 TheBiddersName=BiddersName;

IsWriter-
LockHeld

IsWriterLockHeld is a property of the ReaderWriterLock class that
allows a thread to determine if it has acquired a write lock on an instance
of the ReaderWriterLock class. If the thread currently owns a write
lock, true is returned.

Listing 9.4 Checks to see if the new bid is higher than the existing (C#)

Initially acquire
a reader lock

See if we need to
acquire a writer lock

Upgrade to
a writer lock

Check to see if
we’re still the
highest bidder
168 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 169 Thursday, October 31, 2002 4:04 PM
 }
 else
 {
 throw new Exception("Bid not higher than current price");
 }
 }
 else
 {
 throw new Exception("Bid not higher than current price");
 }
 }
 finally
 {
 ItemLock.ReleaseReaderLock();
 if (ItemLock.IsWriterLockHeld)
 {
 throw new Exception("Writer Lock still held after release");
 }
 if (ItemLock.IsReaderLockHeld)
 {
 throw new Exception("Reader Lock still held after release");
 }
 }
}

In listing 9.4, it’s unclear if a writer lock is needed until the bid amount is compared
to the current price. In the last section, we dealt with this by acquiring a write lock. A
more optimal solution is to acquire a read lock and determine if a write lock is
required. If it is, we call UpgradeToWriterLock.

The advantage is that we only require a write lock when it is needed. Since write
locks keep all reader locks from accessing data, using them unnecessarily results in
reduced performance. Be careful when upgrading from a read to a write lock. There
is a relatively small chance that during the transition from read to write some other
pending write request may change the value. Figure 9.4 presents a graphical version
of the logic involved.

ReleaseReaderLock
releases both
Reader and Writer

Figure 9.4 Acquiring a read lock
ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 169

Net_Dennis.book Page 170 Thursday, October 31, 2002 4:04 PM
The process begins by the calling thread requesting a read lock (step 1). This causes
an entry to be added to the pending reader requests queue (step 2). Once that lock is
granted (step 3), the calling thread can then request the upgrade to the writer lock.
Figure 9.5 shows the steps involved in the upgrade.

When the calling thread calls UpgradeToWriterLock (step 4), the thread is
removed from the list of active readers and placed in the pending writer requests queue
(step 5). If a request from a different thread is already in the pending writer requests
queue, it will be allowed to gain a write lock before the thread that requested the upgrade.
The reason is the write lock requests are serviced in the order they are received, without
any sort of priority associated with them. Once the requesting thread has been granted
the write lock, it is moved to the active writer location (step 6). Listing 9.5 contains a
class that can be used to see how a value can change during UpgradeToWriterLock.

Imports System.Threading
Public Class SimpleExample
 Dim rwLock As ReaderWriterLock
 Dim protectedValue As String
 Dim pauseThreadTwo As ManualResetEvent
 Dim ThreadOne As Thread
 Dim ThreadTwo As Thread

 Public Sub New()
 protectedValue = "Initial Value"
 rwLock = New ReaderWriterLock()
 pauseThreadTwo = New ManualResetEvent(False)
 End Sub

 Public Sub Test()
 ThreadOne = New Thread(AddressOf MethodOne)
 ThreadOne.Start()

 ThreadTwo = New Thread(AddressOf MethodTwo)
 ThreadTwo.Start()
 End Sub

Figure 9.5 The steps involved in an UpgradeToWriterLock

Listing 9.5 A value can change during an UpgradeToWriterLock
170 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 171 Thursday, October 31, 2002 4:04 PM
 Private Sub MethodOne()
 rwLock.AcquireReaderLock(1000)
 Dim seqNum As Integer = rwLock.WriterSeqNum
 Dim readValue As String = protectedValue
 pauseThreadTwo.Set()
 Thread.Sleep(1000)
 rwLock.UpgradeToWriterLock(10000)
 If (protectedValue <> readValue) Then
 Dim feedback As String
 feedback = "Value Changed:"""
 feedback += readValue
 feedback += """ != """
 feedback += protectedValue + """"
 Console.WriteLine(feedback)
 End If
 rwLock.ReleaseReaderLock()
 End Sub

 Private Sub MethodTwo()
 pauseThreadTwo.WaitOne()
 rwLock.AcquireWriterLock(10000)
 protectedValue = "Set in Method Two"
 rwLock.ReleaseWriterLock()
 End Sub

 Public Sub WaitForFinished()
 ThreadOne.Join()
 ThreadTwo.Join()
 End Sub

End Class

The output produced by listing 9.5 is:

Value Changed:"Initial Value" != "Set in Method Two"

Why not just acquire the write lock while holding the read lock? Consider the exam-
ple in listing 9.6.

ReaderWriterLock RWLock=new ReaderWriterLock();
RWLock.AcquireReaderLock(Timeout.Infinite);
// Read some value
RWLock.AcquireWriterLock(Timeout.Infinite);
// The above instruction will not return
// Write some value
RWLock.ReleaseWriterLock();
RWLock.ReleaseReaderLock();

Listing 9.6 ReaderWriterLock Deadlock example (C#)
ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 171

Net_Dennis.book Page 172 Thursday, October 31, 2002 4:04 PM
The problem is AcquireWriteLock will not return until it has successfully acquired
a write lock and a write lock will not be granted until all read locks are released. Since
the current thread has a read lock, it will never be able to acquire a write lock. This is a
form of deadlock. It is unusual in that only one thread is required to form this deadlock.

Since AcquireWriterLock does not consider which thread owns any outstanding
reader locks, the same thread that is attempting to gain a write lock owns a read lock
and will not be able to acquire the write lock.

An alternative might be to release the read lock before attempting to acquire the write
lock. Listing 9.7 shows how this might be done.

ReaderWriterLock RWLock=new ReaderWriterLock();
RWLock.AcquireReaderLock(Timeout.Infinite);
// Read some value
RWLock.ReleaseReaderLock();
// A different thread may change what was
// previously read during the read lock, this
// will likely result in a race condition.
RWLock.AcquireWriterLock(Timeout.Infinite);
// Change some value
RWLock.ReleaseWriterLock();

When ReleaseReaderLock is called, the read lock is released. There is no way to
regain that lock; instead, a new lock will need to be acquired. The next section discusses
a way of going from a read lock, to a write lock, and then back to a read lock.

9.2.3 DowngradeFromWriterLock

We know how to convert from a read to a write lock. Suppose we want to do the
opposite? UpgradeToWriterLock returns LockCookie, which can be used with
the DowngradeFromWriterLock method to change from a writer lock to a reader
lock. There is no possibility of change between the time DowngradeFromWriter-
Lock is called and the read lock is granted because when moving from a writer to a
reader there is no chance that some other thread is already a reader, or can become one.

This is not true when moving from a reader to a writer. In order to handle possible
race conditions, UpgradeToWriterLock uses the writer request queue. If a thread

Acquiring
a Writer Lock

To acquire a writer lock, all threads with a reader lock, including the thread
requesting the write lock, must release them. UpgradeToWriterLock is
an alternative to releasing the reader lock.

Upgrade-
ToWriter-

Lock

UpgradeToWriterLock is a method on the ReaderWriterLock
class that allows a thread that has a read lock to convert it to a write lock,
without first releasing the read lock.

Listing 9.7 Releasing the read lock and then acquiring a write lock (C#)
172 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 173 Thursday, October 31, 2002 4:04 PM
requests a write lock, it is given the same priority as a thread that is converting from
a reader lock. If the reader request queue was a priority queue, the threads that had
obtained a read lock could potentially starve the threads that attempted a write lock
request directly.

Listing 9.8 demonstrates downgrading from a writer to a reader lock. Note that this can
only be performed if the thread originally obtained a read lock and used the Upgrade-
ToWriterLock method. The cookie returned by UpgradeToWriterLock can
only be used with DowngradeFromWriterLock.

using System;
using System.Threading;
namespace Manning.Dennis
{
 public class DataUD:ThreadedTesterBase
 {

 ManualResetEvent[] interactEvents;

 public DataUD(ref Data pd,string n,string v)
 :base(ref pd,n,v)
 {
 interactEvents =new ManualResetEvent[4];
 for (int i=0;i< interactEvents .Length;i++)
 {
 interactEvents[i]=new ManualResetEvent(false);
 }
 }

 public void Interact(ActionsEnum index)
 {
 interactEvents[(int)index].Set();
 // Give the associated thread time to do its thing
 Thread.Sleep(1000);
 }
 public enum ActionsEnum
 {
 UpgradeToWrite=0,
 DowngradeToRead=1,
 ReleaseRead=2
 }
 protected override void ThreadMethod()
 {

 LockCookie cookie;
 Message("Enter");
 acquireEvent.WaitOne();
 Message("Starting Wait for Read Lock");
 protectedData.rwLock.AcquireReaderLock(Timeout.Infinite);

 Message("+++ UD- Acquired Read Lock");
 string s = protectedData.Value;

Listing 9.8 Using the DowngradeFromWriterLock method
ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 173

Net_Dennis.book Page 174 Thursday, October 31, 2002 4:04 PM
 interactEvents[(int)ActionsEnum.UpgradeToWrite].WaitOne();
 Message("^^^ UD- Upgrading Read Lock");
 cookie=protectedData.rwLock.UpgradeToWriterLock(Timeout.Infinite);

 protectedData.Value= valueToWrite;

 interactEvents[(int)ActionsEnum.DowngradeToRead].WaitOne();
 Message("vvv UD- Downgrading Read Lock");
 protectedData.rwLock.DowngradeFromWriterLock(ref cookie);
 string s2 = protectedData.Value;

 interactEvents[(int)ActionsEnum.ReleaseRead].WaitOne();
 Message("??? UD- Releasing Read Lock");
 protectedData.rwLock.ReleaseReaderLock();
 Message("---Released Read Lock");
 }
 }
}

One of the biggest advantages of the DowngradeFromWriterLock method is
that it will not block. This means that it will immediately return granting the thread
a read lock because there cannot possibly be a read lock at the point a write lock has
been granted. Additionally, at the point the write lock is released, all pending read
locks will also be released.

Listing 9.8 uses a base class that reduces the complexity of the DataUD class. Other
classes use this base class. Listing 9.9 contains the base class code.

using System;
using System.Threading;
namespace Manning.Dennis
{
 public abstract class ThreadedTesterBase
 {
 protected string valueToWrite;

 protected bool acquireCalled;
 protected bool interactCalled;
 protected ManualResetEvent acquireEvent;
 protected ManualResetEvent interactEvent;
 protected Data protectedData;
 protected Thread workerThread;
 protected string name;
 protected void Message(string msg)
 {
 protectedData.Message(msg);
 }
 public void Acquire()
 {
 acquireCalled = true;
 acquireEvent.Set();

Convert the read
lock to a write lock

Change back
to a read lock

Listing 9.9 The base class that listing 9.8 relies on
174 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 175 Thursday, October 31, 2002 4:04 PM
 // Give the associated thread time to do its thing
 Thread.Sleep(1000);
 }
 public void Interact()
 {
 if (!acquireCalled)
 {
 throw new Exception("Call Acquire first");
 }
 interactCalled = true;
 interactEvent.Set();
 // Give the associated thread time to do its thing
 Thread.Sleep(1000);
 }
 protected ThreadedTesterBase(ref Data pd,string name,string valueToWrite)
 {
 this.valueToWrite = valueToWrite;
 acquireCalled = false;
 interactCalled = false;
 acquireEvent = new ManualResetEvent(false);
 interactEvent = new ManualResetEvent(false);
 this.protectedData = pd;
 workerThread = new Thread(new ThreadStart(ThreadMethod));
 workerThread.Name = name;
 this.name = name;

 workerThread.Start();
 }
 protected abstract void ThreadMethod();

 public void WaitForFinish()
 {
 workerThread.Join();
 // Give the associated thread time to do its thing
 Thread.Sleep(0);
 }
 }
}

This base class simplifies the creation of threads used during the testing process. List-
ing 9.10 contains code that drives the example.

 public void UpgradeDowngradeExample()
 {
 Data pdata = new Data();
 DataWriter w1;
 DataWriter w2;
 DataUD ud1;

Listing 9.10 Code that demonstrates that a DowngradeFromWriterLock does

not block
ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 175

Net_Dennis.book Page 176 Thursday, October 31, 2002 4:04 PM
 ud1= new DataUD (ref pdata,"Upgrader1: {0}","Upgrader1");
 w1= new DataWriter(ref pdata,"Writer_1 : {0}","writer_1");
 w2= new DataWriter(ref pdata,"Writer_2 : {0}","writer_2");
 Thread.Sleep(1000);
 w1.Acquire(); // acquire write lock
 ud1.Acquire();
 ud1.Interact(DataUD.ActionsEnum.UpgradeToWrite);
 w1.Interact(); // set value and release lock
 w2.Acquire(); // acquire write lock
 w2.Interact(); // set value and release lock
 ud1.Interact(DataUD.ActionsEnum.DowngradeToRead);
 ud1.Interact(DataUD.ActionsEnum.ReleaseRead);
 w1.WaitForFinish();
 Console.WriteLine("Enter to exit");
 Console.ReadLine();
}

The DataWriter class is contained in listing 9.11.

using System;
using System.Threading;
namespace Manning.Dennis
{
 public class DataWriter :ThreadedTesterBase
 {
 public DataWriter(ref Data protectedData,string name,string valueToWrite)
 :base(ref protectedData,name,valueToWrite)
 {
 }
 protected override void ThreadMethod()
 {
 Message("Enter");
 acquireEvent.WaitOne();
 Message("Starting Wait for Write Lock");
 protectedData.rwLock.AcquireWriterLock(Timeout.Infinite);
 Message("+++Acquired Writer Lock");
 interactEvent.WaitOne();
 Message("Setting value");
 protectedData.Value=valueToWrite;
 Message("???Releasing Writer Lock");
 protectedData.rwLock.ReleaseWriterLock();
 Message("---Released Writer Lock");
 }
 }
}

Listing 9.11 DataWriter class
176 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 177 Thursday, October 31, 2002 4:04 PM
A caution regarding upgrading and downgrading reader locks: A lock should be short-
lived. This will increase concurrency and decrease contention for locks. If a thread
goes from being a reader to a writer and back to a reader, and stays in that state for an
extended period of time, other threads will not be able to acquire a write lock. In general,
locks should not be held the vast majority of the time, and only acquired when needed.
The general rule of acquiring late and releasing early applies.

9.2.4 WriterSeqNum and AnyWritersSince

Suppose you wanted to know if any changes had occurred since you acquired and
released a reader lock. One way to determine this is to use the WriterSeqNum prop-
erty of the ReaderWriterLock object. This property returns a value that can be
used with the AnyWritersSince method to determine if any writer locks have
been released since WriterSeqNum was acquired.

 Public Sub Bid(ByVal Amount As Decimal, ByVal BiddersName As String)
 Dim WriterSeqNum As Integer
. . .
 ItemLock.AcquireReaderLock(Timeout.Infinite)
. . .
 If (Amount > TheCurrentPrice) Then
 WriterSeqNum = ItemLock.WriterSeqNum
 ItemLock.ReleaseReaderLock()
 Thread.Sleep(1000) ' Make the changes more obvious
 ItemLock.AcquireWriterLock(Timeout.Infinite)
 If (ItemLock.AnyWritersSince(WriterSeqNum)) Then
 If (Amount > TheCurrentPrice) Then
 TheCurrentPrice = Amount
 TheBiddersName = BiddersName
 Else
 Throw New Exception("Bid not higher than current price ")
 End If
 Else
 TheCurrentPrice = Amount
 TheBiddersName = BiddersName
 End If
 Else
 Throw New Exception("Bid not higher than current price")
 End If

In listing 9.12 we first acquire a reader lock. To simplify the code we wait indefinitely
for the lock. Once the reader lock is acquired we retrieve the writer sequence number—
the number of nonnested times a write lock has been acquired and released. It starts
at 1 and increases by 1 each time ReleaseWriterLock is invoked by a thread that
results in that thread no longer owning the write lock.

Listing 9.12 WriterSeqNum can be used to see if data has changed (VB.NET).

Retrieve the writer
sequence number
and save it

Look for
new writers
ACQUIRING A WRITER LOCK FROM A READERWRITERLOCK 177

Net_Dennis.book Page 178 Thursday, October 31, 2002 4:04 PM
Table 9.1 demonstrates how various statements impact the values of WriterSeqNum
along with the return value of the AnyWritersSince method.

Notice that initially the WriterSeqNum is one. At the point AcquireWriterLock
executes, the value changes to 2. The method AnyWritersSince returns false until
the second ReleaseWriterLock executes. This is due to the nesting of the write locks.
Notice that there are two calls to AcquireWriterLock and two calls to Release-
WriterLock. The second ReleaseWriterLock actually releases the lock and
indicates that there has been a writer since the sequence number was acquired.

USAGE AnyWritersSince and WriterSeqNum allow for an easy way to deter-
mine if a value might have changed. It allows for a thread to cache values and
increase performance. AnyWritersSince changes when IsWriter-
LockHeld changes from true to false. WriterSeqNum increases when
IsWriterLockHeld changes from false to true.

Writer-
SeqNum

WriterSeqNum is a property of the ReaderWriterLock class that re-
turns an integer that indicates the current number of write locks acquired.

Table 9.1 How Statements Impact WriteSeqNum Values

Statements

Any

Writers

Since

Writer

Sequence

Number

Is Read

Lock Held

Is Write

Lock Held

Dim WSN As Integer N/A N/A N/A N/A

Dim RW As ReaderWriterLock =
New ReaderWriterLock()

N/A 1 F F

RW.AcquireReaderLock(Timeout.Infinite) N/A 1 T F

WSN = RW.WriterSeqNum F 1 T F

RW.ReleaseReaderLock() F 1 F F

RW.AcquireWriterLock(Timeout.Infinite) F 2 F T

RW.AcquireWriterLock(Timeout.Infinite) F 2 F T

RW.ReleaseWriterLock() F 2 F T

RW.ReleaseWriterLock() T 2 F F

RW.AcquireReaderLock(Timeout.Infinite) T 2 T F

WSN = RW.WriterSeqNum F 2 T F

RW.ReleaseReaderLock() F 2 F F

RW.AcquireWriterLock(Timeout.Infinite) F 3 F T

RW.AcquireWriterLock(Timeout.Infinite) F 3 F T

RW.ReleaseWriterLock() F 3 F T

RW.ReleaseWriterLock() T 3 F F
178 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 179 Thursday, October 31, 2002 4:04 PM
The value of WriterSeqNum changes when a thread acquires a write lock for the first
time while the return value for AnyWritersSince changes when a thread releases
the write lock for the last time. Notice the correlation between the change in the return
value of AnyWritersSince and IsWriterLockHeld.

9.3 RELEASELOCK AND RESTORELOCK

When reading a book it’s nice to be able to stop, save your place, and resume. Often a
bookmark is used to keep track of the current location. Similarly, the ReaderWriter-
Lock class allows a thread to release its locks and later restore them. ReleaseLock
is a method on the ReaderWriterLock class that allows a thread to release all locks,
regardless of the nesting depth, and save the state to a lock cookie. Once the state is
stored in the lock cookie, the RestoreLock method can be used to put the lock back
to the same state it was in before ReleaseLock was called. Listing 9.13 demonstrates
the use of ReleaseLock and RestoreLock.

static void TestSimpleReleaseLock()
{

 RW.AcquireWriterLock(Timeout.Infinite);
 LockCookie Lock = RW.ReleaseLock();
. . .
 RW.RestoreLock(ref Lock);
 RW.ReleaseWriterLock();
}
. . .

It is possible that some other thread has acquired a lock during the period between
ReleaseLock and the call to RestoreLock. To handle this situation the Restore-
Lock method blocks until it can acquire the required locks. Unlike the other Reader-
WriterLock methods that acquire locks, there is no means to specify a timeout value.

ReleaseLock ReleaseLock is a method on the ReaderWriterLock that releases all
currently held locks and stores the state information to a LockCookie
structure for later restoration using the RestoreLock method.

The value that ReleaseLock has over releasing the locks using ReleaseReader-
Lock or ReleaseWriterLock is that it can release all locks, regardless of the nest-
ing level, in a single call. If, for instance, a thread determined that it should die, it could
call ReleaseLock. The alternative would be to know what sort of lock is currently
held and the number of times acquire has been called.

RestoreLock RestoreLock is a method of the ReaderWriterLock class that accepts
a reference to a LockCookie as its only parameter. RestoreLock blocks
until it can acquire the required locks.

Listing 9.13 The use of ReleaseLock and RestoreLock (C#)

Saves the current
lock state

Restores the state
of the locks
RELEASELOCK AND RESTORELOCK 179

Net_Dennis.book Page 180 Thursday, October 31, 2002 4:04 PM
The following instruction releases all locks that the current thread has on the RW
instance of ReaderWriterLock:

RW.ReleaseLock();

Instead of using the ReleaseLock method, the following instructions perform
roughly the same function:

while(RW.IsReaderLockHeld)
{
 RW.ReleaseReaderLock();
}
while (RW.IsWriterLockHeld)
{
 RW.ReleaseWriterLock();
}

Since ReleaseLock returns a LockCookie structure we can save the current lock
state for future use. During the period between ReleaseLock and RestoreLock,
other threads have access to the values. This means that the values that are being pro-
tected by the ReaderWriterLock may have changed before RestoreLock is
called. To handle this situation we can use the AnyWritersSince method we dis-
cussed in the previous section.

RestoreLock RestoreLock is a method of the ReaderWriterLock class that accepts
a reference to LockCookie as its only parameter. RestoreLock blocks
until it can acquire the required locks.

Listing 9.14 checks to see if some other thread has acquired a write lock since the
ReleaseLock statement was executed.

RW.AcquireWriterLock(Timeout.Infinite);
int SeqNum = RW.WriterSeqNum;
LockCookie Lock = RW.ReleaseLock();

. . .

RW.RestoreLock(ref Lock);
if (RW.AnyWritersSince(SeqNum))
{
 Trace.WriteLine("A thread has written to the data");
}
else
{
 // Data has not changed since ReleaseLock
}
RW.ReleaseWriterLock();

Listing 9.14 The safe way to use ReleaseLock and RestoreLock (C#)

Acquire a write lock

Save the current
WriterSeqNum

Look for
new writers

Restore the write lock
180 CHAPTER 9 READER/WRITER LOCK

Net_Dennis.book Page 181 Thursday, October 31, 2002 4:04 PM
This is the safest way to use the release and restore lock methods. Failure to use the
AnyWritersSince method may result in data values changing without the knowledge
of the thread that uses RestoreLock. If the functionality of release and restore lock
is required, use care to ensure that the ReaderWriterLock is not bypassed.

9.4 SUMMARY

We’ve seen how a ReaderWriterLock can be used to allow multiple threads read
access to a data element while preserving the integrity of the data. ReaderWriter-
Locks are a powerful construct that fit certain synchronization needs. When the situation
is right, using a ReaderWriterLock can result in a marked performance increase.

In the next chapter we examine the ThreadPool class. ThreadPools are col-
lections of threads that are reused to perform some short-lived task. ThreadPools,
like ReaderWriterLocks, can solve certain problems very well.
SUMMARY 181

Net_Dennis.book Page 182 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 0

The ThreadPool class

10.1 ThreadPool class and

QueueUserWorkItem 182
10.2 The RegisterWaitForSingleObject

method 184
10.3 Informational methods and

properties 187

10.4 Two unsafe methods 190
10.5 The use of ThreadPools in .NET 192
10.6 Summary 193
A thread pool is a collection of threads tasked with units of work that exist for the life
of the thread pool. It allows easy distribution of work among multiple threads and is
an ideal construct for dealing with multiple short-lived tasks that can be performed in
parallel. In this chapter we explore the powerful features of the .NET thread pool.

For the examples in this chapter we revisit the matrix multiplication problem we
discussed in chapter 8. The WorkManager class from chapter 8 was a simplified
thread pool system. In the first section we will replace the thread control logic with a
thread pool.

10.1 THREADPOOL CLASS AND
QUEUEUSERWORKITEM

In chapter 8 we constructed a simplistic thread pool implementation; not surprisingly
the result was somewhat complex. A thread pool allows for a simple means of performing
multiple tasks on different threads. The thread pool manages its threads: It controls their
number, lifetime, priority, and activities. The example in listing 10.1 demonstrates add-
ing items for the ThreadPool to process using the QueueUserWorkItem method.
182

Net_Dennis.book Page 183 Thursday, October 31, 2002 4:04 PM
private void ThreadMethod(object O)
{
 Unit Work;
 Work = (Unit)O;
 Work.DoWork();
 ResultObjects.Add(Work);
 Interlocked.Decrement(ref ExpectedCompleteElements);
 if (ExpectedCompleteElements ==0)
 {
 FinishedWithWork.Set();
 }
}

public void DoWork(Unit[] Work, WorkFinished Finished)
{
 ResultObjects.Clear();
 Notify = Finished;
 ExpectedCompleteElements=Work.Length ;
 WaitCallback callback = new WaitCallback(ThreadMethod);
 for (long i = 0;i <Work.Length ;i++)
 {
 ThreadPool.QueueUserWorkItem(callback, Work[i]);
 }
}

There are several restrictions on thread pools. There can be only one thread pool per
process. This means that if multiple tasks are being performed using thread pools in
the same process, they will share the same thread pool. If one of the tasks takes a dispro-
portionate share of the processing time, the other tasks will suffer. The reason that there
is only one thread pool per process is that the method QueueUserWorkItem on
the ThreadPool class is a static/shared method. The likely reason that the designers
made this choice is to maximize performance.

ThreadPool A ThreadPool is a class in the Threading namespace that allows concur-
rent work to be performed in a simple way.

One of the most expensive operations when dealing with threads is the creation of
threads. Recall that the main purpose of a thread pool is to manage a set of threads so
that new ones do not need to be created to perform a task. Instead, one of the existing
idle threads is assigned a task to complete. Once that task is completed, the thread
becomes available for other work; under normal circumstances it does not terminate.

Since the WorkManager class now uses the .NET thread pool, the design becomes
much simpler (figure 10.1).

The tradeoffs between using a thread pool and managing threads in a custom way
are shown in table 10.1. Thread pools are ideal for short-lived, independent tasks that
are not in conflict.

Listing 10.1 ThreadPool example (C#)

ThreadMethod
is invoked by
the thread pool

QueueUserWorkItem
adds work elements
to the thread pool
THREADPOOL CLASS AND QUEUEUSERWORKITEM 183

Net_Dennis.book Page 184 Thursday, October 31, 2002 4:04 PM
Since the tasks are executing on multiple threads, any shared data must be protected
using some form of synchronization mechanism, such as ReaderWriterLock,
Monitor, or a synchronization lock. Care should be taken to ensure that deadlock
does not occur since the control provided to a thread in a thread pool is limited.

10.2 THE REGISTERWAITFORSINGLEOBJECT METHOD

A common use of threads is to wait for some event to occur. The ThreadPool class
provides built-in support for waiting for a WaitHandle-derived object to become
signaled. At the point the WaitHandle object becomes signaled, the WaitOrTimer-
Callback delegate is invoked. WaitOrTimerCallback accepts two parameters.
The first is an object that contains state information used by the callback to perform
any needed processing. The second parameter indicates why the method is being
invoked. If the second parameter is true, the method is being invoked because the
WaitHandle-derived object became signaled. If the parameter’s value is false, the
WaitHandle-derived object did not become signaled during the specified timeout.
Listing 10.1 demonstrates using the ThreadPool class’s RegisterWaitFor-
SingleObject.

Table 10.1 Comparison of ThreadPool and Generic Thread Management

ThreadPool
Generic

Thread

Ideal for short running tasks Y N

Control thread name N Y

Control thread priority N Y

Control life of thread N Y

Highly flexible N Y

Thread synchronization recommended (Sleep, Wait, Suspend) N Y

Figure 10.1 WorkManager using the ThreadPool class
184 CHAPTER 10 THE THREADPOOL CLASS

Net_Dennis.book Page 185 Thursday, October 31, 2002 4:04 PM
Public Class ClassWorkManager
 Private ExpectedCompleteElements As Integer
 Public Delegate Sub WorkFinished(ByVal Results As ArrayList)
 Public Delegate Function WorkToDo(ByVal Param As Object) As Object
 Private Notify As WorkFinished
 Private FinishedWithWork As AutoResetEvent
 Private ResultObjects As ArrayList
. . .
 Public Sub DoWork(ByVal Work() As Unit, ByVal Finished As WorkFinished)
 ResultObjects.Clear()
 Dim i As Long
 Notify = Finished
 ExpectedCompleteElements = Work.Length
 For i = 0 To Work.Length - 1
 ThreadPool.QueueUserWorkItem(_
 New WaitCallback(AddressOf ThreadMethod), _
 Work(i))
 Next
 Dim SignaledCallback As WaitOrTimerCallback
 SignaledCallback = New WaitOrTimerCallback(AddressOf ManagerMethod)

 ThreadPool.RegisterWaitForSingleObject(FinishedWithWork, _
 SignaledCallback, ResultObjects, Timeout.Infinite, True)
 End Sub

 Public Sub ThreadMethod(ByVal O As Object)
 Dim Work As Unit
 Work = O
 Work.DoWork()
 ResultObjects.Add(Work)
 Interlocked.Decrement(ExpectedCompleteElements)
 If ExpectedCompleteElements = 0 Then

 ' Cause the WaitHandle derived class to become signaled.
 FinishedWithWork.Set()
 End If
 End Sub

 Private Sub ManagerMethod(ByVal O As Object, ByVal signaled As Boolean)
 ' This method is invoked when the WaitHandle derived class
 ' becomes signaled.
 Notify(ResultObjects)
 End Sub
. . .
End Class

The state object is passed to the RegisterWaitForSingleObject method. When
the WaitHandle-derived class becomes signaled, that state information is passed to the
WaitOrTimerCallback delegate. The next-to-last parameter of RegisterWait-
ForSingleObject is a timeout value. This is the time the thread in the pool waits

Listing 10.2 RegisterWaitForSingleObject Example (VB.NET)

Register the
WaitHandle-derived

object
THE REGISTERWAITFORSINGLEOBJECT METHOD 185

Net_Dennis.book Page 186 Thursday, October 31, 2002 4:04 PM
for the WaitHandle-derived object to become signaled. If the timeout occurs, the last
parameter to WaitOrTimerCallback will be false. If the object becomes signaled
before the timeout, it will be true.

The last parameter of RegisterWaitForSingleObject controls if the wait occurs
only once or if it repeats (figure 10.2). If this value is true, the delegate will wait only once for
the WaitHandle-derived object to become signaled. If the parameter is false, the delegate
will be invoked repeatedly. The frequency of invocation depends on whether or not a time-
out is specified, along with how often the WaitHandle-derived object becomes signaled.

One way to understand the RegisterWaitForSingleObject method is to
attempt to implement a simplified version of it. The RegisterWaitForSingle-
Object method in listing 10.3 responds much the same way as the “real” Register-
WaitForSingleObject method.

Public Class MyWaitForEvent
 Private Shared MyThread As Thread
. . .
Public Shared Sub RegisterWaitForSingleObject(_
 ByVal EventOfInterest As WaitHandle, _
 ByVal WhatToInvoke As WaitOrTimerCallback, _
 ByVal state As Object, ByVal Timeout As Integer, _
 ByVal OnlyOnce As Boolean)
 MyStateObject = state
 MyEventOfInterest = EventOfInterest
 MyOnlyOnce = OnlyOnce
 MyWhatToInvoke = WhatToInvoke
 MyTimeout = Timeout
 MyThread = New Thread(AddressOf ThreadMethod)
 MyThread.IsBackground = True
 MyThread.Name = "MyWaitForEventThread"
 MyThread.Start()
End Sub

Register-
WaitFor-

SingleObject

RegisterWaitForSingleObject is a shared/static method of the
ThreadPool class. It allows a delegate to be associated with a WaitHandle-
derived object, such as an AutoResetEvent. When the WaitHandle-
derived object becomes signaled, or a timeout occurs, the passed-in delegate
is invoked.

Figure 10.2 RegisterWaitForSingleObject logical overview

Listing 10.3 A simplified RegisterWaitForSingleObject method (VB.NET)
186 CHAPTER 10 THE THREADPOOL CLASS

Net_Dennis.book Page 187 Thursday, October 31, 2002 4:04 PM
Private Shared Sub ThreadMethod()
 Dim timedOut As Boolean
 Do
 timedOut = Not MyEventOfInterest.WaitOne(MyTimeout, False)
 MyWhatToInvoke(MyStateObject, timedOut)
 Loop While Not MyOnlyOnce
End Sub
. . .

This method creates a thread that is started when the shared/static method that per-
forms the same function as RegisterWaitForSingleObject is invoked. This
simplified version of the method does not execute in a thread pool, but it conveys the
key elements of what the ThreadPool method does. RegisterWaitForSingle-
Object is a powerful way of monitoring a WaitHandle-derived object, such as an
AutoResetEvent and invoking a delegate when it becomes signaled.

10.3 INFORMATIONAL METHODS AND PROPERTIES

One of the most powerful advantages that the .NET framework offers over previous
Microsoft development platforms is the amount of diagnostic information available. This
section introduces three ThreadPool-related informational methods and properties.

10.3.1 GetMaxThreads and GetAvailableThreads

Suppose you wanted to know how many threads the ThreadPool class might use,
and how many it was using. This can give insight into the nature of your application.
The ThreadPool class does intelligent assignment of tasks to threads. If a large num-
ber of threads are being used, the tasks are likely I/O bound. The GetMaxThreads
method of the ThreadPool class is used to determine the largest number of threads
ThreadPool will use. The GetMaxThreads method returns two out parameters.
The first is the maximum number of worker threads the thread pool will use; the
second is the maximum number of threads associated with servicing completion ports.
Listing 10.4 shows GetMaxThreads and GetAvailableThreads in use.

 private void timer1_Tick(object sender, System.EventArgs e)
 {
 int NumberOfWorkerThreads;
 int NumberOfCompletionPortThreads;
 int MaxNumberOfWorkerThreads;
 int MaxNumberOfCompletionPortThreads;

 // Return the maximum number of threads that can be
 // active in the thread pool.
 ThreadPool.GetMaxThreads(
 out MaxNumberOfWorkerThreads,
 out MaxNumberOfCompletionPortThreads);

Listing 10.4 GetMaxThreads and GetAvailableThreads example (C#)
INFORMATIONAL METHODS AND PROPERTIES 187

Net_Dennis.book Page 188 Thursday, October 31, 2002 4:04 PM
 ThreadPool.GetAvailableThreads(
 out NumberOfWorkerThreads,
 out NumberOfCompletionPortThreads);
 label7.Text = NumberOfWorkerThreads.ToString();
 label9.Text = MaxNumberOfWorkerThreads.ToString();
 label10.Text = MaxNumberOfCompletionPortThreads.ToString();
 label12.Text = NumberOfCompletionPortThreads.ToString();
 }

The numbers returned by GetMaxThreads indicate the number of threads that can
be allocated for ThreadPool. To determine how many threads are available for work
in ThreadPool, we use the GetAvailableThreads method. It also returns two
values: the number of worker threads available and the number of threads available
for servicing completion ports.

If the number of available threads is zero, the ThreadPool class must wait until a
thread becomes available. During this time any work items added will simply increase
the size of the work queue in the ThreadPool object. The number of elements that
can be queued is limited only by the amount of available memory.

The number of threads available does not necessarily correlate to the number of
threads in the process. Until a thread is needed, it is not created. Once a thread is cre-
ated it will exist as long as the ThreadPool object feels it is needed. The number of
threads in use is a helpful measure. It is determined by subtracting the number of
available threads from the maximum number of threads, giving an indication of load.
If a task is processor bound, the number of threads in use will likely stay close to the
number of processors in the computer. If a task is I/O bound, the number of threads
in use will increase, likely to the maximum number of threads allowed. The sleep
statement for a thread can be used to simulate an I/O bound task:

object WorkUnit(object param)
{
 MultParam tmpParm = (MultParam)param;
 Thread.Sleep(10000);
 return ClassParaMatrix.MultRowColumn(
 tmpParm.M1,
 tmpParm.M2,
 tmpParm.Column,
 tmpParm.Row);
}

GetMax-
Threads

GetMaxThreads is a static/shared method of the ThreadPool class that
returns the maximum number of worker and completion port threads that
will be used.

GetAvailable-
Threads

GetAvailableThreads returns the number of worker and completion
port threads available to service requests.

The number
of available
threads
188 CHAPTER 10 THE THREADPOOL CLASS

Net_Dennis.book Page 189 Thursday, October 31, 2002 4:04 PM
When the change in the example is made to the WorkUnit method in the Class-
ParaMatrix class, the thread pool will exhaust the number of available threads.
This increases the processing time; however, the tasks do successfully complete.

As of this writing, the algorithm used to determine the maximum number of allowed
threads allows 25 threads per processor. So if you have a quadprocessor machine, the
values returned by GetMaxThreads will be 100. If a series of tasks consistently
exhausts the number of threads available, it may be an indication that the tasks may
not be suited for use in a thread pool.

10.3.2 The IsThreadPoolThread property

In chapter 5 we saw that the Thread class supports a Name property. The Name
property cannot be set on threads that are being used by ThreadPool. To determine
if a given thread is part of ThreadPool, we can use the IsThreadPoolThread
property of the Thread class. Listing 10.5 shows how we can determine if a thread
pool is managing a thread.

private void buttonInspectMainThread_Click(object sender, System.EventArgs e)
{
 MessageBox.Show(Thread.CurrentThread.IsThreadPoolThread.ToString());
}
private void ThreadPoolThreadMethod(object o)
{
 MessageBox.Show(Thread.CurrentThread.IsThreadPoolThread.ToString());
}

private void buttonTThreadPoolThread_Click(object sender, System.EventArgs e)
{
 WaitCallback myCallback;
 myCallback=new WaitCallback(ThreadPoolThreadMethod);
 ThreadPool.QueueUserWorkItem(myCallback);
}

TH
RE

AD
 P

OO
L

CH
AR

AC
TE

RI
ST

IC
S

• The number of available threads will always be the same or less than the
maximum number of threads.

• A process that exhausts the available threads is either I/O bound or con-
tains long-running tasks that possibly should not be performed in a
thread pool.

• ThreadPool will only create a managed thread when it determines that
one is needed.

• ThreadPool manages the life of its threads.

• The maximum number of threads is determined by multiplying the
number of processors by 25.

Listing 10.5 Inspects the IsThreadPoolThread property of the Thread class (C#)
INFORMATIONAL METHODS AND PROPERTIES 189

Net_Dennis.book Page 190 Thursday, October 31, 2002 4:04 PM
The IsThreadPoolThread property is a read-only property. This means that it
can only be inspected, never assigned. This makes sense. If it could be changed, it
would be possible to take a thread that was part of a pool and change the value of
IsThreadPoolThread to indicate it was not.

10.4 TWO UNSAFE METHODS

There are times that performance is the only concern. In cases when the highest perfor-
mance is the goal and the ThreadPool class is involved, the unsafe methods should be
used. UnsafeQueueUserWorkItem performs the same function as QueueUser-
WorkItem except that it does not ensure the same level of security (listing 10.6). The
same is true of UnsafeRegisterWaitForSingleObject. The unsafe methods
are faster because they are doing slightly less than their safe counterparts. First we will
review security in .NET, in particular the evidence approach of determining the level
of trust for code.

Dim i As Long
Dim HowManyTimes As Integer
Try
 HowManyTimes = Convert.ToInt32(TextBoxHowMany.Text)
 NumberRemaining = HowManyTimes
Catch ex As Exception
 MessageBox.Show(ex.Message)
 Exit Sub
End Try
Dim callback As WaitCallback
callback = New WaitCallback(AddressOf NoOp)
StartTime = Now
For i = 1 To HowManyTimes
 ThreadPool.UnsafeQueueUserWorkItem(callback, Nothing)
Next

Security is a huge topic and what we cover here is just scratching the surface. An
entire book could, and likely will, be written on security. Our focus is on how it per-
tains to threading: to protect users from malicious code. While I hope that no one
reading this writes malicious code, there are plenty of people who do. To combat this,
numerous approaches have been invented. Most revolve around who is executing the
code. .NET introduces the concept of evidence and assigning a level of trust to code
itself rather than its user. Regardless of my security level, if the code I attempt to exe-
cute is from an untrusted source it should not be executed unconditionally.

Listing 10.6 The use of the UnsafeQueueUserWorkItem method (VB.NET)

Adds a work item
without examining
the stack
190 CHAPTER 10 THE THREADPOOL CLASS

Net_Dennis.book Page 191 Thursday, October 31, 2002 4:04 PM
The way that .NET determines what should be allowed to execute involves gathering
evidence, such as the URL where the code originated, whether the code is signed, and,
if so, by whom. The call stack is also inspected.

Evidence Evidence refers to the collection of data elements that are applied to a secu-
rity policy to make a determination if code should be executed.

The call stack is inspected because it is possible that an assembly is trusted but the code
calling it is not. An example of this would be if a financial institution released code to
access your financial records that are stored in a secure proprietary format. While it is
acceptable, and expected, that the financial institution would call that assembly, it is
not desirable for malicious code to use that assembly to access and disseminate your
financial information (figure 10.3).

Figure 10.3 refers to trusted code. For our discussion here, code that is trusted is code
with sufficient positive evidence to allow it to be executed by the .NET runtime after
comparison to the security policy. Since an unknown piece of code is executing code
in the right-hand box, that code should not be allowed to execute with the same level
of trust as if it were executed by trusted code.

Unsafe-
QueueUser-
WorkItem

UnsafeQueueUserWorkItem is a method on the ThreadPool class
that enters a work item for the thread pool to service. It is faster than
QueueUserWorkItem because it does not transfer the caller’s stack infor-
mation to the thread in the thread pool that services the request. This reduces
security but improves performance.

TY
PE

S
OF

 E
VI

DE
NC

E • Location of the assembly

• Source URL of the assembly

• Internet zone from which the assembly was retrieved

• Signed code

• Strong name

Figure 10.3

Evidence is used to determine

if trusted code is being called

by unknown code.
TWO UNSAFE METHODS 191

Net_Dennis.book Page 192 Thursday, October 31, 2002 4:04 PM
The performance gains resulting from using the unsafe methods are marginal. Care
should be taken to be sure that the time to add the entries to the thread pool is the
bottleneck before using the unsafe methods. Most likely greater return can be gained
by optimizing the code that performs the work relating to the work entry. Once the
security restrictions are relaxed, it is possible that some undesirable outcome may occur.
The capability is there, but it should be used with care and only when truly needed. It
should be viewed as a last resort, and should not be done without careful analysis.

10.5 THE USE OF THREADPOOLS IN .NET

The ThreadPool class provides considerable functionality to the .NET platform.
Server-based timers, asynchronous execution of delegates, asynchronous file I/O, and
network socket connections all rely on the system thread pool to perform their opera-
tions. By providing a robust set of classes to perform relatively complex operations,
the .NET framework allows for a new level of efficiency in programming.

Listing 10.7 demonstrates asynchronous execution of delegates.

delegate void TheDelegate();
private void TheMethod()
{
 System.Diagnostics.Trace.WriteLine("The Method");
 Thread.Sleep(1000);
}
private void ASyncCallbackMethod(IAsyncResult ar)
{
 System.Diagnostics.Trace.WriteLine("ASyncCallbackMethod");
}
private void buttonBeginInvoke(object sender, System.EventArgs e)
{
 TheDelegate MyDelegate = new TheDelegate(TheMethod);
 AsyncCallback MyAsyncCallback = new
 AsyncCallback(ASyncCallbackMethod) ;
 MyDelegate.BeginInvoke(MyAsyncCallback, null);
}

SE
LE

CT
ED

 F
EA

TU
RE

S
OF

 .N
ET

 T
HA

T
US

E
TH

RE
AD

PO
OL

 • Location of the assembly

• Source URL of the assembly

• Internet zone from which the assembly was retrieved

• Signed code

• Strong name

Listing 10.7 Asynchronous delegate execution (C#)
192 CHAPTER 10 THE THREADPOOL CLASS

Net_Dennis.book Page 193 Thursday, October 31, 2002 4:04 PM
To accomplish something similar without using a thread pool would take considerable
effort. The easiest solution would be to create a thread for each BeginInvoke. The
problem with this approach is that as the number of invocations increases the quantity
of resources required to process those invocations also increases.

Network operations greatly benefit from the use of thread pools. The WebClient
object uses the thread pool to retrieve web pages. The following code retrieves a web
page and places the results in a string:

Results = "";
WebClient client =new WebClient();
Byte[] Bytes;
Bytes = client.DownloadData((string)State);
Results = System.Text.Encoding.UTF8.GetString(Bytes);
client.Dispose();

The caller of the DownloadData method is unaware that DownloadData performs
its processing using threads. In general, hiding complexity from the caller of a method
is desirable.

Another .NET construct that uses the thread pool are server-based timers. Server-
based timers should not be confused with Windows Forms timers. The difference
between the two is significant. Windows Forms timers simply post a message to the mes-
sage queue at the specified interval. All processing of the messages happens on the same
thread. This means that if some operation that takes considerable time is invoked from
the message queue processing thread, the application will hang until that message is
processed. We discuss timers in detail in chapter 14.

Server-based timers are thread pool based. A delegate is invoked at the specified
interval. The following example shows the usage of a server-based timer:

. . .
private System.Threading.Timer timer2;
. . .
System.Threading.TimerCallback callback;
callback=new System.Threading.TimerCallback(timer2_Elapsed);
timer2 = new System.Threading.Timer(callback,null,100,100) ;
. . .

Server-based timers allow for longer running processing to occur without the user inter-
face being affected. Without thread pools, server-based timers wouldn’t be feasible.

10.6 SUMMARY

In this chapter we’ve examined the ThreadPool class. We’ve seen that it is an easy
way to distribute small units of work among multiple threads. We’ve also seen that the
.NET framework itself relies on the ThreadPool class for much of its asynchronous
processing such as server-based timers and network communication. The next chapter
introduces the concept of ThreadStatic data and thread local storage.
SUMMARY 193

Net_Dennis.book Page 194 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 1

ThreadStatic and
thread local storage

11.1 Using ThreadStatic variables 195
11.2 Using unnamed data slots 197
11.3 Using named data slots 199
11.4 Freeing named data slots 201
11.5 Summary 203
Sharing data is a primary concern in multithreaded programming. One way to mini-
mize development effort is to restrict access to data elements to a single thread. Thread
local storage (figure 11.1) is a way to create a variable that can store values associated
with each thread. This allows the code of each thread to reference what appears to be
the same data element but is instead associated with the referencing thread.

Stack-based variables are inherently local to a thread. Additionally, if an instance
of a class contains a single thread, the instance variables of that class are also local to
the thread. In cases where static/shared variables must be used, or multiple threads are
associated with a class, some means must be taken to ensure that concurrency issues are
addressed. One way to do this is by using the ThreadStatic attribute. Additionally,
more primitive thread local storage mechanisms are introduced.

Thread local storage is a powerful construct. In situations where a class cannot be
restricted to containing a single thread, it is an alternative to using synchronization con-
structs on a shared data element. If a data element is associated with one, and only one,
thread then using thread local storage may be an ideal solution.
194

Net_Dennis.book Page 195 Thursday, October 31, 2002 4:04 PM
11.1 USING THREADSTATIC VARIABLES

Unrestricted data sharing between threads is a risky thing to do. In previous chapters
we’ve seen that synchronization objects, such as the Monitor class, can be used to
restrict access to data by multiple threads. If a variable is not a communication mecha-
nism, there generally is no reason for it to be shared among threads.

One way that a variable is not shared is by declaring it local to a method. When a
local variable is declared in a method, it is created on the stack of the thread that executed
the statement. We declare a variable in a method and rightly assume that no other
thread will manipulate it. The following instructions create a thread stack based variable
named x. The variable x is local to the StackBasedVariable method:

Private Sub StackBasedVariable()
 Dim x As Integer
End Sub

Alternatively, variables can be declared as instance variables of a class. In the next
example, ClassVariable is an instance variable. This means that its value can dif-
fer between each instance of ClassTestStatic.

Public Class ClassTestStatic
 Private ClassVariable As Integer
 <ThreadStatic()> Private Shared ThreadStaticVariable As Integer
 Private Shared StaticVariable As Integer
 Private Sub StackBasedVariable()
 Dim x As Integer
 End Sub
End Class

StaticVariable is a shared variable. Some languages refer to shared/static variables
as class variables. The value in StaticVariable is the same across all instances of
ClassTestStatic. The term shared implies that the variable is shared among all
instances of the class. This is correct. However, static/shared variables do not require
an instance of the class to exist. The following is perfectly legal and sometimes desired:

Private Sub Test()
 ClassTestStatic.StaticVariable = 1
 ClassTestStatic.ThreadStaticVariable = 1
End Sub

Figure 11.1

Thread local storage
USING THREADSTATIC VARIABLES 195

Net_Dennis.book Page 196 Thursday, October 31, 2002 4:04 PM
The variable ThreadStaticVariable is a different sort of shared/static variable.
In a single-threaded application it behaves the same as StaticVariable. The dif-
ference is that when more than one thread accesses the variable its value will be deter-
mined based on the thread that is accessing it. The best way to think of it is that there
is an array of ThreadStaticVariables. The element of the array that is accessed
is determined by the thread accessing it. This isn’t exactly how it’s implemented, but
it would be possible to implement thread local storage that way.

ThreadStatic ThreadStatic is an attribute that is added to the declaration of a variable
in a class. It informs the compiler that if the variable is accessed from different
threads each thread should have a distinct static variable. This is a simple way
to make a variable local to a thread and create thread local storage. Thread-
Static is the managed equivalent of the C++’s __declspec(thread).

ThreadStatic variables behave like thread stack based variables in that their value
depends on the thread. However, they are accessible to the thread in the same way a
static/shared variable is. ThreadStatic variables are a convenient way of making
data stored in a class accessible to a thread without synchronizing access or passing values
as parameters. Not all designs need utilize ThreadStatic variables. For example, if
an approach of one thread per class was taken, then thread static variables make no
sense. If more than one thread can access data elements in a class, and the value is
meaningful only to that thread, then thread static variables should be considered.

Listing 11.1 demonstrates the use of thread static variables.

Public Class ClassThreadStatic_Test
 <ThreadStatic()> Shared ThreadStatic_Data As String = "Initial"
 Private TheForm As FormTestThreadStatic
 Public Sub New(ByVal TheForm As FormTestThreadStatic)
 Me.TheForm = TheForm
 End Sub
 Public Sub Test()
 Dim callback As New WaitCallback(AddressOf CallbackMethod)
 ThreadPool.QueueUserWorkItem(callback, "1")
 ThreadPool.QueueUserWorkItem(callback, "2")
 ThreadPool.QueueUserWorkItem(callback, "3")
 ThreadPool.QueueUserWorkItem(callback, "4")
 End Sub
 Private Sub CallbackMethod(ByVal state As Object)
 Dim sLine As String
 sLine = "Before Assign ThreadStatic_Data = "
 sLine += ThreadStatic_Data + " "
 sLine += Thread.CurrentThread.GetHashCode().ToString()
 TheForm.AddFeedbackLine(sLine)
 ThreadStatic_Data = state
 Thread.Sleep(5000)
 sLine = "After Assign ThreadStatic_Data = "

Listing 11.1 Thread static example (VB.NET)

Makes a variable
unique per thread

Assigns the thread’s copy
of the ThreadStatic_Data
196 CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

Net_Dennis.book Page 197 Thursday, October 31, 2002 4:04 PM
 sLine += ThreadStatic_Data + " "
 sLine += Thread.CurrentThread.GetHashCode().ToString()
 sLine += " " + ThreadStatic_Data.GetHashCode().ToString()
 TheForm.AddFeedbackLine(sLine)
 End Sub
End Class

Thread static variables are one way of having data associated with a particular thread.
In the next section we discuss an alternative method of storing data on a per-thread
basis. The data elements are stored in locations that may or may not have names. These
locations are called slots. In the next section we discuss unnamed data slots.

11.2 USING UNNAMED DATA SLOTS

In the previous section we saw how the ThreadStatic attribute can be used to create
data elements that are accessed by multiple threads. ThreadStatic instructs the
compiler that a particular variable should be viewed as local to a thread. A more
involved way of accomplishing thread local data storage is to use unnamed data slots.
An unnamed data slot is a storage location that is local to a thread. The slot is allocated
using the AllocateDataSlot method of the Thread class. Once allocated, when
multiple threads access the data slot they are given their own area of storage.

AllocateDataSlot is not, and should not, be called by each thread. It is executed
once, setting up the data slot for all threads. AllocateDataSlot returns a Local-
DataStoreSlot which is used by each thread to access its local data store. Since
.NET provides garbage collection, there is no method that frees an unnamed data slot.

In listing 11.2, TheSlot is a class variable contained in the same class as Call-
backMethod. CallbackMethod is passed as a parameter to the constructor of the
WaitCallback delegate for use with the ThreadPool object.

public class ClassTLS_UnnamedSlot_Test
{
 System.LocalDataStoreSlot TheSlot;

 private FormTestThreadStatic TheForm ;
 public ClassTLS_UnnamedSlot_Test(FormTestThreadStatic TheForm)
 {

Unnamed
Data Slot

An unnamed data slot is a region of memory associated with a thread that
does not have a name. Unnamed data slots are created using the Allocate-
DataSlot method.

Allocate-
DataSlot

AllocateDataSlot is a method of the Thread class that creates an un-
named storage location that is relative to the thread accessing it.

Listing 11.2 Unnamed data slot example (C#)

Declare a variable to
access the data slot
USING UNNAMED DATA SLOTS 197

Net_Dennis.book Page 198 Thursday, October 31, 2002 4:04 PM
 TheSlot = Thread.AllocateDataSlot();
 this.TheForm = TheForm ;
 }
 public void Test()
 {
 WaitCallback callback = new WaitCallback(CallbackMethod);
 ThreadPool.QueueUserWorkItem(callback, "1");
 ThreadPool.QueueUserWorkItem(callback, "2");
 ThreadPool.QueueUserWorkItem(callback, "3");
 ThreadPool.QueueUserWorkItem(callback, "4");
 }

 private void CallbackMethod(object state)
 {
 string sLine;
 sLine= "Before Assign TLS = ";

 string sData= (string)Thread.GetData(TheSlot);
 sLine += sData;
 sLine += " Hash Code=" + Thread.CurrentThread.GetHashCode().ToString();
 TheForm.AddFeedbackLine(sLine);

 Thread.SetData(TheSlot,state);
 Thread.Sleep(5000);
 sLine= "After Assign TLS = ";
 sData= (string)Thread.GetData(TheSlot);
 sLine += sData;
 sLine += " Hash Code=" + Thread.CurrentThread.GetHashCode().ToString();
 TheForm.AddFeedbackLine(sLine);
 }
}

The ThreadPool class is an easy way to create multiple threads and demonstrate thread
local storage. Listing 11.2 demonstrates how four entries are added to the ThreadPool.
Each entry is associated with CallbackMethod, differing only by the supplied
parameter. Because CallbackMethod contains a Sleep statement that pauses the
ThreadPool thread for 5 seconds, we are certain that the threads involved will differ.
If the method did not contain the Sleep statement, it is possible that the same thread
would service each entry.

When the Test method is invoked, the following output is produced:

Before Assign TLS = Hash Code=43
Before Assign TLS = Hash Code=48
Before Assign TLS = Hash Code=49
Before Assign TLS = Hash Code=50
After Assign TLS = 1 Hash Code=43
After Assign TLS = 2 Hash Code=48
After Assign TLS = 3 Hash Code=49
After Assign TLS = 4 Hash Code=50

Retrieve any data
that is in the slot
before assignment

Allocate a thread
local data slot

Store thread-specific
data in the thread
local data slot

Retrieve the thread-
specific data from
the data slot
198 CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

Net_Dennis.book Page 199 Thursday, October 31, 2002 4:04 PM
Notice that even though each thread is accessing data using TheSlot with GetData
and SetData, the values are unique to each thread. SetData and GetData allow
for saving and retrieving a value stored in an object.

Thread local storage is a relatively scarce resource, and should only be used when needed.
Creating data slots is relatively expensive, and should be performed only once. If the
static nature of data can be determined in advance, then the ThreadStatic attribute
should be used instead. Unnamed data slots offer a very secure means of storing values
specific to a particular thread. In the next section we discuss named data slots that offer a
more convenient way of storing thread local values if a lesser level of security is tolerable.

11.3 USING NAMED DATA SLOTS

There are times when it is easier to keep track of a value by using a name rather than by
passing a variable. GetNamedDataSlot allows a thread local storage slot to be retrieved
using a name. In listing 11.3 TheSlot is allocated in the class constructor, Public
Sub New, using the AllocateNamedDataSlot method of the Thread class.

If a slot has not been created using the AllocateNamedDataSlot method before
GetNamedDataSlot is called, the slot will then be allocated. This means that calling
AllocateNamedDataSlot is optional. As a good coding practice, if it can be deter-
mined that a thread local data slot will be required then allocation should be performed
before accessing the slot.

If a slot exists when AllocateNamedDataSlot is called, ArgumentException
is raised. Consider the following example:

Try
 TheNamedSlot = Thread.AllocateNamedDataSlot("TheSlot")
 TheNamedSlot = Thread.AllocateNamedDataSlot("TheSlot")
Catch ex As Exception
 System.Diagnostics.Trace.WriteLine(ex.Message)
 System.Diagnostics.Trace.WriteLine(ex.ToString())
End Try

The first AllocateNamedDataSlot will succeed. The second will generate the
following output:

GetData and
SetData

GetData is a method of the Thread class that retrieves thread local values
from a data slot, while SetData is used to store a reference to an object in
thread local storage.

AllocateNamed-
DataSlot

AllocateNamedDataSlot is a method on the Thread class that allo-
cates thread local storage and associates it with a supplied name.

GetNamed-
DataSlot

GetNamedDataSlot is a method of the Thread class that retrieves thread
local storage based upon a supplied name. If the slot does not exist before
GetNamedDataSlot is invoked, it will be created.
USING NAMED DATA SLOTS 199

Net_Dennis.book Page 200 Thursday, October 31, 2002 4:04 PM
Item has already been added. Key in dictionary: "TheSlot" Key being added:
"TheSlot" System.ArgumentException: Item has already been added. Key in
dictionary: "TheSlot" Key being added: "TheSlot"
 at System.Collections.Hashtable.Insert(
 Object key, Object nvalue, Boolean add)
 at System.Collections.Hashtable.Add(Object key, Object value)
 at System.LocalDataStoreMgr.AllocateNamedDataSlot(String name)
 at System.Threading.Thread.AllocateNamedDataSlot(String name)
 at TLS_NamedSlot_TestApp.ClassTLS_NamedSlot_Test..ctor(
 FormTestThreadStatic TheForm) in D:\My Documents\books\
 threading\chapter11\projects\VB\11.4\TLS_NamedSlot_TestApp\
 TLS_NamedSlot_Test.vb:line 10

This offers some insight into how named data slots are implemented in .NET. We can
see that the exception was raised because an entry already existed in a Hashtable.
This means that Hashtable is used to associate the named data slot with its name.

Named slots offer an alternative to keeping a variable with the originally allocated
slot, as must be done when using an unnamed data slot. They are more convenient than
using an unnamed data slot, but are not as convenient as using the ThreadStatic
attribute. If more flexibility is required, then one of the data slot methods should be used.

Listing 11.3 shows how to allocate a slot, store data, and then retrieve data from it
in a thread local way.

Public Class ClassTLS_NamedSlot_Test
 Dim TheNamedSlot As System.LocalDataStoreSlot
 Private TheForm As FormTestThreadStatic
 Public Sub New(ByVal TheForm As FormTestThreadStatic)
 TheNamedSlot = Thread.AllocateNamedDataSlot("TheSlot")
 Try
 TheNamedSlot = Thread.AllocateNamedDataSlot("TheSlot")
 Catch ex As Exception
 System.Diagnostics.Trace.WriteLine(ex.Message + " " + ex.ToString())
 End Try
 Me.TheForm = TheForm
 End Sub
 Public Sub Test()
 Dim callback As New WaitCallback(AddressOf CallbackMethod)
 ThreadPool.QueueUserWorkItem(callback, "1")
 ThreadPool.QueueUserWorkItem(callback, "2")
 ThreadPool.QueueUserWorkItem(callback, "3")
 ThreadPool.QueueUserWorkItem(callback, "4")
 End Sub
 Private Sub CallbackMethod(ByVal state As Object)
 SetDataMethod(state)
 Thread.Sleep(5000)
 GetDataMethod()
 End Sub
 Private Sub SetDataMethod(ByVal TheData As Object)

Listing 11.3 Named slot example (VB.NET)

Create a named
data slot
200 CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

Net_Dennis.book Page 201 Thursday, October 31, 2002 4:04 PM
 Dim TheSlot As System.LocalDataStoreSlot
 TheSlot = Thread.GetNamedDataSlot("TheSlot")
 Thread.SetData(TheSlot, TheData)
 End Sub
 Private Sub GetDataMethod()
 Dim sData As String
 Dim sLine As String
 Dim TheSlot As System.LocalDataStoreSlot
 TheSlot = Thread.GetNamedDataSlot("TheSlot")
 sLine = "After Assign TLS = "
 sData = Thread.GetData(TheSlot)
 sLine += sData
 sLine += " Hash Code=" + Thread.CurrentThread.GetHashCode().ToString()
 TheForm.AddFeedbackLine(sLine)
 End Sub
End Class

We have seen how to create and access a named data slot in this section. Unlike
unnamed data slots, named data slots can be freed. In the next section we will discuss
the impact of freeing a data slot.

11.4 FREEING NAMED DATA SLOTS

There are times when we wish to stop using one variable and start using another. The
FreeNamedDataSlot method of the Thread class is used to change which data
slot is associated with a name. Since .NET is a nondeterministic environment, calling
FreeNamedDataSlot does not actually free the object contained in the slot.
Instead, it is similar to calling the Remove method of a Hashtable. Listing 11.4
shows the impact of using FreeNamedDataSlot.

public class ClassTLS_NamedSlot_Test
{
 System.LocalDataStoreSlot TheNamedSlot;
. . .
 private void TestValues()
 {
 string TheValue;
 System.LocalDataStoreSlot TheSlot;
 System.LocalDataStoreSlot TheSlotAfterFree;
 TheSlot = Thread.GetNamedDataSlot("TheSlot");

 Thread.SetData(TheSlot,"Original Value");
 TheValue=(string)Thread.GetData(TheSlot);
 Trace.WriteLine(TheValue);

 Thread.FreeNamedDataSlot("TheSlot");

 Trace.WriteLine((string)Thread.GetData(TheSlot));

Retrieve the named
slot for use with the
SetData method

Retrieve the named
slot for use with the
GetData method

Listing 11.4 FreeNamedDataSlot example (C#)

Retrieve or
create a slot

Remove the slot
from the Hashtable

Retrieve the value
from the slot
FREEING NAMED DATA SLOTS 201

Net_Dennis.book Page 202 Thursday, October 31, 2002 4:04 PM
 TheSlotAfterFree = Thread.GetNamedDataSlot("TheSlot");
 TheValue=(string)Thread.GetData(TheSlotAfterFree);
 if (TheValue == null)
 {
 Trace.WriteLine("No Data");
 }
 }
. . .
}

At the point FreeNamedDataSlot is invoked on “TheSlot”, the value of the variable
TheSlot is unaffected. The output from the above code follows:

Original Value
Original Value
No Data

Notice that the second line output contains “Original Value.” The GetData statement
immediately after the call to the FreeNamedDataSlot method generates this line.
This is proof that FreeNamedDataSlot does not destroy the contents of the slot.

To see what is going on in the FreeNamedDataSlot we can pass in a null value
for the name of the slot:

private void TestRemoveNull()
{
 try
 {
 Thread.FreeNamedDataSlot(null);
 }
 catch (Exception ex)
 {
 Trace.WriteLine(ex.ToString());
 }
}

This produces the following output:

System.ArgumentNullException: Key cannot be null.
Parameter name: key
 at System.Collections.Hashtable.Remove(Object key)
 at System.LocalDataStoreMgr.FreeNamedDataSlot(String name)
 at System.Threading.Thread.FreeNamedDataSlot(String name)

Without FreeNamedDataSlot there would be no way to change what data slot a
name was associated with. Since AllocateNamedDataSlot throws an exception
when the name is already associated with a slot, we must have some way of making a
name available for reuse. That is exactly what FreeNamedDataSlot does.

It is important to understand how FreeNamedDataSlot behaves when multiple
threads are involved. If a thread calls FreeNamedDataSlot, then any calls to Get-
NamedDataSlot by it or a different thread will result in a different data slot being

Associate “TheSlot”
with a different

data slot
202 CHAPTER 11 THREADSTATIC AND THREAD LOCAL STORAGE

Net_Dennis.book Page 203 Thursday, October 31, 2002 4:04 PM
returned. Unless the threads have a variable with a LocalDataStoreSlot value
stored in it, their values will be lost. It may be that is what is desired, but since there
is the possibility of data disappearing while a thread is accessing it, care should be taken
when using FreeNamedDataSlot.

One reason that you might want to use it is if the threads are working on a solution
and one of the threads finds the answer. One thread could easily signal all other threads
to stop their work. Under general circumstances data slots are allocated and used for
the life of the program, or at least the life of the threads accessing them.

11.5 SUMMARY

In this chapter we’ve discussed ways of associating data with a particular thread.
Using the ThreadLocal attribute is the simplest, and least flexible, way of making
data values dependent on which thread accesses them. If a more robust mechanism is
needed, then named data slots should be used. If the highest degree of control is
required, then an unnamed data slot should be used and managed using some sort of
collection. Not every application will require the use of thread local storage. It should
only be used in cases where it is a good fit.

The next chapter discusses delegates to a higher degree of detail than we have thus
far. Delegates are one of the most exciting aspects of the .NET framework.

FreeNamed-
DataSlot

FreeNamedDataSlot is a static method on the Thread class that removes
an association between a name and a thread local data slot. It allows a name
to be associated with a different set of thread local slots.
SUMMARY 203

Net_Dennis.book Page 204 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 2

Delegates

12.1 Delegates revisited 204
12.2 The ThreadStart delegate 207
12.3 Callbacks 208
12.4 Handling thread exceptions in

Windows Forms 214

12.5 Asynchronous delegates 216
12.6 Creating and invoking

dynamic delegates 219
12.7 Summary 221
Delegates are a powerful means of associating methods and instances of objects. They
are one of the largest areas of innovation of the .NET platform. Delegates are inter-
twined throughout not only multithreaded development in .NET, but also general devel-
opment. This chapter covers the delegates associated with multithreaded development.

Additionally, it covers asynchronous execution of delegates. Asynchronous delegates
are those invoked using the BeginInvoke method. An important aspect of any asyn-
chronous development is determining when a task has completed, and gathering any
results. This is accomplished using the EndInvoke method. The AsyncCallback
delegate allows a method to be invoked when an asynchronous task completes.

The chapter concludes with a discussion of dynamic delegates. This is a form of late
binding, where the method and object associated with it are determined at runtime.

12.1 DELEGATES REVISITED

A common need in programming is to be notified when something happens. There
are two basic ways to deal with this need: polling and notification.

One way to know if something happens is to frequently check to see if what is
being watched meets some criteria. This is generally referred to as polling. The prob-
lem with polling is that the interval between checks is constant, while the occurrence
204

Net_Dennis.book Page 205 Thursday, October 31, 2002 4:04 PM
of the phenomenon being monitored likely is not. This means that if the interval of
checking is one hour, it may be that the phenomenon occurs and goes unnoticed for
59 minutes. Additionally, if more than one occurrence of the phenomenon occurs
during the interval, only one instance is captured.

Polling Polling is the process of repeatedly checking the status of some decision criteria
to determine if predefined criteria have been met. The duration between the
time the criteria are met and the time they are detected can be referred to
as latency.

Think of polling as the time-old question that almost every child asks—often more
than once—during a trip. “Are we there yet?” The child is polling to determine if the
phenomenon he or she is concerned with has occurred. The general response from
parents is “Not yet, I’ll tell you when we get there.” This brings us to the other com-
mon way of checking to see if something happens: notification.

Notification requires some means of communication between the entity being
notified and the entity doing the notification. In the .NET framework this is accom-
plished by using a delegate. The history behind delegates can be traced back to func-
tion pointers in C/C++.

Delegate A delegate is a type-safe, object-oriented means of referencing, and eventually
invoking, a method as though it were any other variable. They are often re-
ferred to as type-safe function pointers.

A delegate is an object that associates a method with an optional instance of another
object. This allows a delegate to be invoked on an instance of a class, not only on static
methods. This is a major improvement over function pointers that required the method
that was having its address taken be static. Figure 12.1 demonstrates using a delegate.

First, there must be a delegate declaration. This tells the compiler what the methods that
will be associated with the delegate must look like, in terms of parameters and return
value. An example of a declaration of a delegate is:

delegate void SimpleDelegate();

This delegate can only be used with methods that do not accept parameters and do not
return a value. Attempting to associate the delegate with some other type of method
will produce a compile error. This is a powerful feature of delegates. This means that

Figure 12.1 Using a delegate
DELEGATES REVISITED 205

Net_Dennis.book Page 206 Thursday, October 31, 2002 4:04 PM
delegates can be used without fear that the method does not match the delegate’s def-
inition, since this will result in a compile-time error.

Once the delegate is defined, an instance of it can be created. This is very similar to cre-
ating a user-defined data type. The delegate usage looks much like any other object:

SimpleDelegate MyDelegate;
MyDelegate = new SimpleDelegate(MethodToPointTo);

This creates an instance of the SimpleDelegate and associates it with the Method-
ToPointTo. Once the instance of the delegate is created, the next step is to invoke
the delegate. This causes the method associated with the delegate to be executed.
Invoking a delegate is identical to executing a method:

DoSomethingAndCallBack(MyDelegate);

This causes the method MethodToPointTo to be executed. Listing 12.1 shows the
elements involved in entirety.

 public class FormDelegates_Revisited : System.Windows.Forms.Form
 {
. . .
 delegate void SimpleDelegate();
 void MethodToPointTo()
 {
 MessageBox.Show("In the Method to point to");
 }

 private void DoSomethingAndCallBack(SimpleDelegate TheDelegate)
 {
 Trace.WriteLine(TheDelegate.Target.ToString());
 TheDelegate();
 }

 private void buttonTest_Click(object sender, System.EventArgs e)
 {
 SimpleDelegate MyDelegate;
 MyDelegate = new SimpleDelegate(MethodToPointTo);
 DoSomethingAndCallBack(MyDelegate);
 }

Now that we have seen how delegates are used, let us move on to how they relate to
multithreading.

Use of
Delegates

Delegates are a powerful way of allowing one class to notify another when a
condition is met. This allows one instance of a class to inform an instance of
a different (or the same) class that something happened that it cares about.
Delegates are widely used in the .NET framework.

Listing 12.1 Using delegates (C#)

Instantiate the
instance of the
delegate

Define the signature
of SimpleDelegate

Invoke the
delegate

Define an instance
of the delegate

Pass the instance of the
delegate as a parameter
206 CHAPTER 12 DELEGATES

Net_Dennis.book Page 207 Thursday, October 31, 2002 4:04 PM
12.2 THE THREADSTART DELEGATE

In previous chapters we briefly discussed the ThreadStart delegate. The only way
to create a thread using managed code is to use a ThreadStart delegate. Visual
Basic.NET developers might be confused by the following example:

Private TestThread As Thread
 Private Sub ThreadMethod()
 End Sub
 Public Sub Test()
 TestThread = New Thread(AddressOf ThreadMethod)
 End Sub

The use of the ThreadStart delegate is not obvious: Nowhere in the code is it
declared. However, if we look at the MSIL for the Test method in table 12.1 we can
see that ThreadStart is being used. This is an example of the convenient things
that Visual Basic does for developers.

Listing 12.2 shows the usage of the ThreadStart delegate.

Imports System.Threading
Public Class FormTestThreadStart
 Inherits System.Windows.Forms.Form
. . .

Private TestThread As Thread
 Private Sub TestMethod()
 MessageBox.Show("In Test Method on Thread " + Thread.CurrentThread.Name)
 End Sub
. . .
 Private Sub CreateTestThread()
 Dim TestThreadStart As ThreadStart
 ' Create a new instance of the ThreadStart delegate,
 ' associating it with TestMethod
 TestThreadStart = New ThreadStart(AddressOf TestMethod)

 ' Creates a new thread that will execute
 ' the TestSharedThreadStart ThreadStart delegate.
 TestThread = New Thread(TestThreadStart)

 TestThread.Name = "TheTestThread"
 TestThread.Start()
 TestThread.Join()
. . .

Table 12.1 MSIL Generated by Visual Basic

IL_000a newobj instance void [mscorlib]System.Threading.ThreadStart::.ctor(object,
native int)

Listing 12.2 Using the ThreadStart delegate (VB.NET)
THE THREADSTART DELEGATE 207

Net_Dennis.book Page 208 Thursday, October 31, 2002 4:04 PM
The ThreadStart delegate provides a standardized way of passing a reference to a
method to the Thread class constructor. This is accomplished by passing in a reference
to a method. In Visual Basic this involves the AddressOf operator. In C# the name
of the method suffices. Once the instance of the delegate is created, the only properties
available are Target and Method. Both are inherited from the delegate base class.

The Method property is of type System.Reflection.MethodInfo and this is
how the thread knows what to invoke. One of the methods of the RuntimeMethod-
Info class is Invoke, which is how the method associated with the delegate is executed.

One of the most powerful advances of delegates over function pointers is the ability
to associate a delegate with a particular instance of a class. The Target property is how
this is accomplished. In cases where there is no instance of a class to be associated with,
the Target property is Nothing/null. When the method associated with a delegate
is Shared/static there is no instance with which to be associated. The Target
property is of type object.

In the example code at the beginning of this section we declare a ThreadStart
delegate called TestThreadStart. When the Thread starts it does something
similar to the following:

TestThreadStart.Method.Invoke(TestThreadStart.Target, Nothing)

Since the method passed to the ThreadStart delegate cannot have any parameters,
we pass in Nothing in the last parameter. This parameter is used to pass values to
the method associated with the delegate.

Unless there is a specific need, there is no reason to retain a reference to the
ThreadStart delegate. If development is being done in Visual Basic .NET, there is
little reason to create a ThreadStart delegate. If development is being done in C#,
ThreadMethod can be created in-line:

TestThread = new Thread(new ThreadStart(TestMethod));

Another form of asynchronous execution involves callbacks. Callbacks are essentially
delegates that are invoked when some condition is satisfied.

12.3 CALLBACKS

Callbacks are a way of notifying a consumer when some event occurs. Think of it in
practical terms. If you call a coworker and he or she is busy, he or she may offer to call
you back. This is the idea behind a callback. A caller invokes a method on an object,
passing a delegate that can be used to signal some event. The object stores the reference
to the delegate until it is needed.

We will discuss several multithreading-related callbacks in this section.

ThreadStart
Delegate

The ThreadStart delegate is a class derived indirectly from the Delegate
class. It allows a thread to be associated with an instance of a class and a method.
208 CHAPTER 12 DELEGATES

Net_Dennis.book Page 209 Thursday, October 31, 2002 4:04 PM
12.3.1 TimerCallback

Often there is a need for actions to be performed at set intervals. Earlier we discussed
the differences between polling and notification. One way to implement polling is to
use a timer. Windows developers naturally think of the Windows message timer. The
message timer enters a WM_TIMER message in a window’s message queue at regular
intervals. Visual Basic exposes this functionally using its Timer control. For certain
types of operations the message timer is adequate. A key issue with the message timer
is that it relies on a single-threaded message pump to process the messages. If the task
associated with the timer takes a long time, the message queue is blocked until it
completes its work. This explains why poorly written applications freeze when doing
long-running operations.

A more flexible approach is to use a thread-based timer. In chapter 10 we discussed
the ThreadPool class. One use of the class is to create a thread-based timer. For user
interface intensive operations it is better to use a message timer since the calls back to
the user interface will need to be passed to the user interface thread using the Invoke
mechanism. For operations that are not tied extensively to the user interface, the
thread-based timer is an excellent choice.

TimerCallback TimerCallback is a delegate that is used with the System.Thread-
ing.Timer class to create a thread-based timer. TimerCallback is in-
voked when the timer interval expires.

The following example code shows how Timer is created. First we must create Timer-
Callback, passing in a method to be invoked:

. . .
System.Threading.Timer myTimer;
void CallbackMethod(object state)
{
 Trace.Write(state);
 Trace.WriteLine(DateTime.Now.ToString());
}
private void StartTimer(long First,long Each, object state)
{
 TimerCallback myCallback;
 myCallback= new TimerCallback(CallbackMethod);
 myTimer=new System.Threading.Timer(myCallback,state,First ,Each);
}
. . .

The Timer constructor accepts four parameters:

• TimerCallback. This lets Timer know what method to invoke when it’s time
to invoke a method.

• An object to transmit state information. This is the same mechanism that the
ThreadPool class uses to communicate with its worker threads.
CALLBACKS 209

Net_Dennis.book Page 210 Thursday, October 31, 2002 4:04 PM
• The time to wait before the timer executes the first time. It can be zero, indicating
the timers should start immediately, or Timeout.Infinite, indicating the
timer should not start at this time.

• The time to wait between invoking TimerCallback. It also can be zero,
Timeout.Infinite, or the number of milliseconds to wait.

If the duration of the method associated with TimerCallback is greater than the
interval to wait, each instance will be executing on a different thread. This means that if
more than one instance of the method associated with TimerCallback is executing
at the same time, the operation will be performed in parallel. Since the thread-based
timer uses ThreadPool, there is a limit on how many threads can be executing at
once. When that limit is reached, no new threads will be created and those items
waiting to execute will be entered into a queue. Care should be taken in the methods
associated with TimerCallback to ensure they are thread-safe.

Combine The += operator is a shortcut for the shared/static Combine method. In
Visual Basic the Combine method must be used.

A powerful feature of delegates is the ability to associate multiple methods with a single
delegate. This is called a multicast delegate. In C# this is accomplished using the +=
operator. The following code example associates three methods with the same delegate:

ClassTwo AClass = new ClassTwo();
TimerCallback myCallbackInfo;
myCallbackInfo= new TimerCallback(InfoCallbackMethod);
myCallbackInfo += new TimerCallback(AClass.InfoCallbackMethod);
myCallbackInfo += new TimerCallback(AddLineCallback);
myCallbackInfo("test");

Each method associated with the delegate will be invoked. The order of invocation is
the same as the order the methods were added to the delegate. In this case Info-
CallbackMethod will execute, and once it has completed, Aclass.InfoCall-
backMethod, and then AddLineCallback. This allows for a series of methods to
occur in a certain order.

The ThreadStart delegate can be used in a multicasting way. This means that
when one method exits, another begins. This is a way to isolate cleanup code that
should execute after the main logic has completed.

12.3.2 WaitCallback

In chapter 10 we discussed the ThreadPool class in detail. The following examples
show how a work item is created and added to ThreadPool for processing:

. . .
 Private Sub WorkMethod(ByVal state As Object)
 Trace.Write(Thread.CurrentThread.GetHashCode.ToString())
 Trace.Write(" ")
 Trace.WriteLine(state.ToString())
 End Sub
210 CHAPTER 12 DELEGATES

Net_Dennis.book Page 211 Thursday, October 31, 2002 4:04 PM
 Private Sub AddWorkItem()
 Trace.WriteLine(Thread.CurrentThread.GetHashCode.ToString())
 Dim WorkItem As WaitCallback
 WorkItem = New WaitCallback(AddressOf WorkMethod)
 ThreadPool.QueueUserWorkItem(WorkItem, DateTime.Now)
 End Sub
. . .

The WaitCallback delegate is how a method and a state parameter are associated
with an entry in the thread pool’s user work item queue.

WaitCallback WaitCallback is a delegate used to associate a work item in ThreadPool
with a method to invoke.

The WaitCallback class, along with all system delegates in the .NET framework, is
derived from the MulticastDelegate class. Multicast delegates allow a series of
methods to be associated with a single delegate, letting a chain of execution occur. The
following code selectively adds two methods to the WorkItem callback.

Dim TempCallback As WaitCallback
Dim WorkItem As WaitCallback

WorkItem = Nothing
If CheckBoxTime.Checked Then
 TempCallback = New WaitCallback(AddressOf WorkMethodTime)
 WorkItem = WaitCallback.Combine(WorkItem, TempCallback)
End If

If CheckBoxSleep.Checked Then
 TempCallback = New WaitCallback(AddressOf WorkMethodSleep)
 WorkItem = WaitCallback.Combine(WorkItem, TempCallback)
End If

If WorkItem is Nothing/null when passed to WaitCallback, the result is the
same as a simple assignment.

Since a delegate can reference multiple methods, we must use GetInvocationList
of MulticastDelegate to determine what methods are associated with a delegate.

The following example demonstrates how to determine what methods will be invoked,
along with any targets:

Private Sub DisplayDelegateInfo(ByVal D As MulticastDelegate)
 Dim TheDelegate As System.Delegate
 Trace.WriteLine("====")
 Trace.WriteLine(D.ToString())
 For Each TheDelegate In D.GetInvocationList()
 Trace.WriteLine("*****")
 With TheDelegate.Method
 Trace.WriteLine("Method: " + .Name)

GetInvocation-
List

GetInvocationList is a method of the MulticastDelegate class
that returns a collection of Delegates associated with the current instance
of MulticastDelegate.
CALLBACKS 211

Net_Dennis.book Page 212 Thursday, October 31, 2002 4:04 PM
 Trace.WriteLine("FullName: " + .DeclaringType.FullName)
 End With
 If (TheDelegate.Target Is Nothing) Then
 Trace.WriteLine("Target: Null")
 Else
 With TheDelegate.Target
 Trace.WriteLine("Target Type:" + .GetType().FullName)
 Trace.WriteLine("Target: " + .ToString())
 End With
 End If
 Next
End Sub

The Target object is a reference to the instance of a class associated with the method.
In the case of a Shared/static method, the target will be Nothing/null.

The Method property returns an instance of MethodInfo which provides a means
of examining the method in detail. In the example, DeclaringType refers to the
class that contains the method declaration. The Name property of the MethodInfo
class returns the name of the method.

12.3.3 WaitOrTimerCallback

There are times that waiting until a timer’s interval has passed is not desirable. In those
situations ThreadPool’s RegisterWaitForSingleObject allows for timer-
like functionality. We covered RegisterWaitForSingleObject in chapter 10.
Listing 12.3 shows how to use RegisterWaitForSingleObject.

. . .
private AutoResetEvent AutoReset;
. . .
private void Test()
{
 AutoReset = new AutoResetEvent(false);
 Delegate Callback;
 Delegate TempCallback;

 Callback = new WaitOrTimerCallback(FirstCallbackMethod);

 TempCallback= new WaitOrTimerCallback(SecondCallbackMethod);
 Callback = MulticastDelegate.Combine(Callback ,TempCallback);

 TempCallback= new WaitOrTimerCallback(ThirdCallbackMethod);
 Callback = MulticastDelegate.Combine(Callback ,TempCallback);

 TempCallback= new WaitOrTimerCallback(FourthCallbackMethod);
 Callback = MulticastDelegate.Combine(Callback ,TempCallback);

 ThreadPool.RegisterWaitForSingleObject(AutoReset,
 (WaitOrTimerCallback) Callback, null, 10000, false);
}
. . .

Listing 12.3 Using RegisterWaitForSingleObject (C#)
212 CHAPTER 12 DELEGATES

Net_Dennis.book Page 213 Thursday, October 31, 2002 4:04 PM
To associate a WaitHandle-derived class with a method we must use WaitOrTimer-
Callback. WaitOrTimerCallback requires that the method to be associated
with it have two parameters: (1) an object used to pass state information and (2) a
Boolean used to indicate why the method is being invoked. If it is true, the method is
being invoked because the WaitHandle-derived object did not become signaled in
the time span specified by the timeout value passed to RegisterWaitForSingle-
Object. If the value is false, the method is being invoked because the WaitHandle-
derived object became signaled before a timeout could occur.

In listing 12.3 we created a chain of four methods that will be executed each time
the delegate is invoked. FirstCallbackMethod is one of those methods. It checks
to see a value has been set for the SharedData data slot. If it has, a trace message is
written out to that effect. It then sets the SharedData slot to First:.

private void FirstCallbackMethod(object state, bool timedOut)
{
 LocalDataStoreSlot Slot;
 Slot =Thread.GetNamedDataSlot("SharedData");
 string Data;
 Data = (string)Thread.GetData(Slot);
 if (Data != null && Data.Length > 0)
 {
 Trace.WriteLine(Data + " was left from a previous call");
 }
 Data = "First:";
 Thread.SetData(Slot,Data);
}

There are times that the methods in an invocation list need to communicate with each
other. This allows a chained form of processing, similar to a pipeline architecture. In
the previous code a named data slot called SharedData is used to share information
between the different methods in the invocation list.

Remember, when using thread local storage with a thread pool the threads are reused.
This means that the contents of a data slot might contain information from a previous
work item.

TIP In ThreadPool, when using thread local storage, care must be taken to
ensure that a previous thread’s activities do not affect the current activity.

The alternative to using thread local storage is to utilize the state object that is passed in.
If this approach is taken, it is best to use a collection of some sort, such as Hashtable.
This way an element can be set in the collection without changing the actual state object:

System.Collections.Hashtable StateInfo;
StateInfo= new System.Collections.Hashtable();

Using Multicast
Delegates

One means of communication between methods that are part of the same
invocation list is to use thread local storage.
CALLBACKS 213

Net_Dennis.book Page 214 Thursday, October 31, 2002 4:04 PM
ThreadPool.RegisterWaitForSingleObject(AutoReset,
 (WaitOrTimerCallback) Callback, StateInfo, 10000, false);

In each method we can then set an entry in the table:

if (state != null)
{
 System.Collections.Hashtable StateInfo;
 StateInfo = (System.Collections.Hashtable)state;
 StateInfo["SharedData"] = Data;
}

12.4 HANDLING THREAD EXCEPTIONS IN
WINDOWS FORMS

In an ideal world, all thread-related exceptions would be dealt with using the appropriate
try/catch mechanisms. To handle those cases where some execution is not handled,
we can use ThreadExceptionEventHandler. This section applies to Windows
Forms development only because the event handler is associated with the Application
object. The following code shows how ThreadException can be used:
. . .
Public Sub New()
 MyBase.New()
 AddHandler Application.ThreadException, AddressOf Handler
 Thread.CurrentThread.Name = "Main"
 InitializeComponent()
End Sub
. . .
Private Sub Handler(ByVal s As Object, ByVal e As ThreadExceptionEventArgs)
 MessageBox.Show(e.ToString() + vbCrLf + e.Exception.Message)
End Sub
. . .

If you use the Application.ThreadException event any unhandled thread
exceptions, except for ThreadAbortException, that are generated on the main
thread of the application will be captured. Recall that ThreadAbortException is
raised when Abort is called on the thread. If the Application’s ThreadExcep-
tion handler handled the ThreadAbortException it would be impossible to
call Abort on a thread and have the thread terminate.

When the following statement is executed, the exception handler will catch the excep-
tion and display a dialog box:
Throw New System.Threading.ThreadStateException("My Exception")

When the exception is raised, a dialog box containing the following is displayed:

Thread-
Exception

ThreadException is an event of the Application class that allows for
handling any unhandled thread exception. It uses the ThreadException-
EventHandler delegate. Only thread exceptions raised on the main thread
of the application, that is, the thread that installs the handler, will be handled.
214 CHAPTER 12 DELEGATES

Net_Dennis.book Page 215 Thursday, October 31, 2002 4:04 PM
System.Threading.ThreadExceptionEventArgs
My Exception

In a production application a more robust error-handling mechanism would be used.
Instead of displaying a dialog box, most likely an entry would be logged to the event
log indicating that the exception occurred. This should not be seen as a way of not
having to deal with exceptions; instead, it should be viewed as a safety net.

There may be confusion about events and delegates. Events are implemented using
delegates. For example, the ThreadException event uses ThreadException-
EventHandler to handle any thread exceptions. To see this, we can examine the
MSIL for the New method at the beginning of this section:
newobj instance void[System]
 System.Threading.ThreadExceptionEventHandler::.ctor(object,

 native int)

The exception handler must have two parameters: an object and an int. The first is
the sender object, a reference to the thread that raised the exception. This will always
be the thread that added the thread exception handler. If some other thread causes an
unhandled thread exception to be raised, the Application thread exception handler
will not catch the exception.

TIP The thread exception handler will only catch thread exceptions that are raised
on the main thread of the application. If an unhandled thread exception is
raised on some other thread, the thread will terminate. This underscores the
importance of using try/catch statements.

The following code example creates a thread that attempts to call Resume on
myThread. If the thread is in any other state than suspended, this will cause an
exception to be generated.
 Private Sub NewThreadMethod()
 myThread.Resume()
 End Sub
 Private Sub CreateThreadToResume()
 Dim NewThread As New Thread(AddressOf NewThreadMethod)
 NewThread.Name = "NewThread"
 NewThread.Start()
 End Sub

In the case where MyThread is not in the suspended state, the following is generated:

Unhandled Exception: The thread 'NewThread' (0x1050) has exited with code 0
(0x0).
System.Threading.ThreadStateException: Thread is not user-suspended; it can
not be resumed.

Thread-
Exception-
EventArgs

ThreadExceptionEventArgs is a class that is passed as the second pa-
rameter of the ThreadExceptionEventHandler delegate. It contains a
reference to the exception that caused the handler to be invoked. This infor-
mation is available via the Exception property.
HANDLING THREAD EXCEPTIONS IN WINDOWS FORMS 215

Net_Dennis.book Page 216 Thursday, October 31, 2002 4:04 PM
The fact that the ThreadException event does not handle all exceptions that
occur in an application domain reinforces the need for robust error handling using
try/catch blocks.

12.5 ASYNCHRONOUS DELEGATES

Suppose that you wanted to write a method that might be executed synchronously or
asynchronously, depending on what was required at the time. In the following example
AMethod may be executed directly, synchronously, or asynchronously using a delegate:

. . .
delegate void ADelegate();
private void AMethod()
{
 int Worker,Complete;
 ThreadPool.GetAvailableThreads(out Worker,out Complete);
 string Line;
 if (Thread.CurrentThread.Name == null)
 {
 Line = "{null}";
 }
 else
 {
 Line = Thread.CurrentThread.Name;
 }
 Line += " ";
 Line += Thread.CurrentThread.GetHashCode().ToString();
 Line += " ";
 Line += Worker.ToString();
 MessageBox.Show(Line);
}
private void Test()
{
 AMethod();
 ADelegate MyDelegate = new ADelegate(AMethod);

 MyDelegate();

 MyDelegate.BeginInvoke(null,null);
}
. . .

Both the Visual Basic .NET and C# compilers produce methods to support asynchro-
nous execution of delegates. Consider the following example:

public class SimpleDelegate
{
 public delegate void ASimpleDelegate();
}

216 CHAPTER 12 DELEGATES

Net_Dennis.book Page 217 Thursday, October 31, 2002 4:04 PM
This declares a delegate that accepts no parameters and does not return a value.
Figure 12.2 shows the disassembled view of the SimpleDelegate class. Notice that
BeginInvoke, EndInvoke, and Invoke are added to ASimpleDelegate.

Also notice the signature of the BeginInvoke method. In our example at the begin-
ning of this section we pass in Nothing/null for the two parameters. In the next
section we will discuss IAsyncResult and AsyncCallback.

BeginInvoke BeginInvoke is a compiler-generated method that allows a delegate to be
executed asynchronously. This is accomplished using the ThreadPool class.

One major difference between direct invocation of a delegate and using BeginInvoke
is that BeginInvoke cannot be used when multiple targets are involved. This means
that multiple methods cannot be associated with a delegate that will be executed
asynchronously. The following example causes an exception to be raised:

ADelegate MyDelegate = new ADelegate(AMethod);
MyDelegate += new ADelegate(ADifferentMethod);
MyDelegate.BeginInvoke(null,null);

12.5.1 EndInvoke

There are many times that a method needs to return a value or provide output
parameters. This is a little more complex when dealing with asynchronous execution.
To retrieve the results we must use the EndInvoke method. The compiler generates
EndInvoke, just as it generates BeginInvoke.

Figure 12.2 Disassembled view of the SimpleDelegate class
ASYNCHRONOUS DELEGATES 217

Net_Dennis.book Page 218 Thursday, October 31, 2002 4:04 PM
EndInvoke EndInvoke is a compiler-generated method that is used to retrieve the return
value and/or any output parameters of an asynchronous delegate.

This means that the signature of the EndInvoke method depends on the signature
of the delegate it is associated with. In the following example the EndInvoke
method accepts two parameters and returns a string:

. . .
Delegate Function TestDelegate(ByRef state As Object) As String

Private Function TestMethod(ByRef state As Object) As String
 Dim ThreadHashCode As String
 ThreadHashCode = Thread.CurrentThread.GetHashCode().ToString()
 state = " State: Testmethod " + ThreadHashCode
 Return "ReturnValue: Returned From TestMethod "
End Function
Private Sub Test()
 Dim MyDelegate As TestDelegate
 MyDelegate = New TestDelegate(AddressOf TestMethod)
 Dim state As New Object()
 Dim AsyncResults As IAsyncResult
 AsyncResults = MyDelegate.BeginInvoke(state, Nothing, Nothing)
 Dim ReturnValue As String
 ReturnValue = MyDelegate.EndInvoke(state, AsyncResults)
 Trace.Write(ReturnValue)
 Trace.WriteLine(state.ToString())
End Sub
. . .

EndInvoke will always accept one more parameter than the delegate it is associated
with and have the same return value as that delegate. The additional parameter is an
object that supports IAsyncResult.

TIP If the compiler tells you that “No overload for method 'EndInvoke' takes
'X' arguments” where X is the number of arguments you are attempting to
use, it is likely because the parameters of the delegate are not declared as
byref or ref. The compiler rightly assumes that it does not have to deal
with values being returned if the parameter is not marked as a reference.

BeginInvoke returns an instance of an object that supports IAsyncResult.
That return value should be passed to EndInvoke to retrieve any out parameters
and to determine the return value.

EndInvoke is a blocking call. That means that it will not return until the delegate
instance it is associated with completes execution. The thread that calls EndInvoke will
stop executing until EndInvoke returns. An alternative is to use AsyncCallback.

12.5.2 AsyncCallback

AsyncCallback is a means of associating a delegate with the asynchronous delegate.
When the asynchronous delegate completes its execution, the method associated with
AsyncCallback is invoked. That method can then call EndInvoke and retrieve
218 CHAPTER 12 DELEGATES

Net_Dennis.book Page 219 Thursday, October 31, 2002 4:04 PM
output values or the return code. In the following code example, we start execution of
MyDelegate in the TestCallback method. When we call BeginInvoke we
pass in CompleteCb as the second parameter. The method associated with Com-
pleteCb, Complete, is executed as soon as TestMethod completes its execution.

Private Sub TestCallback()
 Dim state As Object = ""
 Dim TheAsyncResult As IAsyncResult
 Dim MyDelegate As TestDelegate
 MyDelegate = New TestDelegate(AddressOf TestMethod)
 Dim CompleteCb As AsyncCallback
 CompleteCb = New AsyncCallback(AddressOf Complete)
 TheAsyncResult = MyDelegate.BeginInvoke(state, CompleteCb, Nothing)
 Trace.WriteLine("Exiting TestCallback")
End Sub

Private Sub Complete (ByVal TheAsyncResult As IAsyncResult)
 Dim TheResults As AsyncResult = CType(TheAsyncResult, AsyncResult)
 Dim ReturnValue As String
 Dim state As Object = ""
 Dim MyDelegate As TestDelegate

 MyDelegate = CType(TheResults.AsyncDelegate, TestDelegate)
 ReturnValue = MyDelegate.EndInvoke(state, TheAsyncResult)
 Trace.Write(ReturnValue)
 Trace.WriteLine(CType(state, String))
End Sub

Complete is invoked as soon as the asynchronous execution is complete. It calls
EndInvoke and retrieves both the output parameters and the return value of
TestMethod.

The last parameter in the BeginInvoke method is an object that is passed
through to the IAsyncResult object. It is available from the AsyncResult object
by accessing the AsyncState property.

12.6 CREATING AND INVOKING
DYNAMIC DELEGATES

Suppose you know that at some point you need to execute one of five delegates. One
way to do that would be to create a large case statement and create each of the delegates.
Another alternative is to use the CreateDelegate method of the Delegate class.
CreateDelegate allows for late binding. It allows a developer to determine at
runtime what method is associated with a particular delegate, along with an optional
target. The target is the same as the target from the previous sections in this chapter;
it is an instance of a class that the method belongs to. In the following example the
target is the current class, referenced by the this keyword:
CREATING AND INVOKING DYNAMIC DELEGATES 219

Net_Dennis.book Page 220 Thursday, October 31, 2002 4:04 PM
. . .
void TestMethod4()
{
 StackTrace MyTrace=new StackTrace ();
 Trace.WriteLine(MyTrace.GetFrame(0).GetMethod().Name);
}
delegate void TestDelegate();
private void buttonTest_Click(object sender, System.EventArgs e)
{
 Delegate MyDelegate;
 string[] Methods = { "TestMethod0", "TestMethod1" , "TestMethod2",
"TestMethod3","TestMethod4"};
 Random Rnd=new Random(Environment.TickCount);
 string MethodToUse = Methods[Rnd.Next(Methods.Length)];
 MyDelegate = Delegate.CreateDelegate(typeof(TestDelegate),this,MethodToUse
);
 MyDelegate.DynamicInvoke(null);
}
. . .

Once the delegate has been created we need some means of invoking it. The Dynamic-
Invoke method allows for invocation of delegates that are created using the Create-
Delegate method. It accepts an array of objects as its only parameter. These objects
are the parameters, if any, that the method associated with the delegate expects.

CreateDelegate CreateDelegate is a static method of the delegate class. It creates a delegate
of a specified type and associates it with a target object and a method to invoke.

The late binding referred to in this section refers to binding a method, and option
object, to a delegate. It should not be confused with other forms of late binding.

DynamicInvoke DynamicInvoke is a method of the delegate class. It allows delegates created
using CreateDelegate to be invoked. It accepts a single parameter, which
is an array of objects that should correspond to the arguments of the method
associated with the delegate.

There are many situations where late binding is a good idea. There are things that
must be accounted for when doing late binding. One situation that can arise is that the
target method referenced does not exist. In that case the following exception is raised:

An unhandled exception of type 'System.ArgumentException' occurred in
mscorlib.dll

Additional information: Error binding to target method.

The alternative to using CreateDelegate and DynamicInvoke is to use a large
case statement:

private void UseCaseStatement()
{
 TestDelegate MyDelegate=null;
 string[] Methods ={"TestMethod0","TestMethod1"};
220 CHAPTER 12 DELEGATES

Net_Dennis.book Page 221 Thursday, October 31, 2002 4:04 PM
 Random Rnd=new Random(Environment.TickCount);
 string MethodToUse = Methods[Rnd.Next(Methods.Length)];
 switch(MethodToUse)
 {
 case "TestMethod0":
 MyDelegate = new TestDelegate(TestMethod0);
 break;
 case "TestMethod1":
 MyDelegate = new TestDelegate(TestMethod1);
 break;
 }
 if (MyDelegate != null)
 MyDelegate();
}

One of the biggest advantages of using this approach is that if references to nonexistent
methods exist they will be caught at compile time rather than runtime. As with all
things there are tradeoffs to both approaches and the situation will dictate which is the
better approach.

12.7 SUMMARY

In this chapter we discussed various forms of delegates. Delegates allow for a high
degree of flexibility. They allow a reference to a method to be treated like any other
variable, without the risks of using function pointers in C++. Delegates are a key part
of any asynchronous development in the .NET platform. By understanding delegates
in general, you’ll find that multithreaded development becomes much simpler.
SUMMARY 221

Net_Dennis.book Page 222 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 3

Exceptions

13.1 Exceptions revisited 223
13.2 Thread-related exceptions 224
13.3 The AppDomain UnhandledException event 232
13.4 Summary 234
Exceptions are a flexible and powerful way of handling alternative outcomes. Excep-
tions are particularly important in multithreaded development. This chapter revisits the
concepts behind exceptions and then examines the exceptions that are associated with
threads. The chapter ends by examining UnhandledException of the application
domain object.

Exceptions provide a way to force a condition to be dealt with. Traditional error
handling relies on the caller of the method or function checking to see if an error hap-
pened. If the caller does not check, the error goes unnoticed. Exceptions force a caller
to deal with an unexpected condition. If the caller does not handle the exception, the
call stack is searched for an appropriate handler. If none is found, the exception
becomes an unhandled exception. When an unhandled exception occurs on a thread,
it is terminated.

Appropriate exception handling is an important part of good multithreaded devel-
opment practices. Time spent adding exception handlers will be more than returned
during the debugging and stabilization phases of development.
222

Net_Dennis.book Page 223 Thursday, October 31, 2002 4:04 PM
13.1 EXCEPTIONS REVISITED

Exceptions are a powerful way of handling exception conditions in programs. They have
many advantages over other forms of error handling. One area where an exception is
very robust is in giving information about the location of the condition that caused
the exception to be raised. This can be augmented by chaining exceptions together,
essentially re-throwing the exception after adding additional information:

Private Sub TestMethod2()
 Try
 TestMethod3()
 Catch ex As Exception
 Dim NewException As Exception
 NewException = New Exception("TestMethod2", ex)
 Throw NewException
 End Try
End Sub

In the example, when an exception is caught by a method it creates an exception,
adding its own information along with a reference to the original exception. Once the
new exception is created, it is thrown.

One of the biggest shortcomings of traditional error handling is the reliance on
return values. A typical usage has a function return some value to indicate success and
some other value to indicate an error occurred. One variation of this is to have a param-
eter that returns error code. The following code is typical of that sort of error handling:

Private Function OldFashionedFunction() As Boolean
 Dim SomethingBadHappened As Boolean
 SomethingBadHappened = False
 If SomethingBadHappened Then
 Return False
 Else
 Return True
 End If
End Function

The caller of this function must check the return value to see if an error occurred.
One acceptable form of usage is:

 Private Sub OldFashionedCaller()
 If Not OldFashionedFunction() Then
 ' Handle the error
 Else
 ' Things went well
 End If
End Sub

One major problem with this approach is that it trusts that the caller will check the
return value. All too often the return value, and the possible error, is ignored:
EXCEPTIONS REVISITED 223

Net_Dennis.book Page 224 Thursday, October 31, 2002 4:04 PM
Private Sub NotCheckingReturnCode()
 OldFashionedFunction()
End Sub

One of the biggest advantages of an exception is that it forces a method to deal with
an error or lose control of execution. Additionally, the error-handling routines can be
separated from the main code of the method, allowing for more maintainable code:

Private Sub ExceptionBasedFunction()
 Dim SomethingBadHappened As Boolean
 SomethingBadHappened = False
 If SomethingBadHappened Then
 Throw New Exception("Something bad happened")
 End If
End Sub

13.2 THREAD-RELATED EXCEPTIONS

Now we turn our attention to the exceptions most commonly encountered when doing
multithreaded development. Since exceptions are going to occur, it is important that
a program handle them in an appropriate way.

13.2.1 The ThreadAbortException class

ThreadAbortException is different from most exceptions in that when the excep-
tion is handled, unless ResetAbort is called, exiting the try/catch block causes
the method to also exit. Recall from section 4.3.2 that ResetAbort allows Thread-
AbortException to behave like other exceptions. ThreadAbortException is
raised whenever an instance of the Thread class has the Abort method invoked. It
allows a thread method opportunity to perform any needed exit processing.

Most exceptions behave as follows:

private void TypicalException()
{
 try
 {
 throw new Exception("Test");
 }
 catch (Exception ex)
 {
 Trace.WriteLine("In Catch");
 }
 finally
 {
 Trace.WriteLine("In Finally");
 }
 Trace.WriteLine("After Try");
}

When the exception is generated in the try block, control transfers to the catch
clause. After the catch clause has executed, control transfers to the finally block.
224 CHAPTER 13 EXCEPTIONS

Net_Dennis.book Page 225 Thursday, October 31, 2002 4:04 PM
After the finally block executes, control transfers to the next instruction, in this
case a Trace statement.

In the case of ThreadAbortException at the point the try block exits, the method
containing the try block also exits. This allows the thread’s method to be informed that
the thread is in the process of exiting, and alternatively call ResetAbort. Listing 13.1
shows the typical flow that occurs when a ThreadAbortException is raised.

public class FormThreadAbortException : System.Windows.Forms.Form
{
. . .
 private Thread TheThread;
 private void ButtonStart_Click(object sender, System.EventArgs e)

 {
 StartTheThread();
 }
 private void StartTheThread()
 {
 TheThread = new Thread(new ThreadStart(ThreadMethod));
 TheThread.IsBackground = true;
 TheThread.Name = "TheThread";
 TheThread.Start();
 }
 private void ThreadMethod()
 {
 try
 {
 while (true)
 {
 Trace.Write("*");
 Thread.Sleep(1000);
 }
 }
 catch (ThreadAbortException ex)
 {

 Trace.WriteLine(ex.ToString());
 }
 finally
 {
 Trace.WriteLine("Finally!");
 }
 Trace.WriteLine("This will not be reached");
 }

ThreadAbort-
Exception

ThreadAbortException is raised on a thread whenever Abort is called
on the instance of the Thread class associated with the thread. It allows for
a graceful exit.

Listing 13.1 Typical ThreadAbortException flow (C#)

An instance of
the Thread class

is createdThe new thread
starts

A ThreadAbortException
occurs

This instruction will
not be reached
THREAD-RELATED EXCEPTIONS 225

Net_Dennis.book Page 226 Thursday, October 31, 2002 4:04 PM
 private void ButtonAbortThread_Click(object sender, System.EventArgs e)
 {
 //
 TheThread.Abort();
 }
. . .

If the thread’s method calls ResetAbort, ThreadAbortException behaves like
any other exception. An important note: ResetAbort must be called in the catch
clause. If it is called in the finally clause it will have no effect:

. . .
catch (ThreadAbortException ex)
{
 Thread.ResetAbort();
 Trace.WriteLine(ex.ToString());
}
finally
{
 Trace.WriteLine("Finally!");
}
Trace.WriteLine("This will be reached");
. . .

One version of the Abort method allows an object containing state information to be
passed in. This is passed to the exception listed in the catch clause. The object is avail-
able by accessing the ExceptionState property of ThreadAbortException.

13.2.2 The ThreadInterruptedException class

Threads go through many states during their lives. When a thread is sleeping, it enters
WaitSleepJoin. Once in that state, it can leave it several ways; one way is that a
timeout on a sleep statement expires. That is what will happen in listing 13.2.

Imports System.Threading
Public Class FormThreadInterruptedException
 Inherits System.Windows.Forms.Form
. . .
Private TestThread As Thread
 Private ThreadSleepTime As Integer
. . .
 Private Sub StartTestThread()
 TestThread = New Thread(AddressOf ThreadMethod)
 TestThread.IsBackground = True
 TestThread.Name = "TestThread"
 TestThread.Start()
 End Sub
 Private Sub ThreadMethod()
 Dim SleepTime As Integer

A ThreadAbortException
is raised on the thread

Listing 13.2 Example of ThreadInterruptedException (VB.NET)

Create a thread
associating it with
ThreadMethod

Start the thread
executing
226 CHAPTER 13 EXCEPTIONS

Net_Dennis.book Page 227 Thursday, October 31, 2002 4:04 PM
 Try
 While True
 Try
 SyncLock Me
 SleepTime = ThreadSleepTime
 End SyncLock
 ' Do processing here
 Thread.Sleep(SleepTime)
 Catch ex As System.Threading.ThreadInterruptedException
 Debug.WriteLine(ex.ToString(), "ThreadExceptions")
 End Try
 End While
 Catch ex As ThreadAbortException
 Debug.WriteLine(ex.ToString(), "ThreadExceptions")
 Catch ex As Exception
 Debug.WriteLine(ex.ToString(), "ThreadExceptions")
 EventLog.WriteEntry(Application.ProductName, ex.ToString())
 End Try
 End Sub
. . .
 Private Sub ButtonInterrupt_Click(. . .) Handles ButtonInterrupt.Click
 TestThread.Interrupt()
 End Sub
. . .

Another way that a thread can exit WaitSleepJoin is that some resource that is being
waited upon becomes available. If some other thread had a lock on the current instance
of the object, Me/this in listing 13.2, the thread would enter the WaitSleepJoin
state when it encountered the SyncLock statement. Once the other thread released
the lock on the current instance, the thread executing ThreadMethod would exit
the WaitSleepJoin state.

The Join method is used to wait for a thread to terminate. The thread that calls
Join on some other thread’s object enters WaitSleepJoin until a timeout expires
or the joined thread terminates.

A more direct way that a thread can leave the WaitSleepJoin state is by using
the Interrupt method. Interrupt is a way of forcing a thread to exit the Wait-
SleepJoin state. This is accomplished by using Exception. When a thread has
Interrupt called on it, if the thread is currently in the WaitSleepJoin state,
ThreadInterruptedException is raised on that thread. If the thread is not in the
WaitSleepJoin state, as soon as it enters the state ThreadInterruptedExcep-
tion will be raised.

Thread-
Interrupted-

Exception

ThreadInterruptedException is raised when a thread is in the Wait-
SleepJoin state and some other thread calls Interrupt, or a thread has
previously had Interrupt called on it and it enters WaitSleepJoin.
ThreadInterruptedException allows a thread to be awakened so
that it can resume its processing.

Signal the thread to
exit the WaitSleepJoin
state

Catch
ThreadInterruptedException
THREAD-RELATED EXCEPTIONS 227

Net_Dennis.book Page 228 Thursday, October 31, 2002 4:04 PM
A thread can call Interrupt on itself, causing ThreadInterruptedException
to be raised as soon as the thread enters a WaitSleepJoin state. If Interrupt is
called numerous times before the thread enters WaitSleepJoin, it will only cause
the thread to exit the state once. Think of it as a Boolean flag. When that flag is set to
true, the thread will exit the WaitSleepJoin state and reset the flag to false. Con-
tinuing with the flag metaphor, calling Interrupt sets the flag to true.

TIP A thread can have Interrupt called at all times. The thread must either be
unstarted or currently executing for calling Interrupt to have any effect.
Calling Interrupt on a thread that has exited does not generate an error.

In listing 13.2 the only action we take when ThreadInterruptedException is
raised is to write out a debug statement. Generally speaking, there is no reason to log
an event to the event log, or take some other error-tracking steps, for things such as
thread interruptions. They are not an error; at most they may be a symptom of a
problem. Suppose that logic exists that keeps track of the last time an action was
taken. If that action did not happen in a timely manner, the watching thread could
call Interrupt on the tardy thread. Doing so should be logged as an informational
message for later analysis. It may well be that the tardy thread is hanging on some
errant logic.

In the example code, we also catch only ThreadInterruptedException at
the innermost level of the thread’s method. Other exceptions will propagate up to the
outer exception handler. This is a powerful feature of exception handling. Exception
handlers can choose which exceptions they will deal with, and allow another one to
deal with all other exceptions.

13.2.3 The ThreadStateException class

Threads transition from one state to another. As we saw in chapters 4 and 5, not all state
transitions are allowed. In table 13.1, Yes indicates that, if a thread is in the state in
the first column and a method or property along the top is called, a ThreadState-
Exception is raised.

Notice that Abort and Interrupt do not cause ThreadStateException to
be raised regardless of the state of the thread. Other methods, such as Resume, cause
an exception to be raised unless they are called when the thread is in a certain state.

Table 13.1 States and Methods/Properties That Raise the ThreadStateException

State Start Abort Suspend Resume Interrupt Priority IsBackground

Unstarted Yes Yes

Running Yes Yes

WaitSleepJoin Yes Yes

Suspended Yes

Stopped Yes Yes Yes Yes Yes
228 CHAPTER 13 EXCEPTIONS

Net_Dennis.book Page 229 Thursday, October 31, 2002 4:04 PM
The reason that some methods can be called without raising an exception and others
cannot revolves around race conditions.

Consider what would happen if Abort could not be called on a thread in the Stopped
state without ThreadStateException being raised. Before Abort could be
called, the thread state would need to be inspected to determine if the thread were in
Stopped. If it was not, Abort could be called. The race condition occurs when the
state of the thread changes after the test has been performed.

Interrupt can be called at any time. Again, if Interrupt were restricted so that
it could only be called when a thread was in the WaitSleepJoin state, the likelihood
of a race condition would be very high. Instead, calling Interrupt causes a thread
to exit WaitSleepJoin if it enters it. If the thread never enters the state, calling
Interrupt has no effect.

Why do some methods seem to care what state the thread is in and others do not?
If the thread can exit a state without the method of interest being called, Thread-
StateException will not be raised. For example, if a thread is in the Unstarted
state, the only way it can leave that state is if Start is called. Therefore, if the thread
is not in that state and Start is invoked, it is safe to assume an invalid state transition
is being attempted and the runtime raises an exception.

A counter example is if a thread is in the WaitSleepJoin state it is possible, and
very likely, that the thread will exit without Interrupt being called. With that
knowledge, it is reasonable that Interrupt cannot require the thread be in the
WaitSleepJoin state when it is called.

The terminal state for a thread is Stopped. When a thread is in the Stopped
state, only Abort and Interrupt can be called without raising ThreadState-
Exception. This makes a good deal of sense because you wouldn’t want to manip-
ulate a thread that is in the Stopped state. Since Abort generally causes a thread to
enter the Stopped state, it would be too restrictive to raise an exception when Abort
is called on a thread in the Stopped state.

A ThreadStateException can be raised when:

• The thread is in the terminal state, Stopped.

• The thread is in a state that can only be exited by calling a method on the
thread object, such as Suspended and Unstarted.

ThreadState-
Exception

ThreadStateException is a thread-related exception that is raised
whenever an illegal state transition is attempted.

Impact
of Race

Conditions

Methods that rely on a thread being in a certain state raise ThreadState-
Exception only if there is no way that the thread can exit the restricted
state. For example, a thread that is the Suspended state can only exit when
Resume is called. Thus, any time a thread is not in the Suspended state
and Resume is called it is an invalid state transition.
THREAD-RELATED EXCEPTIONS 229

Net_Dennis.book Page 230 Thursday, October 31, 2002 4:04 PM
A thread can enter the Suspended state only if Resume is called.
ThreadStateExceptions are not raised when the thread is in a state that it can

exit without a method, such as WaitSleepJoin, being called on the thread object.
When a method is invoked that has no perceivable effect, such as calling Abort on
a thread in the Stopped state, it doesn’t make sense to raise an exception.

Care should be taken to handle possible ThreadStateExceptions. Thread-
ExceptionEventHandler, covered in section 12.4, is an ideal way of dealing with
ThreadStateExceptions if the application involved is a Windows Form.

In general, every interaction with a thread object should be wrapped with a try/
catch block. Multiple catch clauses can be used to differentiate between the serious
exceptions and the less important ones. Something similar to the following can be used
to separate the catching of ThreadStateException and other Exceptions:

catch(ThreadStateException ex)
{
. . .
}
catch (Exception ex)
{
. . .
}

13.2.4 The SynchronizationLockException class

We saw in chapter 7 how to acquire a lock using the Monitor.Enter method. We also
discussed the SynchronizationLockException class. Synchronization-
LockException is raised when a method that is intended to be invoked from within
a synchronized region is invoked from a region of code that is not synchronized. This
means that all methods except for Enter and TryEnter of the Monitor class will
generate SynchronizationLockException if invoked from a region of code
that is not synchronized.

An interesting aspect of the following code involves performance counters. Perfor-
mance counters are an easy way to expose metrics of the actions a program is taking.

Imports System.Diagnostics
. . .
Dim PerfCounter As PerformanceCounter
. . .
PerfCounter = New PerformanceCounter("Dennis - Multithreading", "Lock-
Count", False)
. . .
Private Sub EnterWaitExit()
 Monitor.Enter(LockObject)

Synchro-
nization-

LockException

SynchronizationLockException is an exception raised when a Moni-
tor method, other than Enter and TryEnter, is invoked from code that
is not in a synchronization block.
230 CHAPTER 13 EXCEPTIONS

Net_Dennis.book Page 231 Thursday, October 31, 2002 4:04 PM
 PerfCounter.Increment()
 Monitor.Wait(LockObject)
 Monitor.Exit(LockObject)
 PerfCounter.Decrement()
End Sub

In this case we increase the counter when Enter is called and decrease it when Exit
is called. If the resulting value is greater than zero, it indicates that Enter was called
more than Exit. This means that a lock on the object is still in force.

TIP Performance counters are a good way to keep track of the number of times
a lock count has been incremented.

As with all methods that can raise exceptions, the Monitor methods should be con-
tained within a try/catch block. Failure to do so will likely result in an unhandled
exception, which causes the thread on which it was raised to be terminated.

To avoid race conditions, no attempt should be made to determine if a lock is cur-
rently held. A more robust approach is to call TryEnter. If the lock is acquired, a
synchronized method can then be invoked, such as Pulse. Since calls to TryEnter
and Enter are allowed when the current thread holds the lock, no harm will come
from attempting to acquire a lock.

When a lock is no longer required, the number of calls to Exit should equal the
total of the number of calls to Enter and TryEnter. Calling Exit more times than
Enter after the lock has been collected will cause SynchronizationLockExcep-
tion to be raised. This should be viewed as a logic error.

TIP Exit should be called as soon as possible after Pulse and PulseAll because
in order for a thread to exit the WaitSleepJoin state it must reacquire a
lock on the object that it was waiting on. If the thread that calls Pulse does
not release that lock, the thread will not be allowed to exit the Wait-
SleepJoin state.

The example program for this section allows a user to interact with the Monitor
locking mechanism to see the effects of invoking methods that require synchronization
without having first acquired the lock. The overall flow is described in figure 13.1.

When the user clicks a button (e.g., Wait), a string by the same name is added to a
queue that is an instruction for the thread that services that queue. A thread is running
with the sole purpose of keeping its instruction queue empty. When it sees an instruc-
tion is in the queue, it dequeues it and attempts to process it. This is accomplished by

Behavior
of Exit

Because of non-deterministic finalization in .NET, there may be times that
you can call Exit more times than Enter. You will be able to call Exit
until the garbage collector collects the garbage. After the collection has oc-
curred, calls to Exit will cause SynchronizationLockException to
be raised. Pulse, PulseAll, and Wait always raise an exception if in-
voked from an unsynchronized block of code.
THREAD-RELATED EXCEPTIONS 231

Net_Dennis.book Page 232 Thursday, October 31, 2002 4:04 PM
using a large switch statement, containing all of the instructions that the thread knows
how to process. In this case the thread executes the following statement:

Case "Wait"
 Monitor.Wait(LockObject)

Multiple threads are required because some methods of the Monitor class, such as
Enter, may not return. If a call were made to Wait on the main thread of the appli-
cation, it would be impossible to call Pulse, since the thread would be blocked by
the Wait. A queue is introduced because the thread servicing the queue may be
blocked by an instruction.

13.3 THE APPDOMAIN UNHANDLEDEXCEPTION EVENT

One of the most difficult things to track down is an unhandled exception in a pro-
duction system. The AppDomain object provides an Event that is invoked when an
unhandled exception is encountered. Invoking the event does not handle the excep-
tion; it merely allows the information to be stored to help in diagnosing the problem
later. If an unhandled exception occurs on a thread other than the main thread, the
user is likely not going to notice. It might be possible to have the application create
another thread after having logged that a thread died in an unexpected way. If the
main thread encounters an unhandled exception, the application will terminate. It
would be appropriate to display a meaningful message to the user as well as log the
information to help the support staff diagnose the issue.

Figure 13.1 The logical flow of the synchronization exception example

Unhandled-
Exception

UnhandledException is an event that allows a delegate of the application
domain object to be invoked when an unhandled exception occurs.
232 CHAPTER 13 EXCEPTIONS

Net_Dennis.book Page 233 Thursday, October 31, 2002 4:04 PM
The following code example adds a handler to the UnhandledException event
that logs the exception to the event log. This is a good start, but likely a more robust
logging mechanism would be needed in a production system.

. . .
private void AddUnhandledExceptionHandler()
{
 UnhandledExceptionEventHandler MyHandler;
 MyHandler = new UnhandledExceptionEventHandler(MyExceptionHandler);

 // Add a handler to the UnhandledException event.
 System.AppDomain.CurrentDomain.UnhandledException += MyHandler;
}
private void MyExceptionHandler(object sender , UnhandledExceptionEventArgs e)
{
 Exception TheException;
 TheException = (Exception)e.ExceptionObject;
 if (!EventLog.Exists(Application.ProductName))
 {
 EventLog.CreateEventSource(Application.ProductName, "Application");
 }
 EventLog.WriteEntry(Application.ProductName, "Unhandled Exception: " +
 TheException.ToString(), EventLogEntryType.Error);
}
. . .

Once a handler is in place it can be removed using the -= operator in C# and the
RemoveHandler statement in VB.NET.

It is important to understand what the user will likely see when an unhandled
exception occurs. The best you can hope for is shown in figure 13.2.

While developers find this information very useful, typical business users will not.
They likely will not click the Details button and will instead click Continue. After they
have clicked the Continue button, they will probably call the support personnel and

Figure 13.2

A typical UnhandledException

dialog box
THE APPDOMAIN UNHANDLEDEXCEPTION EVENT 233

Net_Dennis.book Page 234 Thursday, October 31, 2002 4:04 PM
inform them that they just encountered an error. They will not be able to send any-
thing to the support staff to resolve the issue.

TIP Use the UnhandledException event as a means of logging unhandled
exceptions to the event log.

Think about support issues during development. By planning for failure, you can pro-
duce a higher quality product. When an issue is encountered, a mechanism will be in
place to make resolving those issues much easier. In an ideal world there is no need
for error handling and logging, but we do not live in an ideal world. Software often
encounters environments that developers never imagined could exist. The software
must be prepared to record these events so that issues can be resolved.

13.4 SUMMARY

Exceptions provide a robust way of dealing with error conditions. Since an unhandled
exception terminates a thread, it is imperative that complete and thorough error handling
be in place. At the very least, an UnhandledException handler should be put in
place to record the occurrence of an unhandled exception. If time is spent during the
early stages of development adding error handling, the overall quality of the product
will be much higher. Additionally, as errors are encountered it will be much easier to
correct them. The return on investment for adding error handling is very high.
234 CHAPTER 13 EXCEPTIONS

Net_Dennis.book Page 235 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 4

Timers

14.1 Using Windows Forms timers 235
14.2 System.Timers.Timer 239
14.3 System.Threading.Timer 243
14.4 Summary 244
Timers, a reoccurring event that has a predefined interval, are a common construct, and
most Visual Basic programmers have used a timer at some point. Timers meet a com-
mon need of performing an operation after a ceratin amount of time has passed. This
chapter focuses on timers available in the .NET framework.

14.1 USING WINDOWS FORMS TIMERS

Windows Forms timers are one of the most common kinds of timers. They are simple
to use, and for Visual Basic developers the only viable way of seeming to do multiple
things at once. This section explores Windows Forms timers, first by examining their
background and then how they are implemented in the .NET framework.

14.1.1 How Windows Forms timers are implemented

Most Windows developers are familiar with Windows Forms timers. In Visual Basic
version 6.0, and previous versions, the timer was added to a form using a stopwatch
icon. The Visual Basic timer has a Name property, along with an Enabled property
that controls if the timer’s Timer method is invoked at the intervals specified in the
Interval property.

The Visual Basic timer is implemented using the Win32 API call SetTimer. The
SetTimer API call causes a WM_TIMER message to be posted to the associated win-
dow’s message queue at the interval specified. This is an important characteristic of all
235

Net_Dennis.book Page 236 Thursday, October 31, 2002 4:04 PM
Windows Forms-based timers; they utilize the window’s message queue to indicate
when the timer’s method should be invoked. This means that all timer methods occur
on the same thread as the message queue processing method.

Without getting into too much detail of Windows API programming, each Windows
application that supports a user interface has a loop in it whose sole purpose is to pro-
cess messages. This is generally called the message loop. Communication is based on
a message being added to a queue that this loop services. When a message is processed,
an appropriate method is invoked. All of this is occurring on a single thread. That is
why Visual Basic applications that do not use the DoEvents method often stop
updating the screen during long-running operations. This emphasizes the single-threaded
nature of Visual Basic applications.

DoEvents is essentially a recursive call back to the message loop. Once the message
queue has been serviced, DoEvents returns to the method that calls it. This brings us
to an issue with DoEvents: If a message is processed during the DoEvents call that
is long-running, it too will cause the application to become unresponsive. The key
point here is that Windows Forms timers are an ideal way of performing operations
of short duration that are related to the user interface. Any other use will eventually
result in a responsiveness issue.

To see that Windows Forms timers use the message queue, we can add a message filter
to our form that looks for the WM_TIMER message. Message filters are a way of restricting,
or monitoring, messages. If you wanted to keep an application from responding to an
event, one way to do so is to use a message filter. For our needs we simply want to know
that a particular message is about to be processed.

To add a message filter, you must first create a class that supports IMessageFilter.
This class must provide a Boolean function named PreFilterMessage that accepts
a reference to a message. The return value of PreFilterMessage determines if a
message is processed or filtered. When the return value is true, the message will not be
processed; if it returns false, the message will be processed. To add a message filter we
simply pass an instance of the class that supports IMessageFilter to the Appli-
cation object’s AddMessageFilter method, as seen in the following example code:
Filter = new ClassTimerMessageFilter(textBoxFeedback);
Application.AddMessageFilter(Filter);

ClassTimerMessageFilter supports IMessageFilter. The constructor accepts
an instance of a control object, and we use that instance to add a line to the textbox
indicating that a WM_TIMER message is about to be processed.

Windows
Forms Timers

A Windows Forms timer is a mechanism for performing operations at regular
intervals. It is based on entering a message in the window’s message queue.

Message
Filters

A message filter is a class that implements the IMessageFilter interface.
The filters allow for detection and selective removal of the messages that the
loop processes.
236 CHAPTER 14 TIMERS

Net_Dennis.book Page 237 Thursday, October 31, 2002 4:04 PM
When a WM_TIMER message is processed, the Windows Forms timer invokes the
Tick delegate. This is a multicast delegate that can cause multiple methods to be exe-
cuted. To add a delegate, use the += operator in C# and the AddHandler statement
in Visual Basic .NET. The following example adds an event handler:
timer1.Tick += new EventHandler(TickHandler);

Since Visual Basic .NET does not currently support operator overloading, it cannot
use the += operator to add a handler.

14.1.2 Controlling Windows Forms timers

Creating a Windows Forms-based timer is very easy. The toolbox in Visual Studio
includes an easy-to-use Timer control. Figure 14.1 shows the location of the Windows
Forms timer in the toolbox.

Using the timer control from the toolbox is the easiest way to add a timer to the form.
This is basically the same as adding a timer in Visual Basic 6.

Dragging and dropping the timer icon onto a form will create the first two lines
of the code that follows:
. . .
Friend WithEvents Timer1 As System.Windows.Forms.Timer
. . .
Me.Timer1 = New System.Windows.Forms.Timer(Me.components)
. . .
Private Sub Timer1_Tick(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles Timer1.Tick
. . .

Once a timer is added to a form we need to interact with it. A timer is a simple
device. It contains a switch that indicates whether or not it is active. This is exposed
as a property called Enabled. To turn on the timer, simply set Enabled to True:
Timer1.Enabled = True

The frequency of the timer is important. A timer’s interval should be set to be frequent
enough so that an event of interest does not pass unnoticed, but it should not be set
so small as to flood the message queue with WM_TIMER messages. To control the fre-
quency of a timer, we use the Interval property, which accepts an integer value that
indicates the number of milliseconds to pause between raising the Tick event.

Figure 14.1

Selecting the Windows Forms

timer from the toolbox
USING WINDOWS FORMS TIMERS 237

Net_Dennis.book Page 238 Thursday, October 31, 2002 4:04 PM
Interval Interval is an integer property of the Timer class that controls the
amount of time, in milliseconds, before the raising of the Tick event.

The Tick event is how the timer makes its presence known. In the previous example
the method Timer1_Tick is executed every time the Tick event is raised on the
Timer1 instance of the timer class. Event handlers can be added and removed as
needed. To add a handler, you must first add a method with the same signature as
Timer1_Tick in the example. That method will be invoked every time the Tick
event is raised. Since Tick is a multicast delegate, multiple methods can be associ-
ated with it. The same method can be associated and removed multiple times.

Tick The Tick event is raised whenever the timer object is enabled and the speci-
fied interval expires. Multiple event handlers can be associated with the same
Tick event.

To add a Tick event handler, declare an object of type EventHandler and pass in
the address of the method to be invoked when the event becomes signaled. In Visual
Basic .NET use the AddHandler keyword to associate EventHandler with the
event it is to handle:

Dim Handler As New EventHandler(AddressOf MessageBoxHandler)
AddHandler Timer1.Tick, Handler

To disassociate a method from an event, use the RemoveHandler keyword:

Dim Handler As New EventHandler(AddressOf MessageBoxHandler)
RemoveHandler Timer1.Tick, Handler

The Enabled property can be used to control if the Tick event is raised. Two
methods can alternatively be used to control the Enabled state of the timer object.
The Start method causes the Enabled property to be set to True. The Stop
method causes the Enabled property to be set to False. The following code demon-
strates using the Start method:

Timer1.Start()
Trace.Assert(Timer1.Enabled = True)

Calling Start or setting Enabled to True when the timer is already in the Enabled
state has no effect. It does not cause the timer to start over. If the timer is switched
from enabled to disabled and then back to being enabled, the interval will start over.

Start Start is a method of the Timer class that ensures that the Enabled
property has a value of True.

This brings us to an important topic. Windows Forms-based timers should not be
viewed as high-precision timers. Just because the interval is in milliseconds, it is not safe
to assume that the precision of the timer is also in milliseconds. Since the timer is based
on entering a message into the message queue, the time for that message to be processed
may not be predictable. If some other message monopolizes the queue, the time
between the processing of the WM_TIMER message will not be the same as the interval.
238 CHAPTER 14 TIMERS

Net_Dennis.book Page 239 Thursday, October 31, 2002 4:04 PM
Stop Stop is a method of the Timer class that ensures that the Enabled prop-
erty has a value of False.

Windows Forms-based timers are an easy way to update the user interface. Since they
are message-based, the updates to the user interface are on the same thread as the con-
trols. This means the topics discussed in the next chapter, such as InvokeRequired
and Invoke, are not necessary. If the task involved is about displaying information
to the user, then a Windows Forms-based timer is likely a good fit.

14.2 SYSTEM.TIMERS.TIMER

The System.Timers.Timer class, often referred to as a server-based timer, is
similar to the Windows Forms-based timer. Server timers offer all of the features that
message-based timers offer, along with features not available when using message-based
timers. While the two types of timers are very close in function, there are a few differ-
ences in how they are used. When a server-based timer becomes signaled, it raises the
Elapsed event. Methods are associated with the event using an ElapsedEvent-
Handler object. Figure 14.2 shows how to select a server-based timer.

Server-based timers are added in the same way message-based timers are. Instead of
selecting the Windows Forms section of the toolbox, select the Components section.

14.2.1 Using System.Timers.Timer in Windows Forms

One major difference between a server-based and a message-based timer is the Syn-
chronizingObject property. SynchronizingObject is used to automatically
handle thread-safety issues associated with Windows Forms. Recall that Windows
Forms are not thread-safe. This means that interacting with a control on a form must
occur on the same thread that created it.

If an object that implements ISynchronizeInvoke is associated with Syn-
chronizingObject then the Invoke method of the object is used. The end result
is that the delegate is invoked on the SynchronizingObject’s thread. This
removes any concern about thread-safety, but also means that the method associated
with ElapsedEventHandler executes on the form’s main thread. Other messages

Figure 14.2

Selecting the server-based

timer from the toolbox
SYSTEM.TIMERS.TIMER 239

Net_Dennis.book Page 240 Thursday, October 31, 2002 4:04 PM
will not be processed while the method is being executed. This may result in poor
application performance. When a server-based timer is associated with Synchro-
nizingObject, it suffers from the same shortcomings a message-based timer suffers
from. The power of server-based timers becomes evident when they are not associated
with a synchronization object.

14.2.2 System.Timers.Timer in Windows system services

One use of a server timer is in a system service, and .NET makes it very easy to create
system services. While this book is not focused on enterprise application development,
we will briefly go over the steps involved in creating a system service (figure 14.3),
mainly because services and threads are often closely related.

When creating a project, simply select Windows Service from the list of templates.

This will create a shell of a system service. Next, change the name of the service to some-
thing other than the default Service1. To do this, double-click on the file Service1.vb
or Service1.cs in the Solution Explorer window. The Properties window should now
contain something that looks like figure 14.4.

After changing the name of the service to something more meaningful, attempt to
recompile the solution. Often you will receive an error similar to “Sub Main was not
found in TimerWebMonitorService.Service1.” This error indicates that the startup
object no longer exists in the project; to correct the error, right-click on the project
in the Solution Explorer window and select Properties. That should bring up a dialog
box that looks similar to the one shown in figure 14.5. Select the correct startup object,
in this case TimerWebMonitorService.

Figure 14.3

Choosing to create

a Windows service

Figure 14.4

Service configuration screen
240 CHAPTER 14 TIMERS

Net_Dennis.book Page 241 Thursday, October 31, 2002 4:04 PM
You should then be able to compile the solution. If you receive an error, such as “Type
Service1 is not defined,” double-click the error message and change the incorrect line,
replacing Service1 with the name of the class that contains the service. This is gener-
ally located at the top of the file that contains the error. In this case, replacing Service1
with TimerWebMonitorService corrects the error.

Once the solution compiles, the next step is to add an installer, which makes it pos-
sible to install the service. The installer works with InstallUtil.exe, located in the
Microsoft.NET directory under the Windows directory. The following command will
help in locating InstallUtil.exe:

cd %windir%\Microsoft.NET\Framework

To add an installer, right-click on the design view of the service and select Add
Installer. Adding an installer adds a ProjectInstaller.vb or ProjectInstaller.cs to the
solution. Once the ProjectInstaller file has been added, it needs to be modified. The
following code modification must be made to indicate the type of account the service
should use to log in:

'
'ServiceProcessInstaller1
'
Me.ServiceProcessInstaller1.Password = Nothing
Me.ServiceProcessInstaller1.Username = Nothing
' Added to indicate that the service should use the local system account
ServiceProcessInstaller1.Account =
 ServiceProcess.ServiceAccount.LocalSystem

Figure 14.5 Visual Basic project Property page
SYSTEM.TIMERS.TIMER 241

Net_Dennis.book Page 242 Thursday, October 31, 2002 4:04 PM
This lets the installer know that the service should use the local system account. Once
the installer is added and the changes made, the service is ready to be compiled and
installed. The installation process uses a command similar to the following:

c:installutil TimerWebMonitorService.exe

The command will vary based upon the location of the InstallUtil.exe program.
At this point the service can be installed, although it doesn’t do anything useful.

To add functionality to the service, we modify OnStart, OnStop, and any other
virtual/Overridable methods of interest in the ServiceBase class.

Let us return to the web site monitor example we discussed in previous chapters.
Recall that the purpose of the web site monitor was to detect when a web server was in
an unhealthy state. This is accomplished by retrieving the contents of a dynamic page
that represents the health of the web server at the time when the page was produced. If
that page does not contain some expected string, such as OK, it is an indication that
something is wrong with the web server and that support personnel should be involved.

In our earlier examples we used a Windows Forms application to monitor a web site.
A system service is a much better vehicle for a monitoring application. Since system services
can be set to start as soon as the computer starts up, and can be configured to execute under
various types of accounts, they are a better way of containing a monitoring application.

System services provide a process in which code can execute. To perform some-
thing meaningful, the service must either respond to requests or have a thread of timers
that performs the desired actions. In our case we use the Timer, an instance of the
System.Timers.Timer class.

Private MyTimer As System.Timers.Timer

The MyTimer member needs to be initialized and configured. This is best performed
in the InitializeComponent method. Along with creating an instance of the
timer, we also need to create an instance of the web monitoring class. This class con-
tains all logic relating to retrieving information from a web server.

WSM = New WebSiteMonitor()
MyTimer = New Timer()
AddHandler MyTimer.Elapsed, New ElapsedEventHandler(AddressOf Check)

The OnStart method is invoked when the system service starts. This is where configura-
tion settings are read and the timer started.

Protected Overrides Sub OnStart(ByVal args() As String)
 Try
 'Read Configuration Settings
 . . .
 MyTimer.Interval = WaitTimeInMinutes * 60000
 MyTimer.Start()
 Catch ex As Exception
 EventLog.WriteEntry(ex.Message, EventLogEntryType.Error)
 End Try
End Sub
242 CHAPTER 14 TIMERS

Net_Dennis.book Page 243 Thursday, October 31, 2002 4:04 PM
The OnStop method is invoked when the service is being stopped. Since our service
is timer-based, the only operation we must perform is to stop the timer.

Protected Overrides Sub OnStop()
 MyTimer.Stop()
End Sub

Additionally, OnPause and OnContinue can be overridden to allow the service to
be paused and restarted at a later time.

Protected Overrides Sub OnPause()
 MyTimer.Stop()
End Sub

Protected Overrides Sub OnContinue()
 MyTimer.Start()
End Sub

To support the OnPause and OnContinue functionally, ensure that the service’s
properties have CanPauseAndContinue set to true.

14.3 SYSTEM.THREADING.TIMER

The Threading namespace also contains a Timer object. This timer is Thread-
Pool-based. A thread in the ThreadPool invokes a supplied delegate at regular
intervals. In some ways it is less flexible than some of the other timers we have dis-
cussed in this chapter. Once the delegate associated with the timer is set, it cannot be
changed. The time period, or interval, of the timer is set during construction of the
timer, and can be changed later using the Change method. One feature the thread-
ing timer offers that other timers do not is the differentiation between the first time
period and all subsequent ones. When creating the timer object, keep in mind that the
constructor accepts four parameters:

• The delegate to invoke when the time period expires

• An object to pass to the delegate on each invocation

• A parameter to control the time span from instantiation to the first execution of
the delegate

• A parameter to control the time between the first execution of the delegate and
the second execution, and so on

To create Threading Timer, first add a variable to be the instance of the timer:

static System.Threading.Timer ThreadingTimer;

Next add the logic to create an instance of the timer and associate it with the method
to be invoked during each interval:
SYSTEM.THREADING.TIMER 243

Net_Dennis.book Page 244 Thursday, October 31, 2002 4:04 PM
[STAThread]
static void Main(string[] args)
{
 int FirstTime = 1000;
 int TimeBetween = 4000;
 TimerCallback TheCallback;
 TheCallback= new TimerCallback(callback);
 ThreadingTimer = new Timer(TheCallback,null,FirstTime,TimeBetween);
 Thread.Sleep(System.Threading.Timeout.Infinite);
}

Next add the method that is associated with the callback delegate:

static void callback(object stateInfo)
{
 int Worker,Complete;
 ThreadPool.GetAvailableThreads(out Worker,out Complete);
 Console.Write(DateTime.Now.ToString());
 Console.Write(" ");
 Console.Write(Worker.ToString());
 Console.Write(" ");

 Console.WriteLine(Complete.ToString());
}

The Threading.Timer class does not contain a Stop or Start method. Nor
does it contain an Enabled property. To control the stopping and starting of the
timer, you must use the Change method. For example, calling Change with Time-
out.Infinite as a value for both parameters has the same effect as calling Stop
on one of the other timers. To resume the timer, call Change with a value other than
Timeout.Infinite.

14.4 SUMMARY

Timers are an easy way of having an event occur at regular intervals. Choosing the right
timer for a given situation is important. In general, if the timer is to update a user inter-
face, the Windows Forms-based timer is likely the easiest and most familiar to deal with.
If the timer is not being used in a Windows Form, one of the server-based timers must
be used. Care should be taken to ensure that the work being performed is not greater
than the interval associated with the timer. If that is the case, and a server-based timer is
being used, multiple instances of the method associated with the timer will be executing.
244 CHAPTER 14 TIMERS

Net_Dennis.book Page 245 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 5

Windows Forms and
multiple threads

15.1 Multithreaded-related issues 245
15.2 Using the Graphics object with threads 260
15.3 Thread-related application events and properties 264
15.4 Summary 266
Windows Forms provide for a rich user experience. They provide the next step in
Win32 application development. Unlike previous environments, .NET makes it rela-
tively easy to produce high-quality applications. One way that a Windows Forms
application can be enriched is through the use of multiple threads.

15.1 MULTITHREADED-RELATED ISSUES

The code wizards in Visual Studio do the majority of the work in creating the shell of
a Windows Form application. It is important to understand what they do and why
they do it. In this section we analyze the code that the wizard produces.

15.1.1 Introduction to the STAThread attribute

Listing 15.1 shows the essential parts of a simple Windows application. This applica-
tion doesn’t do much; it just displays a popup dialog box showing the apartment (dis-
cussed in-depth in chapter 16) state of the main thread.
245

Net_Dennis.book Page 246 Thursday, October 31, 2002 4:04 PM
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
 Application.Run(new Form1());
}

private void Form1_Load(object sender, System.EventArgs e)
{
 string sAptState;
 ApartmentState MyState;
 MyState=Thread.CurrentThread.ApartmentState;
 sAptState=MyState.ToString();
 MessageBox.Show(sAptState);
}

Notice the [STAThread] attribute. This ensures that the main thread uses a single-
threaded apartment (STA). The reason is that the controls that a Windows Forms
application uses require an apartment to restrict access. Chapter 16 discusses apart-
ments in detail; for now think of an apartment as a synchronization mechanism. When
one is marked as being an STA, access to things contained within that apartment are
serialized using a message queue.

We can determine what sort of apartment a thread is executing in by using the
ApartmentState property which gets and sets a value of type System.Thread-
ing.ApartmentState. The ApartmentState enumeration contains three values:
MTA, STA, and Unknown. If the value has not been set, using either the Apart-
mentState property or one of the apartment state attributes, the value defaults to
Unknown. When the message box in listing 15.1 is displayed, it will look something
like the image in figure 15.1.

While the output of the program
isn’t very interesting there’s a lot to
be learned here. When a Windows
Forms project is created, the
[STAThread] attribute is auto-
matically included because many of
the controls used on a Windows
Form are COM objects. When a Component Object Model (COM) object is used in
the .NET platform, the system takes care of the integration for you. However, since they
are COM objects and require an STA to execute correctly, the template of the Win-
dows Form application sets the apartment of the main thread to be an STA. We’ll dis-
cuss COM integration in detail in chapter 16.

Listing 15.1 Windows Forms execute in an STA (C#)

Creates a single-threaded
apartment

 B

Returns the
ApartmentState of
the current thread

 C

 B

 C

Figure 15.1

The dialog box that is displayed

when the code example in

listing 15.1 executes
246 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 247 Thursday, October 31, 2002 4:04 PM
VB.NET doesn’t include the STAThread attribute in the code, yet another example
of how VB.NET does many things for the developer behind the scenes. Listing 15.2 con-
tains the VB.NET code that also displays a dialog box very similar to that in figure 15.1.

Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim sAptState As String
 Dim MyState As ApartmentState
 MyState = Thread.CurrentThread.ApartmentState
 sAptState = MyState.ToString()
 MessageBox.Show(sAptState)
End Sub

When you look at the project, you’ll notice there is no Main method, as there is in
listing 15.1. However, if we open the produced executable with the MSIL disassembler
(listing 15.3) we’ll see that one is produced.

.method public hidebysig static void Main() cil managed
{
 .entrypoint
 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (
 01 00 00 00)
 // Code size 14 (0xe)
 .maxstack 8
 IL_0000: nop
 IL_0001: newobj instance void WindowsFormsShellProgram.Form1::.ctor()
 IL_0006: call void [
 System.Windows.Forms]System.Windows.Forms.Application::Run(class [
 System.Windows.Forms]System.Windows.Forms.Form)
 IL_000b: nop
 IL_000c: nop
 IL_000d: ret
} // end of method Form1::Main

The code in listing 15.3 is essentially the same MSIL that’s produced by the Main
method of the C# program in listing 15.1. It’s not important that you understand all
of the MSIL in listing 15.3; the main thing to take away from this is that the main
thread of managed Windows applications developed using the .NET framework uses
an STA to control interaction with their controls.

Listing 15.2 A dialog box showing the current thread’s apartment state

(VB.NET)

Listing 15.3 The STAThreadAttribute constructor is called (MSIL)

The MSIL call to the
STAThreadAttribute

constructor
MULTITHREADED-RELATED ISSUES 247

Net_Dennis.book Page 248 Thursday, October 31, 2002 4:04 PM
15.1.2 Threading-related issues

To see how these issues relate to using multiple threads with a Windows Form we’ll use
a simple example. The high-level flow is presented in figure 15.2. The example consists
of a user-controllable number of threads adding a selected number of elements to a
common list box. While those items are being added, a different thread is deleting items.

A situation where this might occur would be having threads inform the user of their
action. The alternative would be to have a single thread tasked with monitoring the
status of the other threads. Figure 15.3 shows our example application.

The form contains several checkboxes, two numeric up/down controls, a Start but-
ton, a status bar, and a single list box. The Invoke checkbox controls if the list box’s
Invoke method is used to pass messages to the control. The Keep Trying checkbox
tells the application to repeatedly invoke the method associated with the Start button.
The Add At Top checkbox controls the location where new items are inserted into the
list box control. The Delete At Top checkbox controls the location they are deleted
from. The numeric up/down controls control how many elements are inserted in the
list box. Each of these controls is discussed in greater detail in the following sections.

Delete-related elements

When the form loads, a single thread is created that is tasked with deleting entries
from the list box. Listing 15.4 shows the delete-related code elements.

Figure 15.2 High-level flow of the list box example

Figure 15.3 Our example application. The region on the right is a list box.
248 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 249 Thursday, October 31, 2002 4:04 PM
Private Sub Form1_Load(. . .) Handles MyBase.Load
 Thread.CurrentThread.Name = "Main"
 Timer1.Enabled = True
 Timer1.Interval = 1000
 DeleteThread = New Thread(AddressOf DelThM)
 DeleteThread.Name = "Delete Thread"
 DeleteThread.IsBackground = True
 DeleteThread.Start()
 End Sub

Private Delegate Sub DelEleDeleg()

Private Sub DelThM()
 While True
 If ListBox1.Items.Count = 0 Then
 Thread.Sleep(10)
 End If
 If ListBox1.Items.Count > 0 Then
 If checkBoxInvoke.Checked Then
 Dim myDelegate As DelEleDeleg
 myDelegate = New DelEleDeleg(AddressOf DelEle)
 ListBox1.Invoke(myDelegate)
 Else
 DelEle()
 End If
 End If
 End While
End Sub

Private Sub DelEle()
 Dim rnd As New Random(System.Environment.TickCount)
 Dim ItemToDelete As Integer = -1
 Dim ItemCountAtDelete As Integer = -1
 If ListBox1.Items.Count > 0 Then
 If checkBoxDeleteAtTop.Checked Then
 ItemToDelete = 0
 Else
 ItemCountAtDelete = ListBox1.Items.Count
 ItemToDelete = rnd.Next(ItemCountAtDelete)
 End If
 If (ItemToDelete >= 0) Then
 ListBox1.Items.RemoveAt(ItemToDelete)
 End If
 End If
End Sub

To ensure there is always one, and only one, delete thread running at any given time,
we create the instance of DeleteThread when the form first loads. We begin by
creating a new instance of the Thread class, associating it with DelThM. We then set

Listing 15.4 Delete-related methods and delegate (VB.NET)

The delete delegate is
created and invoked

 D

The delete delegate is
created and invoked D

DelThM is the main
method of DeleteThread

 C

The DelEle method
is called directly

 E

An element from
ListBox1 is deleted F

DeleteThread is
created and started

 B

 B
MULTITHREADED-RELATED ISSUES 249

Net_Dennis.book Page 250 Thursday, October 31, 2002 4:04 PM
the thread to be a background thread and invoke its Start method. To help us keep
track of our threads, we set the main thread’s name to Main.

DelThM serves as the main method for the delete thread. It is similar to most thread
methods we’ve used in that it contains a loop. Each iteration of the loop starts with a
check to see if there are any items in the ListBox1’s Item collection. If there aren’t,
the thread sleeps for 10 milliseconds. Next another check is performed to see if there
are items in the Items collection, if there are, an element is deleted from the list box.

If the Invoke checkbox is checked an instance of the DelEleDeleg delegate is created
and associated with the DelEle method. This instance of the delegate is then passed
to ListBox1’s Invoke method. This ensures that the delegate is executed on the
same thread as the thread that created ListBox1.

If the Invoke checkbox is not checked the DelEle method is invoked directly. This
means that the deletion will occur on the DeleteThread rather than on the thread
on which ListBox1 was originally created.

The DelEle method deletes one element from ListBox1. If the Delete At Top
checkbox is checked, the first element in the list box will be deleted. Otherwise, a ran-
dom element will be deleted from the list box. By selecting Delete At Top and Add At
Top, you create a hot spot of activity.

Insert-related elements

Along with the deleting thread there are a user-controllable number of adding threads.
When the user clicks the Start button on the form the number of threads created is
based on the value in the Number Of Threads numeric up/down control. In figure 15.3
the number of threads is set to 50. Each thread in turn adds the number of items specified
in the Items Per Thread numeric up/down control. In figure 15.3 the value is 10 items.
This means that 500 (50 times 10) items will be added to the list box. Listing 15.5
contains the example code related to adding elements to the list box.

Private Sub Button1_Click(. . .) Handles Button1.Click
 If (CountOfDifferences > 0) Then
 StatusBar1.Text = "Differences Exist!"
 Exit Sub
 End If
 Dim NumThreads As Integer
 NumThreads = numericUpDownNumThreads.Value
 ReDim Threads(NumThreads - 1)
 Dim i As Integer
 For i = 0 To Threads.Length – 1
 Threads(i) = New Thread(AddressOf ThreadMethod)
 Threads(i).Name = "Add Thread " + i.ToString()
 Threads(i).IsBackground = True

 C

 D

 E

 F

Listing 15.5 List box adding related code elements (VB.NET)

Sets each element of
the threads array

 D

Defines the method
that is invoked when
the user clicks Start

 B

Changes the size of
the threads array

 C
250 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 251 Thursday, October 31, 2002 4:04 PM
 Next
 For i = 0 To Threads.Length – 1
 Threads(i).Start()
 Next
 Thread.Sleep(1000)
 StatusBar1.Text = "Started"
End Sub

Private Sub ThreadMethod()
 Dim i As Integer
 Dim rnd As New Random(System.Environment.TickCount)
 Thread.Sleep(rnd.Next(5000))
 Dim NumItems As Integer = numericUpDownItemsPerThread.Value
 For i = 0 To NumItems - 1
 If checkBoxInvoke.Checked Then
 Dim myDelegate As AddEleDel
 myDelegate = New AddEleDel(AddressOf AddElement)
 Dim Parms As Object()
 Parms = New Object() {i, Thread.CurrentThread.Name}
 ListBox1.Invoke(myDelegate, Parms)
 Else
 AddElement(i, Thread.CurrentThread.Name)
 End If
 Next
End Sub

Delegate Sub AddEleDel(ByVal i As Integer, ByVal s As String)
Private Sub AddElement(ByVal i As Integer, ByVal s As String)
 Dim TmpString As String
 TmpString = s
 TmpString += " " + Thread.CurrentThread.Name
 TmpString += " " + i.ToString()
 If checkBoxInsertAtTop.Checked Then
 ListBox1.Items.Insert(0, TmpString)
 Else
 ListBox1.Items.Add(TmpString)
 End If
End Sub

When the user clicks the Start button the Button1_Click method is invoked. The
parameters have been removed for readability’s sake. The method first examines the
value of CountOfDifferences. If the value is greater than zero the method exits.
We discuss CountOfDifferences in the next section.

The Threads variable is an array of System.Threading.Thread objects. It is
resized based on the value in the Number Of Threads numeric up/down control. This
allows the user to control the number of threads that are created. An alternative would
have been to use the ThreadPool class. The advantage of this approach is that the
user has a greater amount of control. The disadvantage is that the threads are created
and destroyed during each test.

Uses a
delegate

 G

Starts all inserting
threads

 E

Defines the Main method
of the insert threads F

Otherwise calls
AddElement directly

 H

Uses a
delegate

 G

 B

 C
MULTITHREADED-RELATED ISSUES 251

Net_Dennis.book Page 252 Thursday, October 31, 2002 4:04 PM
Once the Threads array is resized to the desired size, each element of the array is
assigned an instance of the Thread class. Each instance of the Thread class is asso-
ciated with the ThreadMethod method. The instance is assigned a name to make it
easier to keep track of the thread, and the IsBackground property is set to true.

After all of the instances of the Thread class have been created, each thread is then
started. Recall that the Start method is a request to start the thread. The actual
starting of the thread may happen at a later point. After all of the requests to start the
threads have been made, the main thread pauses for one second.

All threads share the same method, ThreadMethod. It follows the typical structure of
thread methods in that it contains a loop. Inside the loop is where the processing occurs.

If the user has checked Invoke before clicking Start, an instance of the AddEleDel
delegate is created and associated with the AddElement method. The instance of
the delegate is then invoked using ListBox1’s Invoke method. This ensures that
the method associated with the delegate is executed on the thread that instantiated
the ListBox1 control.

If the user has not checked Invoke, the AddElement method is invoked directly.
This means that the method executes on the thread that calls it. In this example that
thread is not the same thread that instantiated the control.

At this point we have two groups of threads. One group contains those threads that
are populating the list box, the other contains a single thread that is attempting to keep
that same list box empty. In the next section we discuss the information- and diag-
nostic-related elements of the example.

Information- and diagnostic-related elements

To detect the state of the list box and threads, the form contains a timer with an interval
of one second. Listing 15.6 contains the code elements that relate to the gathering of
information about the state of the threads as well as detecting the data integrity issues
that we will discuss in the next section.

Dim CountOfDifferences As Integer = 0
Dim WaitToStartAgain As Integer = 5
. . .
Private Declare Function SendMessageA _
 Lib "user32" Alias "SendMessageA" _
 (ByVal hwnd As IntPtr, _
 ByVal wMsg As Integer, _
 ByVal wParam As Integer, _
 ByVal lParam As Integer) As Integer
. . .

 D

 E

 F

 G

 H

Listing 15.6 Gathering information about the current state of threads and the

list box (VB.NET)

Makes SendMessageA
available

 B
252 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 253 Thursday, October 31, 2002 4:04 PM
Private Sub Timer1_Tick(. . .) Handles Timer1.Tick
 Const LB_GETCOUNT = 395
 Dim AliveCount As Integer = 0
 Dim i As Integer
 Dim RealCount As Long
 RealCount = SendMessageA(ListBox1.Handle, LB_GETCOUNT, 0, 0)
 StatusBar1.Text = "Alive= " + AliveCount.ToString()
 StatusBar1.Text += " Items=" + ListBox1.Items.Count.ToString()
 StatusBar1.Text += " Real Count=" + RealCount.ToString()
 If (RealCount <> ListBox1.Items.Count) Then
 CountOfDifferences += 1
 Return
 Else
 CountOfDifferences = 0
 End If

 If Not Threads Is Nothing Then
 For i = 0 To Threads.Length – 1
 If Threads(i).IsAlive Then
 AliveCount += 1
 End If
 Next
 End If
 If AliveCount = 0 Then
 WaitToStartAgain -= 1
 End If

 If CountOfDifferences > 5 Then
 checkBoxKeepTrying.Checked = False
 End If
 If checkBoxKeepTrying.Checked And WaitToStartAgain <= 0 Then
 WaitToStartAgain = 5
 Button1_Click(sender, e)
 End If
End Sub

The Declare keyword is used to access functions that are contained in external DLLs,
such as user32. User32 contains functions relating to timers, message handling, win-
dows management, and menus. The method we’re concerned with is SendMessageA
which is used to enter a message in the message pump associated with a window.

The message we enter is LB_GETCOUNT, which returns the count of elements con-
tained within a list box. For more information on the SendMessageA method and the
LB_GETCOUNT constant, consult the Microsoft Windows Platform SDK. The impor-
tant thing to take away from this is that the value returned from SendMessageA
contains that number of elements actually contained within the list box.

Once we’ve determined the number of elements contained within the list box, we
compare that value to the number of items contained within ListBox1’s Items
collection. These numbers should be the same. The Items collection is added to the

Sees if the ListBox1
Items collection is
correct

 D

Retrieves the number
of elements

 C

Retrieves the number
of elements

 C

Counts the number
of threads that are
still alive

 E

Invokes Button1_Click
method

 F

 B

 C

 D
MULTITHREADED-RELATED ISSUES 253

Net_Dennis.book Page 254 Thursday, October 31, 2002 4:04 PM
.NET framework to make it easier to determine what elements are contained within a
list box. It does this by adding and removing items for the collection when methods
are invoked on the instance of the list box class that causes an element to be added or
removed from the list box. We’ll talk about this more in the next section. For now, if
the number of elements in the Items collection is not the same as the number of
items actually being displayed, we can infer that there is a chance that a data integrity
issue has arisen.

Next we count the number for threads that are still alive. We then check to see if at least
one thread is still alive; if not, we decrement the WaitToStartAgain data element.

When WaitToStartAgain reaches zero and the Keep Trying checkbox is checked,
we invoke the Button1_Click method. This allows us to keep invoking
Button1_Click until the user removes the check from the Keep Trying checkbox,
or until a data integrity error is encountered.

The idea is that an error will eventually happen and we will keep trying until it does.
This allows us to detect race condition-related issues such as data inconsistency and
stability. These issues will occur at some point if multiple threads are present in a Win-
dows Form-based application without preventative steps being taken. It’s a matter of
probability, and how often they will occur rather than if they will occur.

15.1.3 Race conditions

We discussed race conditions in detail in section 6.2.1. Windows Forms are also sus-
ceptible to race conditions. There are two basic kinds of issues relating to threads and
Windows Forms: data inconsistency and stability.

Data inconsistency

Any time that data is not what it is expected to be, it is a serious situation. An example
of a data consistency issue that happens with Windows Forms and multiple threads
revolves around the collections that are associated with controls. For example, the
ListBox control contains an Items collection. This allows the control to keep
track of what items are in the list without posting a message to the message queue.

Since all access to the list box control is through the ListBox object, it is rea-
sonable to assume that it should know the contents of the control without having to
ask Windows. The problem is that the data structure used to contain the items is not
thread-safe. In section 7.1 we saw that objects in the Collection namespace are not
thread-safe unless their Synchronized method is used. There is no way to tell a
ListBox object that it should use synchronized access to its items.

To see an example of data inconsistency, in our example check the Keep Trying
checkbox. Eventually the form will enter a state similar to that of figure 15.4.

The Win32 portion of the list box contains one element. The Items collection does
not contain that element. The status bar at the bottom of the dialog box is populated
by the following code:

 E

 F
254 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 255 Thursday, October 31, 2002 4:04 PM
Dim RealCount As Long
RealCount = SendMessageA(ListBox1.Handle, LB_GETCOUNT, 0, 0)
StatusBar1.Text = "Alive= " + AliveCount.ToString()
StatusBar1.Text += " Items=" + ListBox1.Items.Count.ToString()
StatusBar1.Text += " Real Count=" + RealCount.ToString()

RealCount contains the actual number of elements in the list box. The Count
property of the Items collection returns zero, indicating a data inconsistency has
occurred. This is a serious condition because conflicting results are being returned. In
section 15.1.5 we discuss how to make this not happen.

To understand what’s happening here consider figure 15.5. Normally there’s a
one-for-one correlation between the elements in the .NET ListBox object’s Items
collection and the items contained within the list box.

When data inconsistency occurs, the object contains a different number of items than
the Win32 list box control. Figure 15.6 shows a Win32 list box with one element and
a .NET ListBox object with no elements in the Items collection.

Figure 15.4 Notice that Real Count is one and the Items count is zero. The list box

contains one real entry that is not present in the Items collection.

Figure 15.5 Under normal circumstances there is an object in the ListBox

Items collection for every entry in the matching Win32 list box.
MULTITHREADED-RELATED ISSUES 255

Dennis_Ch15.fm Page 256 Friday, November 1, 2002 3:20 PM
This demonstrates that the .NET Windows Forms code is on top of the Win32 system,
which makes sense because the .NET Windows Forms applications are native Win32
applications. They must interact with the native Win32 controls. They do this by expos-
ing objects that correspond to those native controls, and provide extensions to make
development easier and more flexible. One example of this is that the Items collec-
tion of the ListBox object allows you to determine if an element is in the collection.

Stability

Stability of an application is very important. Any time multiple threads are used with
Windows Forms without using the proper mechanisms, instability can be introduced.
Eventually the application will terminate unexpectedly. The stability issues will be more
pronounced on a multiple-processor machine. Instability will happen on a single-processor
machine, but much less frequently because of concurrency issues and having multiple
threads executing at exactly the same moment.

Related to the stability and inconsistency issues is the possibility of an event-related
deadlock occurring.

15.1.4 Event-related deadlocks

Deadlocks, discussed in detail in section 6.2.2, are one of the more difficult errors to
track down. Deadlocks can also happen in multithreaded Windows Forms applications.
Listing 15.7 demonstrates how a deadlock can occur in a Windows Forms application.

private void Form1_Load(object sender, System.EventArgs e)
{
 Thread.CurrentThread.Name="Main";
}

private void button1_Click(object sender, System.EventArgs e)
{
 Thread movingThread = new Thread(new ThreadStart(ThreadMethod));
 movingThread.Name="Moving Thread";
 movingThread.Start();
}

Figure 15.6

When the ListBox object

is not in sync with the Win32

control, the number of items

in the Items collection

does not match the number

of elements in the Win32

control.

Listing 15.7 Deadlock occurs when the Moving Thread moves textBox1 (C#).
256 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 257 Thursday, October 31, 2002 4:04 PM
private void ThreadMethod()
{
 lock(textBox1)
 {
 Point newLocation= new Point(
 textBox1.Location.X+1,textBox1.Location.Y+1);
 Trace.WriteLine(
 "Before Location Assign : " + Thread.CurrentThread.Name);
 textBox1.Location= newLocation;
 Trace.WriteLine("After Location Assign : " + Thread.CurrentThread.Name);
 }
}

private void textBox1_LocationChanged(object sender, System.EventArgs e)
{
 Trace.WriteLine("LocationChanged's lock:" + Thread.CurrentThread.Name);
 lock(textBox1)
 {
 Trace.WriteLine("Will not be reached : " + Thread.CurrentThread.Name);
 textBox1.Text=Thread.CurrentThread.Name;
 }
}

This example uses a single textbox and a button. When the button is pressed, a thread
is created that acquires a lock on textBox1. As with all deadlocks, the acquisition of
a lock is the primary cause of the deadlock. This isn’t to say that locks shouldn’t be
used; instead, care should be taken any time a lock is used to ensure that deadlock
does not occur.

The thread named Moving Thread next moves the textbox to the left and down one
pixel. At the point the assignment is made, the LocationChanged event is raised.
The important element here is that the LocationChanged event occurs before
Moving Thread releases its lock on textBox1.

The textBox1_LocationChanged method is invoked when the textbox is moved.
This invocation occurs, at the point the assignment is made to the Location property.
The Trace output is as follows:

Before Location Assign: Moving Thread
LocationChanged's lock: Main

Notice that After Location Assign is not present in the output. Also notice that the
instructions that cause the output are executed on different threads.

At the point the deadlock occurs, the application freezes. To be precise, it blocks
on the lock statement in the textBox1_LocationChanged method. In the next
section we discuss how to resolve this issue using the Invoke method.

Acquires a lock
on the text box

 B

Attempts to acquire
a lock on textBox1

 D

Moves the text box
to the new location

 C

 B

 C

 D
MULTITHREADED-RELATED ISSUES 257

Net_Dennis.book Page 258 Thursday, October 31, 2002 4:04 PM
15.1.5 Making Windows Forms thread-safe

Because Windows Forms use native Win32 controls, the thread that creates those con-
trols should be the thread that communicates with them. This may seem a bit restric-
tive, but with the Invoke method it is very easy to ensure that the correct thread
communicates with the thread.

The Invoke method

The Invoke method ensures that a delegate is executed on the thread that created
the control. We’ll start by correcting the event deadlock example from the previous
section. Listing 15.8 contains the updated Visual Basic .NET source code.

Private Sub Form1_Load(. . .) Handles MyBase.Load
 Thread.CurrentThread.Name = "Main"
End Sub

Private Sub Button1_Click(. . .) Handles Button1.Click
 Dim movingThread As New Thread(AddressOf ThreadMethod)
 movingThread.Name = "Moving Thread"
 movingThread.Start()
End Sub

Delegate Sub locationDelegate(ByVal newLocation As Point)
Private Sub changeLocationMethod(ByVal newLocation As Point)
 SyncLock TextBox1
 Trace.WriteLine("Before Location Assign: " + Thread.CurrentThread.Name)
 TextBox1.Location = newLocation
 Trace.WriteLine("After Location Assign: " + Thread.CurrentThread.Name)
 End SyncLock
End Sub

Private Sub ThreadMethod()
 Dim newLocation As Point
 newLocation = New Point(TextBox1.Location.X + 1, TextBox1.Location.Y + 1)
 Dim myLocationDelegate As locationDelegate
 myLocationDelegate = New locationDelegate(AddressOf changeLocationMethod)
 TextBox1.Invoke(myLocationDelegate, New Object() {newLocation})
End Sub

Private Sub TextBox1_LocationChanged(. . .) Handles TextBox1.LocationChanged
 Trace.WriteLine("LocationChanged's lock: " + Thread.CurrentThread.Name)
 SyncLock TextBox1
 Trace.WriteLine("Is now reached: " + Thread.CurrentThread.Name)
 TextBox1.Text = Thread.CurrentThread.Name
 End SyncLock
End Sub

The most noticeable change in the example is the addition of locationDelegate.
This delegate allows us to associate a method with the delegate that is passed to the
textbox control’s Invoke method.

Listing 15.8 Using the Invoke method avoids event-related deadlocks (VB.NET).

Used to execute on
a different thread

 B

Used to execute on
a different thread

 B

Expects a single
Point parameter

 C

Expects a single
Point parameter

 C

 B
258 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Dennis_Ch15.fm Page 259 Friday, November 1, 2002 3:20 PM
When the Invoke method of TextBox1 is executed, the method associated with
locationDelegate is executed on the thread that initially created TextBox1.
Since SyncLock is then acquired on the Main thread, it can be reacquired in
TextBox1_LocationChanged because both methods now execute on the same
thread. Here’s the output of the Trace statements:

Before Location Assign: Main
LocationChanged's lock: Main
Is now reached: Main
After Location Assign: Main

Notice that all of the Trace statements occur on the Main thread. The application no
longer freezes. The Invoke method also solves the stability and consistency issues we dis-
cussed in section 15.1.3. You’ll notice that in figure 15.4 there is an Invoke checkbox.
By checking it, you ensure that the Invoke method of the list box will be used. You will
notice that the consistency and stability issues no longer occur when Invoke is checked.

The InvokeRequired property

The InvokeRequired property indicates if the Invoke method should be used
when dealing with a control. If a control’s InvokeRequired property is true then
the Invoke method should be used. Listing 15.9 contains an updated Thread-
Method that uses the InvokeRequired property.

private void ThreadMethod()
{
 Point newLocation= new Point(textBox1.Location.X+1,textBox1.Location.Y+1);
 locationDelegate myLocationDelegate;
 myLocationDelegate = new locationDelegate(changeLocationMethod);
 if (textBox1.InvokeRequired)
 {
 textBox1.Invoke(myLocationDelegate, new object[] {newLocation});
 }
 else
 {
 changeLocationMethod(newLocation);
 }
}

Listing 15.9 shows how the InvokeRequired property can be used to determine if
Invoke should be used. If InvokeRequired is true, an instance of the location-
Delegate is passed to the Invoke method of the textBox1 control. Otherwise,
changeLocationMethod is executed directly. Direct execution will be faster than
delegate invocation, but if InvokeRequired is true a delegate should be used.

 C

Listing 15.9 InvokeRequired indicates if the Invoke method of a control should

be used (C#).
MULTITHREADED-RELATED ISSUES 259

Net_Dennis.book Page 260 Thursday, October 31, 2002 4:04 PM
15.2 USING THE GRAPHICS OBJECT WITH THREADS

Dealing with graphics is relatively complex. This section is not intended to be a com-
plete survey of graphics programming in .NET but rather an introduction to using
the Graphics object with multiple threads. The Graphics object is thread-safe,
enabling multiple threads to interact with it without ill effects.

15.2.1 Introduction to the Graphics object

The Graphics class is used to render objects onto a graphics display. Windows Forms
are one of the most commonly used graphics displays used with the Graphics class.
The Graphics class is contained in the System.Drawing namespace. It exposes
the GDI+ capabilities.

15.2.2 Acquiring by overriding the OnPaint method

The first issue you’ll face when doing graphics programming is acquiring an instance of the
Graphics object. A common single-threaded way to do this is to overload the OnPaint
method. Listing 15.10 contains an example of an overridden OnPaint method.

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 Dim g As Graphics
 g = e.Graphics
 Dim stringToDraw As String
 stringToDraw = "OnPaint " + Now.ToLongTimeString()
 stringToDraw += " " + Thread.CurrentThread.Name
 Dim fontToDrawWith As Font
 Dim brushToDrawWith As Brush
 fontToDrawWith = New Font("times New Roman", 12)
 brushToDrawWith = New SolidBrush(Color.Blue)
 g.DrawString(stringToDraw, fontToDrawWith, brushToDrawWith, 40, 40)
 brushToDrawWith.Dispose()
 fontToDrawWith.Dispose()
 g.Dispose()
End Sub

When OnPaint is called, it is passed a reference to a PaintEventArgs object that
contains a reference to a Graphics object. All graphics operations require a reference
to the object.

Once we have a Graphics object we can use the DrawString method to render a
string onto the device. The DrawString method accepts a reference to a Font object,
a reference to a Brush object, and the location to render the string. The Font object
tells the DrawString method what font face should be used to render the string. Like-
wise the Brush object tells the DrawString method how the font should be rendered.

Listing 15.10 Invoked when a form detects it needs to repaint itself (VB.NET)

Sees if the ListBox1
Items collection is
correct

 D

Contains a reference to the
form’s graphics context

 B

Renders the string
onto the form

 C

 B

 C
260 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 261 Thursday, October 31, 2002 4:04 PM
After we have completed our drawing operations, it is important to release our graphics-
related objects. All drawing objects should be viewed as a scarce resource. As soon as
you have finished with them, you should release them using the Dispose method.
One exception is if you use an existing object, such as Brush from the Brushes
collection. When determining whether or not you should call Dispose consider if
you allocated the object, using the new keyword. If you allocated the object, you
should Dispose of it.

15.2.3 Acquiring by using the FromHwnd method

There are several ways to acquire a Graphics object. When you’re doing multithreaded
Windows Forms development, the static FromHwnd method of the Graphics object
is a good choice. Listing 15.11 contains the method for a thread that draws the time
on the form.

private void DrawTimeMethod()
{
 Graphics g;
 string stringToDraw ;
 stringToDraw = "";
 Font fontToDrawWith ;
 Brush brushToDrawWith ;
 while (true)
 {
 g = Graphics.FromHwnd(this.Handle);
 stringToDraw = "OnPaint " + DateTime.Now.ToLongTimeString();
 stringToDraw += " " + Thread.CurrentThread.Name;
 fontToDrawWith = new Font("times New Roman", 12);
 brushToDrawWith = new SolidBrush(Color.Blue);
 g.DrawString(stringToDraw, fontToDrawWith, brushToDrawWith, 40, 80);
 brushToDrawWith.Dispose();
 fontToDrawWith.Dispose();
 g.Dispose();
 Thread.Sleep(1000);
 }
 }

The FromHwnd method returns a reference to a newly created Graphics object
associated with the handle to the window passed in. Hwnd is a handle to a window. A
discussion on window handles is beyond the scope of this book. All that you really
need to know is that Hwnd uniquely identifies a window.

Since the FromHwnd method causes a Graphics object to be created, we should
release that reference using the Dispose method. By calling Dispose as soon as
you have finished with a resource, you make that resource available for some other
thread or process. If Dispose isn’t called, the resource will be freed when the garbage

 D

Listing 15.11 Using the FromHwnd method to retrieve a Graphics object (C#)

Graphics object
associated with
the current form B

Method that releases
the Graphics object

 C

 B

 C
USING THE GRAPHICS OBJECT WITH THREADS 261

Net_Dennis.book Page 262 Thursday, October 31, 2002 4:04 PM
collector frees the unused references. Since you know when you have finished with a
resource, it is much better to decide when it is Disposed than having the garbage
collector do it after you’ve finished.

Notice in this example that the current time is simply written over the previous
time. Figure 15.7 is typical of the output you will see.

This is something that must be dealt with when doing Graphics programming.
Listing 15.12 contains code that draws a progress bar using a filled rectangle. The brush
used is a gradient.

Private Sub DrawBarThreadMethod()
 Dim barHeight As Long
 Dim barWidth As Long
 Dim currentUnit As Integer
 Dim lastUnit As Integer
 Dim counter As Integer
 Dim bgBrush As SolidBrush
 bgBrush = New SolidBrush(Form.DefaultBackColor)
 Dim g As Graphics
 Dim x, y As Long
 Dim units As Integer
 units = 100
 Dim pixelsPerUnit As Integer
 Dim point1, point2 As Point
 Dim widthToDraw As Integer
 Dim c1, c2 As Color
 c1 = Color.Black
 c2 = Color.White
 x = 0
 barHeight = 20
 counter = 0
 Dim fillBrush As LinearGradientBrush

Figure 15.7

When Graphics operations are performed

without using OnPaint, care must be taken

to erase what was previously painted.

Listing 15.12 Filling a rectangle using a gradient brush to produce a progress

bar (VB.NET)
262 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 263 Thursday, October 31, 2002 4:04 PM
 Try
 While True
 counter += 1
 If counter > units Then
 counter = 1
 End If
 y = Me.Height - 50
 barWidth = Me.Width
 point1 = New Point(x, y)
 point2 = New Point(x + barWidth, y + barHeight)
 fillBrush = New LinearGradientBrush(point1, point2, c1, c2)
 pixelsPerUnit = barWidth / units
 currentUnit = counter
 g = Graphics.FromHwnd(Handle)
 If (currentUnit < lastUnit) Then
 widthToDraw = lastUnit * pixelsPerUnit - 1
 g.FillRectangle(bgBrush, x + 1, y + 1, widthToDraw, barHeight - 1)
 End If
 widthToDraw = (currentUnit * pixelsPerUnit) - 1
 g.FillRectangle(fillBrush, x + 1, y + 1, widthToDraw, barHeight - 1)
 fillBrush.Dispose()
 g.Dispose()
 lastUnit = currentUnit
 Thread.Sleep(20)
 End While
 Catch ex As Exception
 System.Diagnostics.Trace.WriteLine(ex.ToString())
 End Try
End Sub

When the bar reaches the right side of the dialog box, it starts over at the left. At that point
the area is filled with a rectangle that is the same color as the background of the form.

When the method in listing 15.12 is associated with a thread, it produces output
similar to that in figure 15.8.

Ensure the rectangle
is visible B

 B

Figure 15.8

The gradient bar at the bottom of the dialog

box is produced by the code in listing 15.12.
USING THE GRAPHICS OBJECT WITH THREADS 263

Net_Dennis.book Page 264 Thursday, October 31, 2002 4:04 PM
The association of the method in listing 15.12 to a thread should be very familiar by
now. The following code associates the method with an instance of the Thread class:

barThread = New Thread(AddressOf DrawBarThreadMethod)
barThread.IsBackground = True
barThread.Name = "barThread"
barThread.Start()

Notice that we name the thread barThread so that we can keep track of it.
In the next section we’ll complete our discussion on multithreaded Windows Forms

development by examining the thread-related aspects of the Application object.

15.3 THREAD-RELATED APPLICATION
EVENTS AND PROPERTIES

Windows Forms applications have numerous events and properites. We’re primarily
concerned with those events and properties that relate to multithreading.

15.3.1 The ThreadException event

The ThreadException event of the Application object is very similar to
AppDomain’s UnhandledException event. Recall from chapter 13 that AppDo-
main’s UnhandledException event is raised any time an unhandled exception
occurs on any thread in the application domain. Listing 15.13 sets up handlers for
AppDomain’s UnhandledException event as well as the Application object’s
ThreadException event.

static void Main()
{
 Form1 tmpForm = new Form1();
 EventHandler ThreadExiting;
 ThreadExceptionEventHandler ThreadException ;
 UnhandledExceptionEventHandler AppHandler;
 ThreadExiting=new EventHandler(tmpForm.ThreadExitingMethod);
 ThreadException = new ThreadExceptionEventHandler(
 tmpForm.ThreadExceptionMethod);
 AppHandler = new UnhandledExceptionEventHandler(
 tmpForm.MyAppDomainUnhandledHandler);
 Application.ThreadExit += ThreadExiting ;
 Application.ThreadException += ThreadException;
 AppDomain domain= AppDomain.CurrentDomain;
 domain.UnhandledException+= AppHandler;
 Application.Run(tmpForm);
}

Listing 15.13 Handlers for UnhandledException and ThreadException events (C#)

Adds a handler to
the Application’s
ThreadExit event C

Allows us to associate
event handlers with
instance methods B

Adds a handler to
the Application’s
ThreadException event

 D

Adds a handler to AppDomain’s
UnhandledException event

 E
264 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 265 Thursday, October 31, 2002 4:04 PM
In order to associate the event handlers with instance methods, rather than static
methods, we must first create an instance of the Form1 class. We pass this instance to
the Application.Run method at the end of the static Main method.

We first add a handler for the ThreadExit event. We discuss the ThreadExit
event in the next section.

After we’ve added the handler for the ThreadExit event, we add a handler for the
Application object’s ThreadException event. This event is invoked only when
the exception occurs on the main thread. If a thread is created that causes an unhandled
exception to be raised, this event will not be notified.

We add an UnhandledException event handler to the current domain. This
event handler will be invoked when any thread in the current domain experiences an
unhandled exception. If a ThreadException event handler has been added to the
Application object, it will handle any exceptions that occur on the main thread.
This means that AppDomain’s UnhandledException will not be invoked.

Each of these event handlers do slightly different handling. The AppDomain handler
is a bit more flexible in that it catches all exceptions that occur. These events should
not be used in place of proper exception handling. Exceptions and exception handling
were discussed in-depth in chapter 13.

15.3.2 The ThreadExit event

The ThreadExit event is similar to the ThreadException event in that it only
applies to the main thread. If a thread other than the main thread exits, this event will
not be raised. This event is raised when an application is terminating. The Thread-
Exit event is invoked after the Form Closing and Closed events are invoked.

The ApplicationExit event is invoked after the ThreadExit event. The
order of events during application termination is as follows: Closing, Closed,
ThreadExit, ApplicationExit.

15.3.3 The MessageLoop property

Early in this chapter we briefly discussed the concept of message pumps, also known as
message queues or message loops. The application object’s MessageLoop property
allows us to determine if a thread contains a message loop. The following instruction
prints out true or false depending on whether the thread it is executed on contains a
message loop:

System.Diagnostics.Debug.WriteLine(Application.MessageLoop.ToString());

This is useful in determining how a thread will behave. For example, if the thread does
not contain a message loop, message-based timers will not work. In that circumstance,
one of the other timers will be required.

 B

 C

 D

 E
THREAD-RELATED APPLICATION EVENTS AND PROPERTIES 265

Net_Dennis.book Page 266 Thursday, October 31, 2002 4:04 PM
15.4 SUMMARY

In this chapter we’ve covered some of the issues related to multithreaded development
in Windows Forms applications. Combining Windows Forms with multiple threads
can lead to powerful applications. We discussed the problems relating to multithreaded
development and also covered the use of Invoke to resolve those issues. We intro-
duced the Graphics object and saw how it can be used to render objects onto a form.
Finally, we discussed thread-related events and properties of the Application object.
266 CHAPTER 15 WINDOWS FORMS AND MULTIPLE THREADS

Net_Dennis.book Page 267 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 6

Unmanaged code and
managed threads

16.1 What is an apartment? 267
16.2 COM interoperability 268
16.3 Summary 274
Apartments are COM constructs used to resolve concurrency control issues. Rather
than forcing COM developers to use synchronization primitives, Microsoft introduced
the apartment concept. This allowed for easy development of reusable components
with minimal concern about concurrency control. This chapter is not intended to be
a primer on COM programming. Instead, it examines the interaction of .NET with
COM from a multithreaded perspective. An important thing to understand is that
.NET does not use apartments for concurrency control. However, they are used when
interacting with COM objects. Interaction with COM from .NET is generally referred
to as interop, short for interoperability.

16.1 WHAT IS AN APARTMENT?

Many developers’ introduction to multithreaded development involved the concept of
an apartment. An apartment is based on a building metaphor. The process is comparable
to a building that has one or more apartments. Restriction to an apartment is based on
the type of apartment it is. The most common apartments are single and multithreaded.
267

Net_Dennis.book Page 268 Thursday, October 31, 2002 4:04 PM
16.1.1 Single-threaded apartment model (STA)

The majority of COM objects produced are designed to execute inside an STA. The
primary reason for this is that most COM objects have been developed using Visual
Basic. Visual Basic produces COM objects that execute in an STA. In this text we will
refer to objects that are designed and marked to execute in an STA as an STA object.
Visual Basic makes it incredibly easy to produce COM objects and is partly responsible
for the wide acceptance of COM.

When an object is marked as an object that executes in an STA, it means that only
one thread can access that object. Additionally, when that object is executing in an
STA, if that object is accessed more than once, the same thread must access it each
time. This allows the developers of STA objects to make use of thread local storage as
a means of persisting state. Additionally, because only one thread is accessing the
objects, concurrency control is no longer a concern. Since these STA objects are rela-
tively simple, they are much easier to write than an object that executes in a multi-
threaded apartment (MTA).

To make things a little more complex, several names for the same thing are often
used. STA objects are often referred to as apartment threaded. This is somewhat mis-
leading since every object in COM executes in an apartment. The question is how
many threads can interact with an object contained within a certain apartment. If the
answer is one, the apartment is STA.

16.1.2 MTA

When an apartment allows more than one thread to interact with the objects contained
within it that apartment is known as an MTA. Just as STA is sometimes referred to as
apartment threaded, MTA is sometimes referred to as free threaded. Objects that are
marked as being free threaded will execute in an MTA. Additionally, objects can be
marked as “Both,” meaning that they can execute in both an STA and an MTA. A pro-
cess will contain at most one MTA. This means that all MTA objects within the process
will execute in a shared MTA.

16.2 COM INTEROPERABILITY

Organizations have invested large sums of money developing COM objects. When
Microsoft developed .NET, its engineers were aware of this and built .NET in such a
way that it can coexist with COM objects. It is very easy to work with COM using the
.NET framework. To access a COM object from .NET, simply add a reference. One
way to do this is to select Add Reference from the Project menu to bring up a dialog
box similar to that in figure 16.1.

The COM tab displays COM objects that are registered. Once the desired component
is located, click Select, then OK. This will add a reference to the COM object to the project.

Figure 16.2 shows the Solution Explorer window after the reference was added.
Notice that DENNISATLOBJECTLib is listed in the References section.
268 CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

Net_Dennis.book Page 269 Thursday, October 31, 2002 4:04 PM
Just like when other references are added, the objects contained within the COM are
now available for use in the project. Listing 16.1 contains an example of using a method
contained in the DENNISATLOBJECTLib.

using DENNISATLOBJECTLib;
. . .

DennisAptClass mySTAAdd= new DennisAptClass();
startTime = DateTime.Now;
for (int i=0;i< numberOfPassesPerIteration;i++)
{
 int returnValue = (int)mySTAAdd.Add(i);
}
stopTime = DateTime.Now;
mySTAAdd=null;
break;

Figure 16.1 The Add Reference dialog box allows a reference to a COM

object to be added, making the COM object available for use.

Figure 16.2

The Solution Explorer window after the

reference was added to the COM object.

Listing 16.1 Invoking the Add method of the DennisAptClass object (C#)

Merge the imported namespace
into the current namespace

 B

Create an instance
of a class contained
in the COM object

 C

Invoke a method
on the instance
of the class

 D
COM INTEROPERABILITY 269

Net_Dennis.book Page 270 Thursday, October 31, 2002 4:04 PM
To increase the readability of the code we use the using keyword so that we don’t
have to include DENNISATLOBJECTLib in each access to objects contained in that
namespace. There is sometimes confusion as to what the using keyword does. The
using keyword allows elements contained in the specified namespace to be accessed
without being fully qualified. This can greatly reduce the size of the source code, as
well as increase readability.

We must now declare an instance of an object contained within the COM object. In
this example we create an instance of DennisAptClass. Notice that the syntax is the
same as creating any other object. This simplifies development since the developers
don’t need to determine which way an object should be created.

Once the object has been created we can invoke its Add method. The invocation is
essentially the same as other invocations.

Interacting with COM is so simple that it can be referred to as COM integration rather
than interoperation. We’ve seen how to interact with COM in the simple case; now
we’ll examine potential performance issues.

16.2.1 The ApartmentState property

COM objects are marked to indicate their threading model. .NET does not use apart-
ments when interacting solely with .NET elements. When .NET is interacting with COM,
it creates an apartment for the COM object. The ApartmentState property of the
Thread class is used to determine if the apartment is an STA or an MTA. Listing 16.2
contains an example of setting a thread’s ApartmentState.

Imports System.Threading
Imports DENNISATLOBJECTLib

Public Class InteropExample
 Public Sub Test()
 Thread.CurrentThread.ApartmentState = ApartmentState.STA
 Dim mySTAAdd As DennisAptClass
 mySTAAdd = New DennisAptClass()
 Dim returnValue As Integer
 returnValue = mySTAAdd.Add(1)
 mySTAAdd = Nothing
 End Sub
End Class

By setting the current thread’s apartment state we are telling the runtime that only one
thread should be allowed to access COM objects created on the current thread. Setting
ApartmentState doesn’t have an impact unless a COM object is created. Once
ApartmentState has been set, it cannot be changed. Attempting to reassign Apart-
mentState does not result in an error; instead, the value simply does not change.

 B

 C

 D

Listing 16.2 Example of setting ApartmentState (VB.NET)

Create an STA when a
COM object is created

 B

Create an instance
of the COM object
in an STA

 C

 B
270 CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

Net_Dennis.book Page 271 Thursday, October 31, 2002 4:04 PM
ApartmentState is set using the ApartmentState enumeration. The values
for the enumeration are STA, MTA and Unknown. The default value for a thread’s
ApartmentState is Unknown. Under the current implementation Unknown is
the same as MTA. This means that if no value is assigned to ApartmentState COM
objects created on that thread, it would execute in an MTA.

In the previous chapter we discussed the STAThread attribute. It can be used to set
ApartmentState. Additionally the MTAThread attribute can be used to indicate
that an MTA is desired. This attribute must be set on the Main thread of the application
to have an effect. The advantage of the attribute approach is that it occurs before exe-
cution of any code contained within the method. Attempting to set ApartmentState
after a COM object has been created will have no effect.

At the point a COM object is created, the ApartmentState property becomes impor-
tant. In the next section we’ll discuss the performance impact of apartment conflicts.

16.2.2 Apartment conflicts

The choice of ApartmentState has a direct impact on performance. When a COM
object is created in an apartment that conflicts with the threading model of the object,
there is a substantial penalty in performance. This is caused by the need to create a
thread to serve as a proxy between the COM object and the calling .NET program.
Figure 16.3 shows the impact of apartment conflicts.

 C

Figure 16.3 The selection of apartment state can result in a significant difference in performance.
COM INTEROPERABILITY 271

Net_Dennis.book Page 272 Thursday, October 31, 2002 4:04 PM
Notice that the difference between a STA object executing in an MTA and an STA object
executing in an STA is significant. When there are not apartment conflicts the time
required to perform the operation is essentially zero. This is because the COM method
can be invoked directly, rather than passing through a stub and proxy mechanism.

16.2.3 Discussion of the example

You may be wondering where the numbers in figure 16.3 came from. The process
started by creating an Active Template Library (ATL)-based COM object. Listing 16.3
contains a sampling of the code involved.

STDMETHODIMP CDennisAdd::Add(int nValue,int * nOut)
{
 *nOut = nValue+1;
 return S_OK;
}

Listing 16.3 contains an example of the Add method contained in each of the COM
objects benchmarked. This method demonstrates the case where the frequency of
method invocation is high compared to the duration of method execution.

The threading model the COM object requires is controlled by its entry in the Registry.
Listing 16.4 contains the .rgs entries associated with the object in listing 16.3.

HKCR
{
 DennisATLObject.DennisAdd.1 = s 'DennisAdd Class'
 {
 CLSID = s '{405592A3-B5A3-4784-8497-B5719D5D1C58}'
 }
 DennisATLObject.DennisAdd = s 'DennisAdd Class'
 {
 CLSID = s '{405592A3-B5A3-4784-8497-B5719D5D1C58}'
 CurVer = s 'DennisATLObject.DennisAdd.1'
 }
 NoRemove CLSID
 {
 ForceRemove {405592A3-B5A3-4784-8497-B5719D5D1C58} = s 'DennisAdd Class'
 {
 ProgID = s 'DennisATLObject.DennisAdd.1'
 VersionIndependentProgID = s 'DennisATLObject.DennisAdd'
 ForceRemove 'Programmable'
 InprocServer32 = s '%MODULE%'

Listing 16.3 Implementation of the Add method of the COM objects (C++)

Listing 16.4 Registry entries associated with the dual-threaded COM object

(Registry file)
272 CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

Net_Dennis.book Page 273 Thursday, October 31, 2002 4:04 PM
 {
 val ThreadingModel = s 'Both'
 }
 'TypeLib' = s '{C56DCEBC-FB08-40BB-A79B-18159013CACE}'
 }
 }
}

The ThreadingModel assignment designates the type of apartment the COM object
requires. The remainder of the .rgs file adds the appropriate entries to the Registry to
make the COM object available for consumption. Listing 16.5 contains the .NET code.

. . .
ObjectThreadingModel whatToTest;
. . .
private double OneIteration()
{

 GC.Collect();
 DateTime startTime,stopTime;
 TimeSpan howLong;
 switch(whatToTest)
 {
 case ObjectThreadingModel.STA:
 DennisAptClass mySTAAdd= new DennisAptClass();
 startTime = DateTime.Now;
 for (int i=0;i< numberOfPassesPerIteration;i++)
 {
 int returnValue = (int)mySTAAdd.Add(i);
 }
 stopTime = DateTime.Now;
 mySTAAdd=null;
 break;
 case ObjectThreadingModel.Both:
 DennisAddClass myBothAdd= new DennisAddClass();
 startTime = DateTime.Now;
 for (int i=0;i< numberOfPassesPerIteration;i++)
 {
 int returnValue = (int)myBothAdd.Add(i);
 }
 stopTime = DateTime.Now;
 myBothAdd=null;
 break;
 case ObjectThreadingModel.Free:
 DennisFreeClass myFreeAdd= new DennisFreeClass();
 startTime = DateTime.Now;

Indicates that object can
execute in both STA and MTA

 B

 B

Listing 16.5 Code to test the threading model of COM objects (C#)

Test the Both
COM object B

Invoke the
Add method

 C
COM INTEROPERABILITY 273

Net_Dennis.book Page 274 Thursday, October 31, 2002 4:04 PM
 for (int i=0;i< numberOfPassesPerIteration;i++)
 {
 int returnValue = (int)myFreeAdd.Add(i);
 }
 stopTime = DateTime.Now;
 myFreeAdd=null;
 break;
 }
 howLong = stopTime.Subtract(startTime);

 return howLong.TotalMilliseconds;
}

If whatToTest contains the value ObjectThreadingModel.Both, then test the
object in listings 16.3 and 16.4. We then create an instance of the COM object. The
start time is recorded so we can determine how long the operations took to complete.

We then invoke the Add method of the object. If you’re faced with a real-life situation
such as this, a solution would be to move the loop inside the COM object. This would
decrease the number of times the call would cross the apartment boundary.

16.3 SUMMARY

When you’re dealing with COM objects it’s important to match the threading model
of the object. If that isn’t possible be prepared for the performance penalty that’s asso-
ciated with incompatible apartments. There are several ways to resolve the apartment
conflict. One of the best ways may be to rewrite the COM object as a .NET class library.
Often a rewrite isn’t possible; in those cases the COM object may need to be modified
to be more efficient. If the COM object can’t be changed, an additional COM object
may be required to wrap the original COM object.

The fact that .NET does not require the use of apartments is a compelling reason
to use it. Instead of restricting entry to objects, it allows you to write efficient code that
manages access to shared resources using synchronization primitives such as locks, moni-
tors, and reader/writer locks.

 B

 C
274 CHAPTER 16 UNMANAGED CODE AND MANAGED THREADS

Net_Dennis.book Page 275 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 7

Designing with threads

17.1 Using the asynchronous design pattern 275
17.2 Message Queue example 290
17.3 One Class One Thread 294
17.4 Performance issues 299
17.5 Summary 300
Multithreaded development provides a way to develop powerful applications. This chap-
ter focuses on how to use threads effectively to produce robust applications and reusable
class libraries. One of the major advantages of containing the logic involved with multi-
threaded development into a class library is that the consumers of that library can use
them without having to understand the internal workings of the object. This allows
experienced developers to produce libraries that less experienced developers can use.

In this chapter we’ll cover the asynchronous design pattern. It provides a uniform
way of dealing with objects to perform asynchronous execution. To better demon-
strate the concepts we’ll implement a class library that performs asynchronous file sort-
ing following the asynchronous design pattern.

17.1 USING THE ASYNCHRONOUS DESIGN PATTERN

Consistency is a good thing. One area where Microsoft has made tremendous gains is
consistency in the .NET framework, and one way this was accomplished was by using
design patterns. Design patterns are beyond the scope of this book, but if you view
them as a recipe for producing objects that behave similarly, that will suffice for our
purposes. The design pattern we’re concerned with here is asynchronous. It is intended
to give a standard way of interacting with asynchronous operations. For example, if
you want to do an asynchronous read of a file, you use the BeginRead method. If
275

Net_Dennis.book Page 276 Thursday, October 31, 2002 4:04 PM
you want to invoke a delegate in an asynchronous way, you use the BeginInvoke
method. These names start with the word “begin” and indicate the nature of the
operation that is being performed asynchronously.

This means that if a new method is introduced that follows the asynchronous design
pattern you’ll have a good idea of how to use it. This knowledge reuse is incredibly
valuable. In the next section we’ll go over the asynchronous design pattern by imple-
menting a class that follows it. We’ll then move on to a more generic solution where a
class encapsulates a thread that performs some operation. We’ll highlight the differences
between this solution and the asynchronous design pattern.

17.1.1 A file-sorting example

There are times that the contents of a directory need to be arranged, moving them to
different subdirectories based on their name. Figure 17.1 shows an example of a direc-
tory containing two sets of files that need to be separated. One set of files contains the
word “Data” while the other contains the word “Log.”

Once our program finishes executing, the output will resemble that in Figure 17.2.
To make the sorting application more interactive we’ll make it a Windows Forms

application. The actual sorting of the files will be performed using a class library, encour-
aging reuse and also allowing the use of the Friend and internal modifiers. As a
review, Friend is a Visual Basic .NET keyword that indicates that a variable or method
can be accessed by classes contained within the same assembly. This allows all elements
in a class library access to certain elements, while restricting access to those elements
from the outside. The idea is that classes contained within the class library understand

Figure 17.1 A directory containing two

sets of files

Figure 17.2 Sorted output of the contents of

the directory from Figure 17.1
276 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 277 Thursday, October 31, 2002 4:04 PM
the inner workings of the Friend elements and can manipulate them in a safe way.
C#’s internal is roughly equivalent to Visual Basic .NET’s Friend.

In the next section we discuss the class library that performs the file sorting.

17.1.2 The Sorter class library

The Sorter class library contains the code that performs the sorting and classification
of files in a directory. It contains several events that allow the consumer of the class to
be informed as to its processing. We’ll start by examining an internal class that controls
the processing of a directory.

The WorkUnit class

The WorkUnit class contains the instance-specific data values. It is used to provide
instruction to the Sorter class regarding the source, destination, and manipulation of
the files to process. Listing 17.1 contains the WorkUnit class.

Public Class WorkUnit
 ' internal/Friend data elements
 Friend includePause As Boolean
 Friend numberOfFilesMoved As Integer
 Friend dir As String
 Friend pattern As String
 Friend outputdir As String
 Friend convertToLowerCase As Boolean
 Friend ignoreExtension As Boolean
 Friend removeSpaces As Boolean
 Friend lettersOnly As Boolean
 Friend dupes As DupEntryProc
 Friend history As ArrayList
 Friend Sub New()
 pattern = "*.*"
 dupes = DupEntryProc.ReplaceDest
 numberOfFilesMoved = 0
 history = ArrayList.Synchronized(New ArrayList())
 convertToLowerCase = True
 ignoreExtension = True
 removeSpaces = True
 lettersOnly = True
 End Sub
 Friend Sub AddToHistory(ByVal formatString As String, _
 ByVal ParamArray parameters As Object())
 Dim historyItem As String
 historyItem = String.Format(formatString, parameters)
 history.Add(historyItem)
 End Sub
 Friend Sub AddToHistory(ByVal historyItem As String)
 history.Add(historyItem)
 End Sub

Listing 17.1 The WorkUnit class (VB.NET)

The source directory
and search pattern

 B
The destination
directory C

Flags controlling
how a file matches

 D

The constructor that
initializes variables

 E
USING THE ASYNCHRONOUS DESIGN PATTERN 277

Net_Dennis.book Page 278 Thursday, October 31, 2002 4:04 PM
 'public enums
 Public Enum DupEntryProc
 ReplaceDest
 RemoveSource
 DoNothing
 End Enum
 'public properties
 Public ReadOnly Property FilesMoved() As Integer
 Get
 Return numberOfFilesMoved
 End Get
 End Property
 Public ReadOnly Property Directory() As String
 Get
 Return dir
 End Get
 End Property
 Public ReadOnly Property ProcessingHistory() As ArrayList
 Get
 Return CType(history.Clone(), ArrayList)
 End Get
 End Property
End Class

One of the most important values when sorting files is the directory to sort. This infor-
mation is stored in the dir member of the WorkUnit class. The pattern member
of the WorkUnit class allows us to specify filter criteria to determine what files are
processed. In the example in figure 17.1 we could specify a pattern of “*FILE.*” to
match only those files whose primary name ends in FILE. The WorkUnit class con-
tains the state information required for processing. This allows the processing to be
similar to message-processing systems.

Knowing where to put the sorted files is as important as knowing the source directory.
The outputdir member of the WorkUnit class contains the root destination path.
Under the directory specified in outputdir subdirectories will be created based on
set flags that govern processing.

To make the file sorting class more flexible, processing is controlled by four Boolean
values. When the convertToLowerCase Boolean is true, the directory that a file
will be moved into will be made up of lowercase letters. The original file name is not
modified. The Boolean ignoreExtension determines if the directory created will
contain the extension of the input file(s). If removeSpaces is true, all spaces con-
tained in the file name are not considered when determining the name of the directory
to move a file to. The lettersOnly Boolean determines if the target directory should
contain numbers or only letters from the input file. For the example in Figure 17.1
this is one of the most important values since the numbers are the only variation in
the file names within one group. Table 17.1 outlines the impact of each of these flags.

 B

 C

 D
278 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 279 Thursday, October 31, 2002 4:04 PM
In previous chapters we’ve discussed Visual Basic .NET’s New method. Recall that it is
how VB.NET implements constructors. One thing that makes New a little different is
the Friend keyword. In section 17.1.1 we discussed the Friend/internal key-
words. When Friend is applied to a constructor it has the result of creating a class
that can be accessed external to the assembly but cannot be created. This is similar to
setting the Instancing property in Visual Basic to PublicNotCreatable when
creating COM objects. The New method ensures that the class is in a known state before
processing begins. It sets reasonable defaults for properties and ensures that any needed
objects are created.

The Sorter class

The Sorter class performs sorting of files. It examines the value in an instance of the
WorkUnit class to determine what manipulation should be performed in determining
which directory to move the files from the input directory to. Listing 17.2 contains
the general class declaration and the events and delegates.

Public Class Sorter
 Public Event Start(ByVal num As Integer, _
 ByVal work As WorkUnit)

 Public Event Entry(ByVal num As Integer, _
 ByVal work As WorkUnit, _
 ByVal name As String)

 Public Event Finished(ByVal work As WorkUnit)

 Friend Delegate Sub ProcessCB(ByRef work As WorkUnit)

. . .
 (WorkUnit Class See Listing 17.1)
. . .
 (Member Functions See Listing 17.3)
. . .

End Class

Table 17.1 Processing Flags and Their Impact

Source File Name:

1 of 10 Data File.dat
Resulting Directory Name

convertToLowerCase = true 1 of 10 data file.dat

IgnoreExtension = true 1 of 10 Data File

removeSpaces = true 1of10DataFile.dat

lettersOnly ofDataFile.dat

All flags true ofdatafile

 E

Listing 17.2 The delegates and events of the Sorter class (VB.NET)

The Start event is raised
when processing starts
in a new directory

 B

The ProcessCB is key
to the asynchronous
design pattern

 E

Each file processed causes
the Entry event to be raised

 C

When all files are processed
the Finished event is raised D
USING THE ASYNCHRONOUS DESIGN PATTERN 279

Net_Dennis.book Page 280 Thursday, October 31, 2002 4:04 PM
The Sorter class performs the sorting of a directory. To keep the user informed about
the progress of the sorting, we utilize three events. Start is raised when a directory is
about to be sorted. It passes back the number of elements in the directory, the num
parameter, along with a reference to the related WorkUnit object. This allows the
client to set up any status indicating facilities, such as progress bars, to give an indica-
tion of percentage complete.

Entry is raised when a file is processed. The num parameter indicates the index in
the current directory. This allows for a determination of the percentage complete. A
reference to the related WorkUnit object is passed back along with the name of the
file being processed.

Finished is raised when all files in the directory are processed. This allows the progress
indication mechanism to indicate completion. The only parameter passed is a reference
to the related WorkUnit object.

The ProcessCB is an internal delegate that is used to perform the asynchronous
processing. We’ll discuss ProcessCB in more detail in the next section.

The heart of the Sorter class

So far we’ve discussed the supporting elements of the Sorter class. Now we’ll take a
look at the methods that perform the majority of the work. The asynchronous design
pattern is based on having a method that is named Begin followed by the operation
it performs. In our case we have a BeginSort method that starts the asynchronous
sorting operation. Listing 17.3 contains the BeginSort and EndSort methods.

Public Function BeginSort(_
 ByVal dir As String, _
 ByVal pattern As String, _
 ByVal outputDirectory As String, _
 ByVal cb As AsyncCallback, _
 ByVal includePause As Boolean) _
 As IAsyncResult

 Dim pdcb As ProcessCB
 pdcb = New ProcessCB(AddressOf ProcessDirectory)
 Dim workunit As New workunit()
 workunit.includePause = includePause
 workunit.dir = dir
 workunit.outputdir = outputDirectory
 workunit.pattern = pattern
 Dim ar As IAsyncResult
 ar = pdcb.BeginInvoke(workunit, cb, null)
 Return ar
End Function

 B

 C

 D

 E

Listing 17.3 Asynchronous processing methods (VB.NET)

Is used to start
asynchronous
processing

 B

Creates a WorkUnit
and set with supplied
values

 D

Saves a pointer
to the results E

Declares a delegate
that is passed to
BeginInvoke

 C

Returns the instance
of the IASyncResult

 F
280 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 281 Thursday, October 31, 2002 4:04 PM
Public Sub EndSort(_
 ByVal ar As IAsyncResult, _
 ByRef work As WorkUnit)
 Dim pdcb As ProcessCB
 Dim arr As AsyncResult
 arr = CType(ar, AsyncResult)
 pdcb = CType(arr.AsyncDelegate(), ProcessCB)
 pdcb.EndInvoke(work, ar)
End Sub

BeginSort is called to start the file-sorting process. It accepts several parameters
and returns an instance of an object that implements the IAsyncResult interface.
The object that implements IAsyncResult will be passed to the EndSort method
to retrieve any information produced by the asynchronous execution.

In listing 17.2 we discussed the ProcessCB delegate. We create an instance of the
ProcessCB delegate and call it pdcb. This delegate is associated with the Process-
Directory method, which we cover in listing 17.4.

We discussed the WorkUnit object earlier. It is used to pass processing information
to the ProcessDirectory method. The parameters passed into the BeginSort
method are transferred to the instance of the WorkUnit object.

The BeginInvoke method of the pdcb delegate is used to begin the asynchronous
delegate execution. It returns an instance of an object that supports IAsyncResult.
We covered asynchronous execution of delegates in section 12.5. Notice that we pass in
an instance of the AsyncCallback object, cb, as the second parameter to Begin-
Invoke. If cb is set to an instance of the AsyncCallback it will be invoked when
the asynchronous operation completes.

We then return the instance of the object that supports IAsyncResult to the call-
ing method.

EndSort is invoked to retrieve the instance of the WorkUnit class after processing is
complete. The WorkUnit class could be used to store information regarding which
files it sorted, where it put them, how long the operations took, and so on. Notice that
we pass in an instance of an object that supports IAsyncResult to the EndSort
method. This object serves as a token for retrieving the correct results.

In order to invoke the EndInvoke method of the asynchronously executed delegate,
we must first cast the instance of the object supporting IAsyncResult to an
instance of the AsyncResult object. This is accomplished using VB.NET’s CType
method. Once we’ve converted ar to arr, we can retrieve the ProcessCB delegate
and invoke the EndInvoke method. This populates the work variable with a refer-
ence to the work variable passed into the BeginInvoke method earlier.

Retrieves values
from the completed
processing

 G

Blocks until the
associated delegate
completes execution

 H

 B

 C

 D

 E

 F

 G

 H
USING THE ASYNCHRONOUS DESIGN PATTERN 281

Net_Dennis.book Page 282 Thursday, October 31, 2002 4:04 PM
There are times that we don’t need to perform asynchronous processing. Listing 17.4
contains the Sort method. Sort, unlike BeginSort, blocks until it completes.

Public Sub Sort(_
 ByVal dir As String, _
 ByVal pattern As String, _
 ByVal outputDirectory As String, _
 ByVal includePause As Boolean)
 Dim workunit As New workunit()
 workunit.includePause = includePause
 workunit.dir = dir
 workunit.outputdir = outputDirectory
 workunit.pattern = pattern
 ProcessDirectory(workunit)
End Sub

Notice that the Sort method is considerably simpler than BeginSort and EndSort.
The signature of the method is very similar. Since invocation is synchronous there is
no reason to pass in a delegate to invoke when the method completes.

We need to create an instance of the WorkUnit class in which to store the supplied
parameters. These are the same steps from listing 17.3.

Since Sort is a synchronous method we can call the ProcessDirectory method
directly. This differs from the asynchronous approach that requires the creation of a
delegate. The ProcessDirectory method is contained in listing 17.5.

 Private Sub ProcessDirectory(ByRef work As WorkUnit)
 work.AddToHistory("Process Directory {0}", work.dir)
 Dim files As String()
 Dim i As Integer
 files = Directory.GetFiles(work.dir, work.pattern)
 RaiseEvent Start(files.Length, work)

 For i = 0 To files.Length - 1
 ProcessFile(work, files(i))
 RaiseEvent Entry(i, work, files(i))
 If (work.includePause) Then

Thread.Sleep(1000)
 End If
 Next
 RaiseEvent Finished(work)
 work.AddToHistory("Finished Directory {0}", work.dir)
 End Sub

Listing 17.4 Synchronous processing method (VB.NET)

Processes
asynchronously

 B

Creates a
WorkUnit

 C

Calls the ProcessDirectory
method directly

 D

 B

 C

 D

Listing 17.5 File-processing methods of the Sorter class (VB.NET)

Sorts the files in
the directory in
the WorkUnit

 B

Returns an array of
the file names
matching the pattern

 C
Raises the
Start event

 D

Processes each
matching file in
the directory

 E
Signals
a file was
processed

 F

Signals processing
is complete G
282 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 283 Thursday, October 31, 2002 4:04 PM
 Private Sub ProcessFile(_
 ByVal work As WorkUnit, _
 ByVal filename As String)
 work.AddToHistory("Process {0}", filename)
 Dim outputDirectory As String = work.outputdir
 Dim directoryToSort As String = work.dir
 Dim name, currentFileName As String
 currentFileName = filename
 name = filename
 name = DetermineCompareName(work, name)
 Dim newDirectory As String
 newDirectory = Path.Combine(outputDirectory, name)
 If Not Directory.Exists(newDirectory) Then
 Directory.CreateDirectory(newDirectory)
 End If
 Dim newPath As String
 Dim tmpName As String
 tmpName = Path.GetFileName(currentFileName)
 newPath = Path.Combine(newDirectory, tmpName)
 If File.Exists(newPath) Then
 Select Case work.dupes
 Case WorkUnit.DupEntryProc.ReplaceDest
 File.Delete(newPath)
 File.Move(currentFileName, newPath)
 work.AddToHistory("Moved {0} to {1}", currentFileName, newPath)
 work.numberOfFilesMoved += 1
 Case WorkUnit.DupEntryProc.RemoveSource
 work.AddToHistory("Deleted {0}", currentFileName)
 File.Delete(currentFileName)
 Case WorkUnit.DupEntryProc.DoNothing
 ' Do nothing
 End Select
 Else
 File.Move(currentFileName, newPath)
 work.AddToHistory("Moved {0} to {1}", currentFileName, newPath)
 work.numberOfFilesMoved += 1
 End If
 End Sub

 Private Function DetermineCompareName(ByVal work As WorkUnit, _
 ByVal inname As String) _
 As String
 Dim name As String = inname
 If (work.ignoreExtension) Then
 name = Path.GetFileNameWithoutExtension(name)
 Else
 name = Path.GetFileName(name)
 End If
 If work.removeSpaces Then
 name = name.Replace(" ", "")
 End If

Determines what
directory a file
should be in

 H

Calculates the directory
that a file should be
moved to I
USING THE ASYNCHRONOUS DESIGN PATTERN 283

Net_Dennis.book Page 284 Thursday, October 31, 2002 4:04 PM
 If work.convertToLowerCase Then
 name = name.ToLower()
 End If
 If (work.lettersOnly) Then
 Dim curC As Integer
 Dim c As Char

 Dim nameChars As Char() = name.ToCharArray()
 Dim tmpStringBuilder As New StringBuilder()
 For curC = 0 To nameChars.Length - 1
 c = nameChars(curC)
 If Char.IsLetter(c) Then
 tmpStringBuilder.Append(nameChars(curC))
 End If
 Next
 name = tmpStringBuilder.ToString()
 End If
 Return name
 End Function

ProcessDirectory accepts an instance of the WorkUnit class as its only param-
eter. This is the starting point for the actual file sorting. So far we’ve talked about the
elements in the Sorter class that support the asynchronous design pattern. The
ProcessDirectory method performs the actual work.

One of the first things ProcessDirectory does is retrieve the files from the direc-
tory named in the instance of the WorkUnit class into an array of strings. In order
for a file name to be included in this array, it must match the pattern specified in the
instance of the WorkUnit.

To inform the user of the class that processing of the directory is beginning, the Start
event is raised. The number of files matching the pattern in the specified directory along
with a reference to the instance of the WorkUnit is passed back to any Start event
handlers. This allows the user of the class to set up any feedback mechanisms, such as
progress bars, with a maximum value.

ProcessFile is then invoked on each file name in the array of files. ProcessFile
is passed a reference to WorkUnit along with the name of the file to process. The
WorkUnit reference is needed since it contains the destination directory, along with
the Boolean values governing the processing of the file name to produce the corre-
sponding directory name.

After the file is processed, the Entry event is raised, signaling the user of the class that
a file has been processed. The index of the file in the file list array, along with its name,
and a reference to the WorkUnit item are passed to any Entry event handlers. This
allows the user of the class to update a progress indicator.

After all files are processed the Finished event is raised. This allows the user of the
class to indicate that processing has completed.

 B

 C

 D

 E

 F

 G
284 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 285 Thursday, October 31, 2002 4:04 PM
ProcessFile calls DetermineCompareName to determine the name of the direc-
tory a file should be placed in. It then checks to see if that directory exists; if it does
not, it is created. Next it checks to see if a file exists in that directory with the same name
as the current file. If it does, the dupes data member of the WorkUnit object is
inspected to see how processing should proceed. If there is no file name collision, the
current file is moved to the specified directory.

The DetermineCompareName method applies the Boolean values governing direc-
tory name to the specified file name to produce the name of the directory the file should
be moved to. This method contains common name manipulation methods such as
removing spaces, nonletter characters, and file extensions.

17.1.3 Using the Sorter class library

So far we’ve covered the Sorter class in isolation. In this section we’ll see how
another class can use it. We’ll start by examining the synchronous use of the Sorter
class. We’ll then explore the event handlers required. We’ll finish by exploring asyn-
chronous execution.

Synchronous execution of Sort

The simplest way to use the Sorter class is to use the Sort method. Sort does not
return until processing of the directory has completed. Listing 17.6 contains an
example of using the Sort method of the Sorter class.

Dim includePause As Boolean
includePause = checkBoxIncludePause.Checked
Dim src As String = textBoxSrc.Text
Dim pattern As String = textBoxPattern.Text
Dim dest As String = textBoxDest.Text
listBox1.Items.Clear()
fileSorter.Sort(src, pattern, dest, includePause)

The Sort method accepts four parameters:

• A string that specifies the directory to be sorted.

• A string that contains a pattern used to determine which files in the source
directory are sorted.

• A string containing the destination folder. All folders that are created will be
placed under the destination folder.

• A Boolean that determines if there is a one-second pause between processing
each file. This helps demonstrate the need for asynchronous processing without
requiring a large number of files. This would only be used during testing.

 H

 I

Listing 17.6 Synchronous use of the Sorter class (VB.NET)

Invoke the
Sort method
USING THE ASYNCHRONOUS DESIGN PATTERN 285

Net_Dennis.book Page 286 Thursday, October 31, 2002 4:04 PM
Figure 17.3 shows the Windows Forms application that is used to call the Sort method
of the Sorter class. The code in listing 17.6 is executed when the user clicks Sort.

The form will not respond to user interaction when the synchronous sort is execut-
ing. For example, if you attempt to resize the form the action will not occur until after
the sorting has completed. This is because the Sort is occurring on the main thread
of the application, the same thread that is processing messages.

While the form sort is occurring the user interface will be updated with feedback
information. Figure 17.4 shows the program approximately 30 percent completed.

The next section discusses the event handlers that handle the events that are raised
in listing 17.5.

Figure 17.3

The Windows Forms

application that

allows synchronous

and asynchronous

sorting

Figure 17.4

Feedback indicating

the program has

sorted approximately

30 percent of the files

in the directory
286 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 287 Thursday, October 31, 2002 4:04 PM
Event handlers

During processing three events are raised. The first event is the Start event. Start
is raised when a directory is starting to be processed. The next event is the Entry
event. The Entry event is raised every time a file in the source directory is processed.
The final event raised is the Finished event. Listing 17.7 contains example handlers
for each of these events.

Sub ProcessingStarted(ByVal numberEntries As Integer, _
 ByVal work As Sorter.WorkUnit) _
 Handles fileSorter.Start
 Dim s As String
 s = "Started Processing "
 s += work.Directory + " containing "
 s += numberEntries.ToString()
 s += " entries"
 Dim i As Integer
 i = listBox1.Items.Add(s)

 listBox1.SelectedIndex = i
 statusBar1.Text = "Processing " + work.Directory
 progressBar1.Maximum = numberEntries
 progressBar1.Minimum = 0
 progressBar1.Value = 0
End Sub

Sub ProcessedEntry(ByVal index As Integer, _
 ByVal work As Sorter.WorkUnit, _
 ByVal name As String) _
 Handles fileSorter.Entry
 Dim s As String
 s = "Processed entry number"
 s += index.ToString()
 s += "(" + name + ") in "
 s += work.Directory
 Dim i As Integer
 i = listBox1.Items.Add(s)
 statusBar1.Text = s
 listBox1.SelectedIndex = i
 progressBar1.Value = index
End Sub

Private Sub Finished(ByVal work As Sorter.WorkUnit) _
 Handles fileSorter.Finished
 statusBar1.Text = ""
 progressBar1.Value = 0
 Dim history As ArrayList = work.ProcessingHistory
End Sub

Listing 17.7 Event handlers for Sorter events (VB.NET)

Handles the
Start event

 B

Handles the
Entry event

 C

Handles the
Finished event

 D
USING THE ASYNCHRONOUS DESIGN PATTERN 287

Net_Dennis.book Page 288 Thursday, October 31, 2002 4:04 PM
Visual Basic .NET makes it very easy to consume events. The keyword Handles indi-
cates which events the method consumes. The signature of the event handler should
match the signature of the event. The ProcessingStarted method initializes the
progress bar and adds a line to the feedback list box.

When each file matching the pattern is processed, the Entry event is raised. The
ProcessedEntry method handles the Entry event. It sets the value of the progress
bar to the index of the processed file, and adds a line to the feedback list box indicating
the file was processed.

The Finished event is raised after all processing is complete. The Finished
method sets the progress bar’s value to zero, indicating that processing is complete.

One way to improve the responsiveness of the application would be to add calls to
the Application.DoEvents method in the event handlers. However, the respon-
siveness would still be very jerky if the processing between events is significant. The
next section discusses the use of asynchronous execution of the Sort method, using
BeginSort. This results in a highly usable interface.

Asynchronous execution of Sort

Listing 17.8 shows the code that is executing when Start in figure 17.4 is clicked. The
code is very similar to that in listing 17.6 with the one notable exception of the Async-
Callback and the invocation of the BeginSort method.

 Dim includePause As Boolean
 includePause = checkBoxIncludePause.Checked
 Dim src As String = textBoxSrc.Text
 Dim pattern As String = textBoxPattern.Text
 Dim dest As String = textBoxDest.Text
 listBox1.Items.Clear()
 'Set up Callback for Async Processing
 Dim cb As AsyncCallback
 cb = New AsyncCallback(AddressOf FinishedProcessing)
 fileSorter.BeginSort(src, pattern, dest, cb, includePause)

Notice the declaration and creation of an instance of AsyncCallback. Async-
Callback allows the FinishedProcessing method to be invoked when the
asynchronous execution is complete. This is different from the Finished event,
which is raised in the ProcessDirectory method. See listing 17.5 for more on
ProcessDirectory.

BeginSort has the same parameters as Sort, with the addition of the reference to
instance of AsyncCallback. This callback is passed to the BeginInvoke method,
and is invoked when the delegate that BeginInvoke is invoked on completes execu-
tion. Listing 17.3 contains the code where BeginInvoke is called.

 B

 C

 D

Listing 17.8 Asynchronous sorting (VB.NET)

Creates an instance
of AsyncCallback

 B

Signals when
processing is

complete

 C

 B

 C
288 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 289 Thursday, October 31, 2002 4:04 PM
Once all asynchronous processing has completed, the FinishedProcessing
method (listing 17.9) is invoked.

Private Sub FinishedProcessing(ByVal ar As IAsyncResult)
 Dim work As Sorter.WorkUnit = Nothing
 fileSorter.EndSort(ar, work)
 MessageBox.Show("Moved " + work.FilesMoved.ToString() + " files")
End Sub

When asynchronous processing completes, we often want to retrieve a resulting value.
Methods that are associated with AsyncCallback must accept a single parameter.
That parameter is an object that implements IAsyncResult. That object can then be
passed to the EndInvoke method on the original delegate. Listing 17.3 contains the
code of EndSort, which simply passes the object that implements IAsyncResult
to the EndInvoke method. When the EndSort method returns, the work variable
contains the WorkUnit object that was originally passed into the BeginSort
method. This allows for easy retrieval of results, in this case the number of files that
were moved.

17.1.4 Steps to implement the asynchronous design pattern

To implement the asynchronous design pattern, the following steps should be followed:

1 Create a method to be invoked, marking any parameters that should be returned
by the EndInvoke method as being ByRef in Visual Basic .NET, ref in C#.
This method should perform all of the processing that will be required, or call
other methods to perform the processing.

2 Define a delegate that matches the signature of the method that performs the
top-level work.

3 Create a method named Begin<action>, such as BeginSort, which accepts
any required parameters, along with a reference to an AsyncCallback. This
method will create an instance of the delegate associating it with the work method
and call BeginInvoke. The results of BeginInvoke should be returned to
the caller.

4 Create a method named End<action>, such as EndSort, which accepts an object
that implements IAsyncResult along with any needed reference parameters.
The signature of this method will look like the delegate defined earlier, with the
addition of the IAsyncResult object before any parameters. The return value
may differ, if a single result value can be returned.

5 For completeness create a method that invokes an instance of the delegate
directly, providing for synchronous processing. This method should be named
<action>, such as Sort.

Listing 17.9 Method invoked when processing is complete (VB.NET)

EndSort allows for the
retrieval of results B

 B
USING THE ASYNCHRONOUS DESIGN PATTERN 289

Net_Dennis.book Page 290 Thursday, October 31, 2002 4:04 PM
Following these steps produces an object that follows the asynchronous design pattern.
There are two choices in how to interact with the object in an asynchronous way.
One involves passing a callback to the Begin<action> method that is invoked when
execution completes.

The alternative is to call End<action>. Calling it causes execution on that thread
to block until the asynchronous execution completes. This allows the caller to start
processing, continue executing some other task, and then call End<action> to wait for
the asynchronous operation.

The examples in this section have been presented in Visual Basic .NET. The C#
version of the examples are available from the publisher’s web site.

17.2 MESSAGE QUEUE EXAMPLE

Microsoft Message Queue (MSMQ) is a messaging system that ensures delivery of
messages and provides security, routing, and priority. In this section we’ll examine
.NET’s support for MSMQ and an implementation of the asynchronous design pattern.

MSMQ can be viewed as a consumer/producer model. The idea is that messages are
added to a queue and processed at some later point. MSMQ ensures that the message will
not be lost along the way. This simplifies development considerably, removing a large
amount of “plumbing” from application development. In this section we’ll examine
a very simple MSMQ application.

17.2.1 The message producer

To demonstrate .NET’s asynchronous implementation of receiving a message we must
first have a message to receive. Figure 17.5 shows of a program that produces a very
simple message.

The slider can be moved from right to
left to change the frequency of message
generation. The status bar displays the
text of the last message generated. The
One Message button produces a single
message. The Produce Messages check-
box controls if messages are produced at
a regular interval. Listing 17.10 contains
the most important element of the mes-
sage-producing application.

void AddMessage()
{
 try
 {
 string message;

Figure 17.5 The message producer

Listing 17.10 The AddMessage method adds a single message to the message

queue (C#).
290 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 291 Thursday, October 31, 2002 4:04 PM
 message = "Test " + DateTime.Now.ToLongTimeString();
 this.messageQueue1.Send(message);
 this.statusBar1.Text = message;
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

The Send method of the MessageQueue class is used to enter a new message into
a queue. Since entering a message in a queue is not a time-consuming activity, it is
performed synchronously. There are several different versions of the Send method.
The one we are using here is the simplest; it accepts a single object that becomes the
body of the message.

In order to execute this example you must have MSMQ installed. When the form
loads initially, it attempts to create a message queue named.\Private$\ManningThreads.
This is a local queue and should work on most installations. The following code creates
the message queue if it does not exist:

if (!MessageQueue.Exists(queueName))
{
 MessageQueue.Create(queueName);
}

17.2.2 The message consumer

Now that we have a producer of messages, we need something to consume them. There
are several ways that messages can be consumed using the MessageQueue object.

Synchronous receive

The simplest way to consume a message is to use the MessageQueue’s synchronous
Receive method. Receive blocks the calling thread until a message can be received.
If no messages are in the queue, the method waits until either a message arrives, or, if a
timeout is specified, the timeout expires. Listing 17.11 shows the Receive method
being used with no specified timeout.

System.Messaging.Message msg = messageQueue1.Receive();
string s="(null)";
if (msg != null & msg.Body != null)
{
 s = msg.Body.ToString();
}
UpdateMessageDisplay(s);

Adds an entry to
the message queue

 B

 B

Listing 17.11 The Receive method used with no timeout specified (C#)

Blocks until a
message is received
MESSAGE QUEUE EXAMPLE 291

Net_Dennis.book Page 292 Thursday, October 31, 2002 4:04 PM
In the case of a Windows Forms application, while the main thread of the application
is waiting on Receive to return it is unable to process any Win32 messages. This
causes the application to hang and be unresponsive. When a message is received, the
application will resume processing the messages.

Asynchronous processing using BeginReceive

A more desirable way of interacting with a message queue is to use the asynchronous
processing support built into the MessageQueue object. Listing 17.12 shows the
use of BeginReceive and ReceiveCompletedEventHandler.

private void button1_Click(object sender, System.EventArgs e)
{
 try
 {
 messageQueue1.BeginReceive();
 }
 catch(Exception ex)
 {
 UpdateMessageDisplay(ex.ToString());
 }
}

private void messageQueue1_ReceiveCompleted(
 object sender,
 ReceiveCompletedEventArgs e)
{
 string s="(null)";
 if (e.Message != null & e.Message.Body != null)
 {
 s=e.Message.Body.ToString();
 }
 UpdateMessageDisplay(s);
}

The MessageQueue object follows the asynchronous design pattern. The Begin-
Receive method returns instantly, allowing the calling thread to continue processing.
In the case of a Windows Forms application, this processing is servicing the Win32
message pump. Using BeginReceive allows the application to respond to user
interaction while it is waiting for an MSMQ message to arrive.

Once a message arrives, the messageQueue1_ReceiveCompleted method is
invoked. This is because the method is associated with the ReceiveCompleted event.
It is important to understand that the messageQueue1_ReceiveCompleted
method will execute on the main thread.

Listing 17.12 BeginReceive returns before a message is received (C#)

BeginReceive returns
before the message is
received

 B

ReceivedCompleted
event is raised

 C

 B

 C
292 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 293 Thursday, October 31, 2002 4:04 PM
The messageQueue1_ReceiveCompleted method is associated with the
ReceiveCompleted event during the application initialization. The following
associates the method with the event:

ReceiveCompletedEventHandler handler;
handler=new ReceiveCompletedEventHandler(messageQueue1_ReceiveCompleted);
messageQueue1.ReceiveCompleted += handler;

The handler variable is introduced to improve readability. The key element is the +=
operator being applied to the ReceiveCompleted event. When a BeginReceive
operation completes, and no callback has been passed to BeginReceive, the
ReceiveCompleted event will be raised.

Using BeginReceive with a callback

Another way of receiving messages asynchronously is to pass a callback to Begin-
Receive. Listing 17.13 contains an example showing the use of a callback with the
BeginReceive method.

private void button3_Click(object sender, System.EventArgs e)
{
 AsyncCallback callback = new AsyncCallback(callbackMethod);
 messageQueue1.BeginReceive(MessageQueue.InfiniteTimeout,null,callback);
}
private void callbackMethod(IAsyncResult ar)
{
 System.Messaging.Message msg;
 msg = messageQueue1.EndReceive(ar);
 string s="(null)";
 if (msg != null & msg.Body != null)
 {
 s = msg.Body.ToString();
 }
 UpdateMessageDisplay(s);
}

BeginReceive can accept an instance of the AsyncCallback class. The method
associated with the callback is invoked when a message is received. In this case call-
backMethod is invoked when a message is received and BeginReceive has been
previously executed. At most one message will be received.

EndReceive accepts an instance of an object that supports IAsyncResult as its
only parameter. It returns the message that was received and triggered the invocation
of the callback. The message we received in this case is a very simple one; it contains a
single string.

Listing 17.13 The method callbackMethod is invoked when a message is

received (C#).

The callback object
is passed to

BeginReceive

 B

EndReceive is used
to retrieve the
received message

 C

 B

 C
MESSAGE QUEUE EXAMPLE 293

Net_Dennis.book Page 294 Thursday, October 31, 2002 4:04 PM
A variation on this approach is to have the callback method begin the next read. This
allows for a lightweight way of keeping a message queue empty. Listing 17.14 contains
a modified callback method.

private void callbackMethodQueueClean(IAsyncResult ar)
{
 System.Messaging.Message msg;
 msg= messageQueue1.EndReceive(ar);
 string s="(null)";
 if (msg != null & msg.Body != null)
 {
 s = msg.Body.ToString();
 }
 UpdateMessageDisplay(s);

 AsyncCallback callback = new AsyncCallback(callbackMethodQueueClean);
 messageQueue1.BeginReceive(MessageQueue.InfiniteTimeout,null,callback);
}

In this section we’ve examined the MessageQueue object and its support for asyn-
chronous processing. By emulating this and other objects in the .NET framework, you
can develop an easy-to-reuse object. This is one of the biggest benefits of using design
patterns: They allow users of an object to have a baseline level of understanding once
they know which pattern an object follows.

17.3 ONE CLASS ONE THREAD

There are times that we want to perform asynchronous execution without caring about
the results. An example is error logging. When an error occurs, often one of the first
things needed is to record that error for later analysis. Once the request to record the
information is made, the next order of business is recovering from the error. Since future
processing is not dependent upon the outcome of the error logging routine, it can con-
tinue while the error is being recorded. To demonstrate a different approach to asyn-
chronous design this section discusses a multithreaded logging class. Figure 17.6 shows
the test harness for the logging class.

We’ll start by examining the code that executes when Initialize Logger button is
clicked. Listing 17.15 contains the relevant code.

Try

 If Not log Is Nothing Then
 log.Shutdown()
 End If
 log = New Logger()

Listing 17.14 Method that continually processes messages in a queue (C#)

Listing 17.15 Logger initialization code (VB.NET)

Clean up any previous
instances of the logger

 B
294 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 295 Thursday, October 31, 2002 4:04 PM
 log.LogFile = textBoxLogFilename.Text
 log.MessageQueuePath = textBoxMQPath.Text
 log.EventLogSource = textBoxEventLogSource.Text
 log.URL = textBoxURL.Text
 log.SQLConnectionString = textBoxConnect.Text
 log.SQLCommandTextFormat = textBoxCommand.Text
 Dim tmpWhere As Logger.WhereToLog
 tmpWhere = 0
 If checkBoxDatabase.Checked Then
 tmpWhere = tmpWhere Or Logger.WhereToLog.Database
 End If
 If checkBoxEventLog.Checked Then
 tmpWhere = tmpWhere Or Logger.WhereToLog.EventLog
 End If
 If (checkBoxMQ.Checked) Then
 tmpWhere = tmpWhere Or Logger.WhereToLog.MessageQueue
 End If
 If (checkBoxTextFile.Checked) Then
 tmpWhere = tmpWhere Or Logger.WhereToLog.File
 End If
 If (checkBoxTrace.Checked) Then
 tmpWhere = tmpWhere Or Logger.WhereToLog.Trace
 End If
 If (checkBoxWeb.Checked) Then
 tmpWhere = tmpWhere Or Logger.WhereToLog.WebPage
 End If

 log.LogTo = tmpWhere
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try

Figure 17.6

Logging class test harness

Set the logging
destination
parameters

 C

Set the logging
destination flag

 D
ONE CLASS ONE THREAD 295

Net_Dennis.book Page 296 Thursday, October 31, 2002 4:04 PM
First we check to see if an instance of the Logger class has been previously created. If
it has, the Shutdown method is called, cleaning up the background thread. Next an
instance of the Logger class is created and assigned to the log member variable.

Depending on the destination we select, there are several values that are required.
For instance, if we select that we want the logging to go to a text file we must supply
a file name.

The logging destination is a product of using binary on an enumeration. The Where-
ToLog enumeration is assigned powers of two. This allows a single value to determine if
content is sent to multiple locations. The following is the definition of the enumeration:

Public Enum WhereToLog
 Trace = 1
 File = 2
 WebPage = 4
 EventLog = 8
 MessageQueue = 16
 Database = 32
End Enum

As you can see the Logger class provides support, albeit limited, for logging to text
files, web pages, the Windows NT event log, and MSMQ. The idea here is to demon-
strate the concept, not produce an enterprise-quality logging component.

When the Log Message button is clicked the string that is contained in the textbox
beside it is sent to the logging component. The following instructions execute:

If log Is Nothing Then
 MessageBox.Show("Log not initialized")
Else
 log.LogMessage(textBoxMessage.Text)
End If

At this point we’ve discussed the test program enough to dive into the actual Logging
class. Listing 17.16 contains the most relevant code elements. The attempt here is to
focus on the more interesting aspects of the class. The full source for this, and all
examples, is available from the publisher’s web site.

Public Class Logger
. . .
 Private stopRunning As Boolean
 Private somethingToDo As ManualResetEvent
 Private messagesToLog As System.Collections.Queue
 Private workerThread As Thread
 Private destination As WhereToLog
. . .

 B

 C

 D

Listing 17.16 Key elements of the Logger class (VB.NET)

Preserves the messages
until they can be logged

 C

Used to control the
thread’s processing

 B
296 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 297 Thursday, October 31, 2002 4:04 PM
 Public Sub New()
 stopRunning = False
 somethingToDo = New ManualResetEvent(False)
 messagesToLog = System.Collections.Queue.Synchronized(
 New System.Collections.Queue())
 filename = ""
 destination = WhereToLog.Trace Or WhereToLog.EventLog
 workerThread = New Thread(AddressOf ThreadMethod)
 workerThread.Name = "Logging worker thread"
 workerThread.IsBackground = True
 workerThread.Start()
 End Sub
 Public Sub Shutdown()
 stopRunning = True
 somethingToDo.Set()
 End Sub

 Public Sub LogMessage(ByVal message As String)
 messagesToLog.Enqueue(message)
 somethingToDo.Set()
 End Sub
. . .
 Private Sub LogToFile(ByVal message As String)
 If (filename.Length = 0) Then
 Throw New Exception("Filename not set and File is target to log to")
 End If
 Dim stream As FileStream
 stream = File.Open(
 filename,FileMode.Append, FileAccess.Write, FileShare.Read)
 stream.Seek(0, SeekOrigin.End)
 Dim contents() As Byte
 contents = System.Text.Encoding.ASCII.GetBytes(message)
 stream.Write(contents, 0, contents.Length)
 stream.Close()
 End Sub
. . .
 Private Sub LogString(ByVal message As String)
 If ((destination And WhereToLog.Trace) > 0) Then
 Trace.WriteLine(message)
 End If
 If ((destination And WhereToLog.File) > 0) Then
 LogToFile(message + "\r\n")
 End If
 If ((destination And WhereToLog.WebPage) > 0) Then
 LogToWebPage(message)
 End If
 If ((destination And WhereToLog.MessageQueue) > 0) Then
 LogToMQ(message)
 End If
 If ((destination And WhereToLog.EventLog) > 0) Then
 LogToEventLog(message)
 End If

Creates an
instance of the
Thread class

 D

Terminates the
working thread

 E

Returns before
the message has
been processed

 F
ONE CLASS ONE THREAD 297

Net_Dennis.book Page 298 Thursday, October 31, 2002 4:04 PM
 If ((destination And WhereToLog.Database) > 0) Then
 LogToDB(message)
 End If
 End Sub
 Private Sub ThreadMethod()
 While (Not stopRunning)
 While (messagesToLog.Count > 0)
 Try
 Dim message As String
 message = CType(messagesToLog.Dequeue(), String)
 LogString(message)
 Catch ex As Exception
 System.Diagnostics.Trace.WriteLine(ex.ToString())
 End Try
 End While
 somethingToDo.Reset()
 somethingToDo.WaitOne(1000, False)
 End While
 End Sub
End Class

The majority of the time the logging component will not be processing any messages;
that is, assuming that it’s running with relatively high-quality code. So it doesn’t con-
sume unneeded resources, we use a ManualResetEvent to signal the thread that
there’s something to do.

As we’ve done in past examples we use a queue to act as the connection point between
the calling threads and the worker thread. To ensure that there are no concurrency
issues, we use the Shared/static Synchronized method of the Queue class to
convert the Queue to a thread-safe queue.

The next step is to create an instance of the Thread class to be associated with the
thread’s method. This should look very familiar. The last step in the New/constructor
is to start the newly created thread.

The Shutdown method terminates the thread. This is accomplished by setting the
stopRunning data member to true. The thread’s method contains a main loop that
checks the value of stopRunning. If this code was going into a production environ-
ment, stopRunning should be protected with a synchronization lock. Any time a
class data member can be manipulated by different threads it should be protected with
a synchronization lock or be thread-safe. The frequency of Shutdown execution
should be very low, if at all.

LogMessage enters a string into the queue that the thread processes and sets the
ManualResetEvent to being signaled. This has the effect of waking up the thread
and starting the processing.

Removes
entries from
the queue and
processes them

 G

 B

 C

 D

 E

 F
298 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 299 Thursday, October 31, 2002 4:04 PM
The thread’s job is to keep the queue empty. To ensure a message doesn’t get “stuck” in
the queue, we set a one-second timeout on the WaitOne method of ManualReset-
Event. This will ensure that the thread will check the queue for work once a second
or when it is signaled.

This example demonstrates a class that is multithreaded and does not require the code
that uses the class to know anything about the multithreaded implementation. If processing
is not dependent on the outcome of a task, asynchronous execution should be considered.

17.4 PERFORMANCE ISSUES

When designing multithreaded applications, you must to consider the performance
implications of each design decision. A common mistake when learning a new technol-
ogy is to apply it to every problem. This is a natural tendency, but should be restrained
as much as possible. Instead, take the new concepts and apply them to situations where
they provide value. Otherwise, the result will be solutions that are difficult to maintain
and cumbersome to use.

In this section we’ll briefly cover the cost of multithreaded development, the concept
of concurrency, and the implication of multiple processors in a system.

17.4.1 Multithreading overhead

Threads aren’t free. This is a simple statement, but it should be in the back of your
mind at all times when designing a multithreaded solution. The creation of threads is
relatively inexpensive, compared to creation of a process under Windows OS. This
doesn’t mean that large numbers of threads should be created, but rather that the cost
of using a thread is not as high as some of the alternatives.

Thread pools take much of the difficulty out of multithreaded development. If a
task is short in duration, and relatively frequently occurring, it is a likely candidate for
a thread pool. If a task is longer lived it may require the creation of a thread.

A key element with multithreaded design is balancing the need for independent
components that are self-contained with the minimization of the number of threads
required. Any time there is the possibility that a large number of threads can be created,
such as servicing a large number of requests, the architecture should be revisited and
most likely redesigned.

17.4.2 Increasing concurrency

Concurrency is a measure of the number of activities that occur at roughly the same
time. If high performance is a design goal then general concurrency should be maxi-
mized. Concurrency must be balanced against creating a large number of threads. This
isn’t an exact science, but rather a skill that is developed over time.

One approach is to develop a working, low-concurrency solution initially and increase
concurrency to meet throughput requirements. This approach allows for optimization
in areas that are known to be performance bottlenecks. It is much easier to improve on
working code than it is to attempt to predict where the improvements will add value.

 G
PERFORMANCE ISSUES 299

Net_Dennis.book Page 300 Thursday, October 31, 2002 4:04 PM
The nature of the work being performed will influence the design. As with all designs
the tasks being performed will impact the decisions made. There is no magic formula
for multithreaded applications. There are design patterns than can be followed that work
for a certain class of problems, but there is no general solution. Experience, benchmark-
ing, and patience are the best tools for becoming a seasoned multithreaded developer.

17.4.3 Implications of multiple processors

Multiple processors allow multiple threads to execute simultaneously. This is a tremen-
dous benefit for high-performance systems. The cost of the parallelism comes in the
form of shared memory. Anytime values must be shared between threads there is a
considerable performance penalty if multiple processors are involved. The basic problem
is that all involved threads must reach a state when the value is certain to be correct.
The impact of shared values among threads should motivate designers to minimize
sharing of data as much as possible.

As mentioned earlier, testing should always be done on a system that is similar to
production. There are concurrency issues that will not occur, or occur very infrequently,
on a single-processor system that will occur with a high degree of regularity on a multiple-
processor system. The result of this sort of situation is generally reflected in a developer
saying “It works on my machine,” which does little to solve the production issue.

17.5 SUMMARY

This chapter has revisited the design considerations that have been covered throughout
this book. The most important concept to take away from this chapter is that there is no
single correct way of using multiple threads. As with many things, there are wrong ways
of solving the problem, but there is no magical algorithm that will solve all design issues.

We have covered the asynchronous design pattern and seen how it is implemented
in various .NET objects. The asynchronous design pattern is an ideal approach to use
for many situations. One of the key advantages it has over other approaches is that
developers will become very familiar with it as they do .NET development. By creating
custom libraries that follow this pattern, developers will have a pretty good idea of how
to use your library without having it explained to them.

We also covered the concept of associating a class with a single working thread.
This generally involves a queue, and the thread’s job is to keep that queue empty. A
one-class one-thread approach works well for situations where the caller of a method
does not care about the result of the processing of that method. Additionally, classes
that contain multiple threads appear to the users of those classes as though they were
any other class. An example of such a class in the .NET framework is WebClient. It
is multithreaded, but the users of the class aren’t required to know that fact to use it.

It is important when dealing with a new topic to not forget the lessons learned with
previous technologies. All too often when faced with an unfamiliar task we forget the
discipline, structure, and procedures that have served us well in the past.
300 CHAPTER 17 DESIGNING WITH THREADS

Net_Dennis.book Page 301 Thursday, October 31, 2002 4:04 PM
C H A P T E R 1 8

Multithreading in J#

18.1 J#’s Thread class 301
18.2 The Runnable interface 314
18.3 Concurrency control in J# 317
18.4 Summary 328
J# is very similar to Microsoft J++ and Java programming language. It is intended to
provide a way for developers familiar with Java to utilize the .NET platform.

18.1 J#’S THREAD CLASS

J# contains a Thread class that is very similar to the System.Threading.Thread
class. One fundamental difference is that the .NET System.Threading.Thread
class is sealed. This means that it cannot be inherited from. In J# it’s possible, and
often desirable, to subclass the Thread class.

18.1.1 Extending the Thread class

One way that J# allows for threads to be created is by inheriting from the Thread class.
In C# and VB.NET the Thread class is a sealed class. It contains methods and proper-
ties relating to threads and their creation. J# takes an older approach where a class can
be created that contains an overridden method named run that is the entry point for
the new thread. Listing 18.1 contains a class that was created by subclassing Thread.
301

Net_Dennis.book Page 302 Thursday, October 31, 2002 4:04 PM
package SubclassingThread;
public class ThreadedClass extends Thread
{
 public void run()
 {
 for (int i=0;i< 100;i++)
 {
 try
 {
 String s;
 s =System.Convert.ToString(i);
 System.Diagnostics.Debug.WriteLine(s);
 this.sleep(1000);
 }
 catch(InterruptedException ex)
 {
 // Someone called interupt
 System.Diagnostics.Debug.WriteLine(ex.toString());
 }
 }
 }
}

Notice the only method contained in the ThreadedClass is run. This example
prints out 0 to 99, pausing one second between each iteration. The following is an
example of using the ThreadedClass:

ThreadedClass c;
c = new ThreadedClass();
c.start();

Notice that we don’t call run directly but instead call the start method. The
start method invokes run on a different thread. The stop method is used to halt
a thread’s execution. This is similar to the Abort method used in C# and VB.NET.
The following causes the thread to stop executing:

c.stop();

The J# Thread class is similar to the System.Threading.Thread class. In the
next section we compare and contrast the two classes.

18.1.2 Comparing the Thread class to System.Threading.Thread

The Thread class and the System.Threading.Thread class are similar in
many ways.

Listing 18.1 ThreadedClass is derived from the Thread class (J#).
302 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 303 Thursday, October 31, 2002 4:04 PM
Setting a thread’s name

We’ve discussed the advantages of assigning a name to a thread. J# uses functions to
manipulate a thread’s name instead of properties. Listing 18.2 contains the J# version
of listing 5.2.

package ThreadName;
public class WebSiteMonitorConsole
{
 /** @attribute System.STAThread() */
 public static void main(String[] args)
 {
 System.Console.WriteLine(Thread.currentThread().getName());
 Thread.currentThread().setName("Main");
 System.Console.WriteLine(Thread.currentThread().getName());
 WebSiteMonitor SiteMonitor;
 SiteMonitor = new WebSiteMonitor("http://localhost/test.htm", 1000);
 SiteMonitor.Start();
 try
 {
 Thread.currentThread().sleep(15000);
 }
 catch(InterruptedException ex)
 {
 System.Console.WriteLine(ex.getMessage());
 }
 SiteMonitor.Abort();
 SiteMonitor.Join();
 }
}

Notice the addition of the initial WriteLine to the console. It displays the name of the
main thread before the call to setName is made. In J# the main thread’s name is set to
main when the thread is created. Additionally, the name of the thread can be changed
any number of times. This is different from the System.Threading.Thread
class, which does not allow the name of a thread to be changed once it has been set.

Listing 18.2 uses the WebSiteMonitor class. Listing 18.3 contains the J# version
of that class.

package ThreadName;
public class WebSiteMonitor extends Thread
{
 String URL;
 long startMs;
 long stopMs;

Listing 18.2 Setting a thread’s name in J# using the setName function (J#)

The getName function returns
the name of the thread

The setName function is used to
assign a new name to a thread

Listing 18.3 The J# version of the WebSiteMonitor class from chapter 5 (J#)

Utilizes the
Thread class

 B
J#’S THREAD CLASS 303

Net_Dennis.book Page 304 Thursday, October 31, 2002 4:04 PM
 long lastRequestHowLong;
 long sleepTime;

 public WebSiteMonitor(String URL, int sleepTime)
 {
 this.sleepTime=sleepTime;
 this.URL = URL;
 }
 public void Start()
 {
 this.setName("WebSiteMonitor");
 this.start();
 }
 public void Abort()
 {
 this.stop();
 }
 public void Join()
 {
 try
 {
 this.join();
 }
 catch (InterruptedException e)
 {
 }
 }

 public void run()
 {
 System.Console.WriteLine(Thread.currentThread().getName());
 boolean notify ;
 while (true)
 {
 notify = false;
 System.Net.WebClient client;
 client= new System.Net.WebClient();
 ubyte[] data ;
 startMs= System.currentTimeMillis();
 data = client.DownloadData(URL);
 stopMs= System.currentTimeMillis();

 lastRequestHowLong = stopMs - startMs;
 String results ;
 results = System.Text.Encoding.get_ASCII().GetString(data);
 if (results.indexOf("OK") < 0)
 {
 notify = true;
 }

 if (notify)
 {
 // Let someone know
 }

Utilizes the
Thread class

 B

Utilizes the
Thread class

 B

Utilizes the
Thread class

 B

Utilizes the
Thread class

 B

Uses the
framework’s
WebClient class

 D

Controls the name
of the thread C
304 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 305 Thursday, October 31, 2002 4:04 PM
 try
 {
 Thread.currentThread().sleep(sleepTime);
 }
 catch(InterruptedException e)
 {
 }

 }
 }
}

Notice that WebSiteMonitor inherits from the Thread class. When you’re extending
the Thread class it is necessary to include an overridden version of the run method.
The run method replaces the ThreadMethod of chapter 5. Notice that the class
utilizes the start, stop, and join methods. These methods are inherited from the
Thread class. We’ll discuss these methods in the next section.

J# uses a function approach to setting values of a class. The setName function per-
forms the same operation as the set portion of the Name property of the framework’s
Thread class. As mentioned earlier, the setName function is less restrictive than the
Name property in that it allows multiple assignments.

One reason that people use J# is to have access to the .NET framework. Notice that
we’re using the framework’s WebClient class. This sort of migration is a powerful
tool for developers coming from the Java platform because it allows them to use the lan-
guage they are familiar with while taking advantage of the extensive library support
that .NET offers.

Starting, stopping, and joining a thread

In chapter 4 we spent a great deal of time discussing the creation, termination, and
coordination of threads. Since .NET has many of its roots in the Java world, it’s not
surprising that J# contains very similar methods. Other than the obvious capitaliza-
tion changes the most major difference is the absence of an Abort method. Instead,
J# uses a stop method. Recall from chapter 4 that the Abort method causes
ThreadAbortException to be raised on the thread. This allows the thread the
alternative of calling ResetAbort and ignoring the termination request. In J# the
stop method causes the thread to terminate without allowing the thread the oppor-
tunity to decline the request.

The stop method is deprecated, which means that it may be removed in future
releases of J#. Rather than using the stop method it’s recommended to have a Boolean
control the thread’s execution. Generally threads contain a main loop, which should
test the value of a Boolean that indicates when it’s time to terminate.

 B

 C

 D
J#’S THREAD CLASS 305

Net_Dennis.book Page 306 Thursday, October 31, 2002 4:04 PM
 The start and join methods behave as we’d expect. Listing 18.4 contains a
simple class that extends the J# Thread class.

package StartJoin;
import System.Console;
public class Other extends Thread
{
 public void run()
 {
 Console.WriteLine("Starting other thread");
 for (int i=0;i<4;i++)
 {
 Console.WriteLine("*");
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException ex)
 {
 }
 }
 Console.WriteLine("Exiting other thread");
 }
}

The Other class is derived from the J# Thread class. It contains a single overridden
version of the run method. This method is the entry point for the thread. The console
application that creates an instance of this class and starts it is included in listing 18.5.

package StartJoin;
import System.Console;
public class ClassMain
{
 /** @attribute System.STAThread() */
 public static void main(String[] args)
 {
 Console.WriteLine("Starting main thread");
 Other otherThread;
 otherThread=new Other();
 otherThread.start();
 Thread.yield();
 Console.WriteLine("Joining other thread");
 try
 {
 otherThread.join();

Listing 18.4 A class derived from Thread that outputs four asterisks, one per

second (J#)

Listing 18.5 The main class of the console application (J#)

Causes the
other thread to
begin executing B

Releases the
remainder of
the time slice

 C

Pauses until the
other thread
terminates D
306 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 307 Thursday, October 31, 2002 4:04 PM
 }
 catch (InterruptedException ex)
 {
 }
 Console.WriteLine("Joined other thread");
 Console.WriteLine("Exiting main thread");
 }
}

The start method causes otherThread to begin executing the run method on a
different thread. This is identical to the framework version of the run method.

The yield method causes the current thread to surrender the remainder of its time to
the OS. This allows other threads the chance to run. It is used here to allow the other
thread time to start before signaling the main thread to join. This isn’t required, but
it makes the output look more logical.

The J# join method causes the current thread to wait until the thread associated
with the instance of the J# Thread class terminates. This is the same behavior that
we saw with the System.Threading.Thread Join method.

The following output is generated when the code from listings 18.4 and 18.5 executes:

Starting main thread
Starting other thread
*
Joining other thread
*
*
*
Exiting other thread
Joined other thread
Exiting main thread

Notice that the main thread starts and then the other thread starts. Next the main
thread joins to the other thread, waiting for its termination. When the other thread
terminates the main thread resumes processing, displaying the “Joined other thread”
message and then terminating.

Controlling thread priority

In chapter 5 we discussed changing a thread’s priority. Recall that a thread was assigned
a priority from the ThreadPriority enumeration. J# takes a different approach. A
thread is assigned a priority from between the MIN_PRIORITY and MAX_PRIORITY
constants. Under the current implementation of J#, these map to 1 and 10 respectively.
You’ll notice that produces ten possible priority settings compared to the five enumera-
tion values in the ThreadPriority class: Lowest, BelowNormal, Normal,
AboveNormal, and Highest. Listing 18.6 helps us map J#’s ten values to each of
the ThreadPriority values.

 B

 C

 D
J#’S THREAD CLASS 307

Net_Dennis.book Page 308 Thursday, October 31, 2002 4:04 PM
Thread jsThread;
jsThread = Thread.currentThread();

System.Threading.Thread frameworkThread;
frameworkThread =System.Threading.Thread.get_CurrentThread();

for (int i= Thread.MIN_PRIORITY; i <= Thread.MAX_PRIORITY;i++)
{
 Console.Write(i);
 Console.Write("\t");
 jsThread.setPriority(i);
 Console.WriteLine(frameworkThread.get_Priority());
}

Listing 18.6 produces the following output:

1 Lowest
2 Lowest
3 BelowNormal
4 BelowNormal
5 Normal
6 Normal
7 AboveNormal
8 AboveNormal
9 Highest
10 Highest

The first column is the J# thread priority while the second column is the corresponding
ThreadPriority enumeration value. The reason for the ten values is compatibility
with other implementations of Java. Under the Windows OS there are only five priority
values that a thread can be assigned. By mapping two J# values to one ThreadPri-
ority enumeration value an even distribution is achieved.

Inspecting a thread’s state

The .NET framework allows for exhaustive inspection of a thread’s state. J# provides
limited facilities for determining a thread’s state. The two methods available in J# are
isAlive and isInterrupted. The isAlive method is functionally equivalent
to the framework thread’s IsAlive property. There isn’t a method in the framework
Thread class that is comparable to the isInterrupted function. Initially, isIn-
terrupted returns false. After the interrupt method is called on a J# thread the
function returns true until the thread enters a sleep state. An example that demon-
strates this behavior will help shine a little light on the concept. Listing 18.7 contains
a class that extends the J# Thread class.

Listing 18.6 J#’s priorities range from MIN_PRIORITY to MAX_PRIORITY (J#).
308 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 309 Thursday, October 31, 2002 4:04 PM
package ThreadState;
import System.Console;
public class OtherThread extends Thread
{
 private int iterations=0;

 public OtherThread(int iterations)
 {
 this.iterations=iterations;
 }
 public void run()
 {
 for (int i=0;i<iterations;i++)
 {
 try
 {
 Console.WriteLine("*");
 Thread.sleep(1000);
 }
 catch(InterruptedException ex)
 {
 Console.WriteLine("!");
 }
 }
 }
}

The thread in listing 18.7 doesn’t do much. The thread loops for a configurable num-
ber of times, printing an asterisk to the console. When some other thread causes an
interrupt to occur, an exclamation mark is displayed. The main portion of this example
is contained in listing 18.8.

package ThreadState;
public class ClassMain
{
 private static void displayStatus(OtherThread t, String message)
 {
 String status = message + " ";
 status += t.isAlive() + " ";
 status += t.isInterrupted() + " ";
 System.Console.WriteLine(status);
 }
 /** @attribute System.STAThread() */
 public static void main(String[] args) throws Exception
 {
 System.Console.WriteLine("Message isAlive isInterrupted");

Listing 18.7 A thread that loops printing out asterisks (J#)

Listing 18.8 The main class of the console application (J#)
J#’S THREAD CLASS 309

Net_Dennis.book Page 310 Thursday, October 31, 2002 4:04 PM
 OtherThread t;
 t=new OtherThread(5);
 displayStatus(t,"Before Start ");
 t.start();
 Thread.sleep(1000) ;
 displayStatus(t,"After Start ");
 t.interrupt();
 displayStatus(t,"After Interrupt ");
 for (int i=0;i< 6 ;i++)
 {
 Thread.sleep(1000) ;
 displayStatus(t," ");
 }
 System.Console.Read();
 }
}

The main function starts off by writing a header to the console. Next it creates an
instance of the OtherThread class from listing 18.7. The main function calls dis-
playStatus, which calls both isAlive and isInterrupted on the supplied
instance of OtherThread and displays their return values on the console. Next the
main thread sleeps for a second to give the instance of the OtherThread time to
start. Next display status is called again. To see the behavior of the isInterrupted
function we call interrupt on the instance of the OtherThread. This forces the
thread to exit the sleep state and resume processing. The code in listing 18.8 produces
the following output:

Message isAlive isInterrupted
Before Start false false
*
After Start true false
After Interrupt true true
!
*
 true false
*
 true false
*
 true false
*
 true false
 false false
 false false

Notice that the isInterrupted value switches from false to true and then back to
false. When the instance of OtherThread invokes the sleep function, it clears the
isInterrupted flag. After the instance of OtherThread has completed execution,
you can see the value for isAlive switch from true to false.
310 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 311 Thursday, October 31, 2002 4:04 PM
Background threads

In chapter 5 we discussed foreground and background threads. Recall that all back-
ground threads are terminated at the point all foreground threads exit. J# refers to
background threads as daemon threads. The word daemon as used here is from ancient
Greek. Often it is confused with demon from Judaism and Christianity, which refers to
an unclean spirit. As used here it refers to an entity that keeps watch on things, some-
thing background threads are often tasked with.

To control if a thread is a background thread in J# we use the setDaemon
method. The isDaemon method returns a Boolean that indicates if the associated
thread is a background thread. Listing 18.9 is a console application that uses the Other-
Thread class from listing 18.7 and demonstrates background threads.

package BackgroundThread;
import System.Console;
public class ClassMain
{
 /** @attribute System.STAThread() */
 public static void main(String[] args) throws Exception
 {
 System.Console.WriteLine("Message isAlive isDaemon");
 OtherThread t;
 t=new OtherThread(5);
 displayStatus(t,"Before Start ");

 Console.WriteLine("Other thread is Daemon? [Y/N]");
 String input = Console.ReadLine();
 if (input.toLowerCase().charAt(0) == 'y')
 {
 t.setDaemon(true);
 }

 t.start();
 Thread.sleep(1000) ;
 displayStatus(t,"After Start ");
 Console.WriteLine("Main thread exiting");
 }
 private static void displayStatus(OtherThread t,String message)
 {
 String status = message + " ";
 status += t.isAlive() + " ";
 status += t.isDaemon();
 Console.WriteLine(status);
 }

}

Listing 18.9 Determines if the thread is a background thread (J#)
J#’S THREAD CLASS 311

Net_Dennis.book Page 312 Thursday, October 31, 2002 4:04 PM
This program asks the user if he or she wishes the other thread to be a daemon
thread. The user types in a string. If that string starts with a Y the other thread is set
to be a daemon thread. Here’s an example of the output when the user types a Y:

Message isAlive isDaemon
Before Start false false
Other thread is Daemon? [Y/N]
Y
*
After Start true true
Main thread exiting
*

Because of timing issues the main thread exits first. The key element is that when the
main thread terminates the background thread is stopped. The following shows what
happens when the user types in N:

Message isAlive isDaemon
Before Start false false
Other thread is Daemon? [Y/N]
N
*
After Start true false
Main thread exiting
*
*
*
*

Notice that the other thread continues to execute after the main thread has exited.
The reason is that both the main thread and the other thread are foreground threads.

Suspending and resuming a thread

In chapter 5 we discussed suspending and resuming threads. J#’s versions of suspend
and resume function much like their System.Threading.Thread counterparts.
The only noticeable difference is that the J# methods do not raise exceptions when they
are called from an incorrect state. For example, if a thread is not in the suspended state
and the framework’s resume is called, a ThreadStateException is raised. The J#
methods do not raise exceptions based on thread state. Listing 18.10 contains the listing
of a console application that allows the user to suspend and resume the other thread.

package PauseAndResume;
import System.Console;
public class ClassMain
{
 /** @attribute System.STAThread() */

Listing 18.10 Allowing the user to suspend and resume the other thread

interactively (J#)
312 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 313 Thursday, October 31, 2002 4:04 PM
 public static void main(String[] args) throws Exception
 {
 OtherThread t;
 t=new OtherThread(100);
 t.setDaemon(true);
 t.start();
 Console.WriteLine("q = Quit");
 Console.WriteLine("s = Suspend");
 Console.WriteLine("r = Resume");
 boolean keepGoing = true;
 while (keepGoing)
 {
 String input = Console.ReadLine();
 char inputChar = input.toLowerCase().charAt(0);
 switch(inputChar)
 {
 case 'q':
 keepGoing =false;
 break;
 case 's':
 t.suspend();
 break;
 case 'r':
 t.resume();
 break;
 }
 }
 }
}

The following output shows that an exception isn’t raised when the thread is running
and resume is called:

q = Quit
s = Suspend
r = Resume
*
*
*
r*

*
r
*

Notice that the other thread is executing and resume is signaled. The suspend and
resume methods are deprecated, meaning they will likely be removed from J# in
future releases. Rather than having an external thread control the execution of a thread,
it’s better to have the thread itself control it using the wait and sleep statements.
This removes the possibility that the thread is suspended at a point where it has a
resource allocated, such as a synchronized region of code.
J#’S THREAD CLASS 313

Net_Dennis.book Page 314 Thursday, October 31, 2002 4:04 PM
18.2 THE RUNNABLE INTERFACE

J#, along with C# and VB.NET, allows for inheritance from only one class. This single
inheritance restriction greatly simplifies object-oriented development. There are times that
it is desirable for a class to contain multiple types of reusable functionality. This is where the
concept of an interface comes in. An interface is nothing more than a way of stating what
methods and properties an object must implement if it claims to support an interface.

The Runnable interface in J# is used to create threads without deriving from the
Thread class. If an object implements the Runnable interface it must contain a
method named run that accepts no parameters and does not return a value. The
instance of the object that supports the Runnable interface is passed to the constructor
of the Thread class. The instance of the Thread class can then be used to start the
thread, which will begin executing the run method. Listing 18.11 contains a base class
that provides an Output method. This is intended to serve as an example of the need
for interfaces, not to demonstrate object-oriented design. This class is overly simple in
the hope that it will make the concepts clearer.

package SimpleRunnable;
import System.Console;
public class BaseClass
{
 protected void Output(String message)
 {
 Console.WriteLine(message);
 }
}

Listing 18.12 contains a class that is derived from the BaseClass class. Since the
DerivedClass class extends the BaseClass class, it cannot also extend the
Thread class. Instead, it implements the Runnable interface.

package SimpleRunnable;

public class DerivedClass extends BaseClass implements Runnable
{
 public void run()
 {
 Output("Enter Second thread");
 try
 {
 Output(Thread.currentThread().getName());
 }
 catch(Exception ex)
 {

Listing 18.11 A very simple base class (J#)

Listing 18.12 The DerivedClass implements the Runnable interface (J#).
314 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 315 Thursday, October 31, 2002 4:04 PM
 Output(ex.getMessage());
 }
 for (int i=0;i<4;i++)
 {
 Output("*");
 }
 Output("Exit Second thread");
 }
}

Because the DerivedClass claims to implement the Runnable interface it must
contain a function named run. The run function is the entry point for the new
thread, just as it is when the class is derived from the Thread class. The run function
is not called directly, but is invoked as a result of the start method being invoked
on an instance of the Thread class.

Listing 18.13 contains the source code of a console application that creates an
instance of the DerivedClass, associates it with an instance of the Thread class,
and starts the new thread using the start method.

package SimpleRunnable;
import System.Console;
public class ClassMain
{
 /** @attribute System.STAThread() */
 public static void main(String[] args)
 {
 Console.WriteLine("Enter main thread");
 DerivedClass derived;
 derived = new DerivedClass();
 Thread theNewThread;
 theNewThread= new Thread(derived);
 theNewThread.setName("SecondThread");
 Console.WriteLine("Starting second thread");
 theNewThread.start();
 try
 {
 Console.WriteLine("Main thread is joining second thread");
 theNewThread.join();
 }
 catch(InterruptedException ex)
 {
 }
 Console.WriteLine("Exit Main thread");
 }
}

Listing 18.13 Allocates an instance of the Thread class and starts the new

thread (J#)

Starts the
new thread

 D

Implements
Runnable

 B

Is used to start
the new thread

 C

Waits until the run
method terminates

 E
THE RUNNABLE INTERFACE 315

Net_Dennis.book Page 316 Thursday, October 31, 2002 4:04 PM
The main class starts by declaring an instance of DerivedClass named derived.
Next we allocate a new instance of DerivedClass. DerivedClass does not sup-
port the start, stop, or join methods. To access those methods we must have an
instance of the Thread class.

The theNewThread class is an instance of the Thread class. Once an instance is
allocated using the new statement, we can assign it a name, in this case SecondThread.
Notice that we pass in the instance of DerivedClass to the thread. This is very
similar to the use of the ThreadStart delegate in the System.Threading
namespace in that it determines which method is invoked when the thread starts.

SecondThread is now ready to start execution. As we’ve discussed previously, the start
method is used to start a new thread. The entry point for the new thread is the run
method of the instance of the object that was passed into the Thread’s constructor.

The main thread pauses until SecondThread terminates, at the join statement. As
we’ve discussed previously the join method puts the calling thread into a wait state
until the thread associated with the instance of the Thread class terminates.

You’re probably noticing that this is very similar to the way we create threads using
the System.Threading.Thread class. Listing 18.14 shows the similarities between
the C# implementation and the J# implementation using the Runnable interface.

using System;
using System.Threading;
namespace NoThreadInstanceExample
{
 class ClassMain
 {
 [STAThread]
 static void Main(string[] args)
 {
 Thread t;
 t=new Thread(new ThreadStart(run));
 t.Start();
 t.Join();
 }
 static void run()
 {
 for (int i=0;i< 4;i++)
 {
 Console.WriteLine("*");
 }
 }
 }
}

 B

 C

 D

 E

Listing 18.14 Similarities between the Runnable interface and a ThreadStart

delegate (C#)
316 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 317 Thursday, October 31, 2002 4:04 PM
The ThreadStart delegate performs a duty similar to that of the Runnable inter-
face. Recall that the ThreadStart delegate is used to associate a method with an
instance of the Thread class. That method can be static, belong to the current instance
of the class, or belong to some other class.

The run method of the instance of the class that supports the Runnable interface
cannot be static. This means it must be an instance method. To state the obvious, that
method must belong to the class that supports the Runnable interface. All this means
is that the J# approach is slightly more restrictive than the delegate-based approach
used by the framework. Since J# is a .NET language, there’s no reason that the Sys-
tem.Threading.Thread class can’t be used. Most likely the Runnable approach
will be used when porting Java source code to the .NET environment.

18.3 CONCURRENCY CONTROL IN J#

Because of the nature of multithreaded development, concurrency control is a key in
any language. J# contains a robust set of synchronization mechanisms to ensure that
access to data elements is performed in a controlled fashion.

18.3.1 Synchronized regions

In chapter 7 we discussed creating regions of code that were protected by a lock. In C#
we used the lock keyword and in Visual Basic .NET we used SyncLock. In J# the
same operation is performed using the synchronized keyword. To see an example
of why locks should be performed, consider the class contained in listing 18.15.

package SyncTest;
import System.Console;
public class UnSyncPrinter extends Thread
{
 private String whatToPrint;
 private int howManyTimes;
 public UnSyncPrinter (String whatToPrint,int howManyTimes)
 {
 this.whatToPrint = whatToPrint;
 this.howManyTimes = howManyTimes;
 }
 public void run()
 {
 int strLength;
 strLength=whatToPrint.length();
 for (int i=0;i< howManyTimes;i++)
 {
 for (int c=0;c< strLength;c++)
 {
 Console.Write(whatToPrint.charAt(c));

Listing 18.15 Prints a string, a character at a time pausing a tenth of a second

between each (J#)
CONCURRENCY CONTROL IN J# 317

Net_Dennis.book Page 318 Thursday, October 31, 2002 4:04 PM
 try
 {
 Thread.sleep(100);
 }
 catch(InterruptedException ex)
 {
 }
 }
 Console.Write("\r\n");
 }
 }
}

This class prints the string that’s passed into the constructor onto the console one
character at a time. Between each character the thread pauses for one tenth of a second.
The number of lines printed is based on the value passed in to the constructor in the
howManyTimes parameter.

This class contains no synchronization. When more than one instance of this class
is created, the output of the two classes will be intertwined. Listing 18.16 contains a
version of the class from listing 18.15 that provides synchronization.

package SyncTest;
import System.Console;
public class SyncPrinter extends Thread
{
 private String whatToPrint;
 private int howManyTimes;
 private Object lock;
 public SyncPrinter(Object lock,String whatToPrint,int howManyTimes)
 {
 this.lock=lock;
 this.whatToPrint = whatToPrint;
 this.howManyTimes = howManyTimes;
 }
 public void run()
 {
 int strLength;
 strLength=whatToPrint.length();
 for (int i=0;i< howManyTimes;i++)
 {
 synchronized(lock)
 {
 for (int c=0;c< strLength;c++)
 {
 Console.Write(whatToPrint.charAt(c));
 try

Listing 18.16 SyncPrinter protects the output of each line with a synchronized

region of code (J#).
318 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 319 Thursday, October 31, 2002 4:04 PM
 {
 Thread.sleep(100);
 }
 catch(InterruptedException ex)
 {
 }
 }
 Console.Write("\r\n");
 }
 }
 }
}

Notice that listing 18.16 has an additional parameter passed to the constructor. Access
to the synchronized region is controlled by the use of this object. Listing 18.17 contains
the main class from a console application that demonstrates the importance of having
synchronized regions.

package SyncTest;
import System.Console;

public class ClassSyncTest
{
 /** @attribute System.STAThread() */
 public static void main(String[] args)
 {
 Console.WriteLine("Unsynchronized");
 UnSyncPrinter one;
 UnSyncPrinter two;
 SyncPrinter three;
 SyncPrinter four;
 Object lockingObject=new Object();

 one=new UnSyncPrinter("abcdefghijklmnopqrst",5);
 two=new UnSyncPrinter("ABCDEFGHIJKLMNOPQRST",5);
 three=new SyncPrinter(lockingObject,"abcdefghijklmnopqrst",5);
 four=new SyncPrinter(lockingObject,"ABCDEFGHIJKLMNOPQRST",5);

 one.setName("one");
 two.setName("two");
 three.setName("three");
 four.setName("four");

 one.start();
 two.start();

 Console.WriteLine("Press Enter to Continue");
 Console.ReadLine();
 Console.WriteLine("Synchronized");

Listing 18.17 Demonstrates the need for synchronized regions of code (J#)
CONCURRENCY CONTROL IN J# 319

Net_Dennis.book Page 320 Thursday, October 31, 2002 4:04 PM
 three.start();
 four.start();

 Console.WriteLine("Press Enter to Continue");
 Console.ReadLine();
 }
}

Notice that the same instance of the Object is passed to each of the SyncPrinter
constructors. This causes the access by both threads to be restricted by the common
object. When the console application from listing 18.17 is executed, the following
output is produced:

Unsynchronized
Press Enter to Continue
aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStT
a
AbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStT
a
AbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRSsTt

A
aBbCcDdEeFfgGhHiIjJkKlLmMnNoOpPqQrRsStT
a
AbBcCdDEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTt

Synchronized
Press Enter to Continue
abcdefghijklmnopqrst
ABCDEFGHIJKLMNOPQRST
abcdefghijklmnopqrst
ABCDEFGHIJKLMNOPQRST
abcdefghijklmnopqrst
ABCDEFGHIJKLMNOPQRST
abcdefghijklmnopqrst
ABCDEFGHIJKLMNOPQRST
abcdefghijklmnopqrst
ABCDEFGHIJKLMNOPQRST

The first portion of the output contains mixed upper- and lowercase characters. This
occurs because each thread pauses before completing a line, allowing the other an
opportunity to output its characters. Notice that the second portion of the output
contains lines of only upper- or lowercase characters. This is because the synchronization
block forces a thread to wait until the other has completed its output of a line before
it can enter the region and begin outputting its line.

There are times that an entire method should be guarded by a synchronization
mechanism. In the next section we discuss how to do that in J# and how it is accom-
plished in general in the framework.
320 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 321 Thursday, October 31, 2002 4:04 PM
18.3.2 Synchronized methods

There are times that access to an entire method should be synchronized. One way to
accomplish this is to wrap the entire method body in a synchronized block, using this
as the object to synchronize on. While this may function as desired it doesn’t necessarily
convey the programmer’s intent. During maintenance some unsuspecting developer
might mistakenly place one or more instructions outside the synchronized block only
to introduce a bug that will be difficult to detect and repair.

Recall from section 7.1.1 that collections are not generally thread-safe. This means
that if more than one thread interacts with a collection the odds are pretty high that
some negative event will occur. J# contains numerous collections; for our example we’ll
use ArrayList. Listing 18.18 is a class that contains an instance of the ArrayList
class. It serves as the recipient for data produced by multiple worker threads.

package SyncMethods;
import System.Console;
public class Data extends java.util.ArrayList
{
 private java.util.ArrayList list;
 public Data()
 {
 list = new java.util.ArrayList();
 }
 public void put(String data)
 {
 try
 {
 list.add(data);
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.getMessage());
 }
 }
 public void putSyncAll(String data)
 {
 synchronized(this)
 {
 try
 {
 list.add(data);
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.getMessage());
 }
 }
 }

Listing 18.18 The Data class collects data produced by multiple threads (J#).

Defines a method
that is susceptible
to race conditions

 B

Defines a method that
uses a synchronized
region

 C
CONCURRENCY CONTROL IN J# 321

Net_Dennis.book Page 322 Thursday, October 31, 2002 4:04 PM
 public synchronized void putSyncMethod(String data)
 {
 try
 {
 list.add(data);
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.getMessage());
 }
 }
 public int length()
 {
 return list.size();
 }
}

In chapter 7 we discussed the impact of having shared collections manipulated by mul-
tiple threads without proper synchronization control. J# is no different. When multiple
threads call the put function concurrently, eventually an ArrayIndexOutOf-
BoundsException will be raised. The reason for this is the same as in other collec-
tions; one thread caused an area of memory to be allocated and another took it.

Wrapping the entire function with a synchronized region will keep ArrayIndex-
OutOfBoundsException from being raised. This approach doesn’t convey the
fact that the entire method must be protected with a synchronized region. Over time
it’s possible that other instructions will be added to the method, but not within the
synchronized region. Perhaps some of those instructions don’t need to be protected
with the synchronized region, but eventually one that should be will be placed outside
the region. When that occurs it will likely be very difficult to track down the cause of
the new anomaly.

When the synchronized keyword is applied to a method, invocation of the entire
method is synchronized. This prevents other threads from accessing the method while
another thread is in it. Not only does this successfully cause all invocations to be syn-
chronized, but also it tells future developers that the method should be synchronized.
While this could be accomplished using documentation, many developers don’t doc-
ument their code, and many don’t read existing documentation until a problem has
already occurred.

The .NET framework contains support for synchronizing access to an entire method.
It is accomplished using MethodImplOptions from the System.Runtime.Com-
pilerServices namespace. The following is a C# implementation of the J# put-
SyncMethod from listing 18.19:

Defines a
synchronized
method

 D

 B

 C

 D
322 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 323 Thursday, October 31, 2002 4:04 PM
[MethodImpl(MethodImplOptions.Synchronized)]
public void putSyncMethod(String data)
{
 try
 {
 list.Add(data);
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

Attributes are a powerful way of extending .NET languages. They allow for future
expansion to languages. J# supports the use of attributes by using the @attribute
statement within a comment block. For an example of using the @attribute state-
ment look at listing 18.17. Prior to the static main method notice the line con-
taining STAThread. This is equivalent to the [STAThread] attribute found in C#
console applications.

18.3.3 The wait, notify, and notifyAll methods

The coordination of multiple threads is one of the more challenging elements of mul-
tithreaded development. In chapter 7 we discussed the .NET framework’s Monitor
class. Recall that the Monitor class allows a thread to enter a Wait state by calling
the Wait method, until some other thread signals it using the Pulse and PulseAll
methods or a timeout occurs.

J# includes similar functionality in the wait, notify, and notifyAll methods.
Listing 18.19 contains a J# class that creates a worker thread that calls the wait method
on an object that’s passed to the constructor. The thread’s processing suspends until
some other thread calls notify or notifyAll.

package WaitNotify;
import System.Console;
public class Worker extends Thread
{
 private Object key;
 public Worker(Object key)
 {
 this.key=key;
 }
 public void run()
 {
 String name;
 name=Thread.currentThread().getName();
 Console.WriteLine("Wait:" + name);

Listing 18.19 Pauses until some other thread calls notify or notifyAll on the same

key object (J#)
CONCURRENCY CONTROL IN J# 323

Net_Dennis.book Page 324 Thursday, October 31, 2002 4:04 PM
 try
 {
 synchronized(key)
 {
 key.wait();
 }
 }
 catch(InterruptedException ex)
 {
 Console.WriteLine(ex.getMessage());
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.toString());
 }
 Console.WriteLine("Exit:" + name);
 }
}

Notice that the wait method is invoked inside a synchronized region of code. The
reason for this is the same as the reason that Monitor.Wait must be invoked from
within a synchronized region of code: to avoid race conditions. Listing 18.20 contains
the main class that utilizes the Worker class.

package WaitNotify;
import System.Console;
public class ClassMain
{
 /** @attribute System.STAThread() */
 public static void main(String[] args)
 {
 Object key= new Object();
 Worker one = new Worker(key);
 one.setName("one");
 one.start();

 Worker two = new Worker(key);
 two.setName("two");
 two.start();

 Worker three= new Worker(key);
 three.setName("three");
 three.start();

 try
 {
 Console.WriteLine("Waiting one second\r\n");
 Thread.sleep(1000);
 Console.WriteLine("");

Listing 18.20 Creates three instances all sharing the same key (J#)
324 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 325 Thursday, October 31, 2002 4:04 PM
 synchronized(key)
 {
 Console.WriteLine("Calling notify");
 key.notify();
 }

 Console.WriteLine("Waiting one second\r\n");
 Thread.sleep(1000);
 Console.WriteLine("");
 synchronized(key)
 {
 Console.WriteLine("Calling notifyAll");
 key.notifyAll();
 }
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.getMessage());
 }
 Console.ReadLine();
 }
}

The output from listing 18.20 is as follows:

Waiting one second

Wait:one
Wait:two
Wait:three

Calling notify
Waiting one second

Exit:one

Calling notifyAll
Exit:two
Exit:three

Notice that when notify is invoked, only one thread, in this case the thread named
“one,” exits the wait state and terminates. When the notifyAll method is invoked the
threads named “two” and “three” exit the wait state and terminate. This behavior is iden-
tical to that of the Pulse and PulseAll methods of the framework’s Monitor class.

Sometimes it’s helpful to compare something new to something familiar. Listing 18.21
is a C# version of the Worker class from listing 18.20.

using System;
using System.Threading;
namespace WaitNotify

Listing 18.21 The C# version of the Worker class is very similar to the J# version.
CONCURRENCY CONTROL IN J# 325

Net_Dennis.book Page 326 Thursday, October 31, 2002 4:04 PM
{
 public class Worker
 {
 private Thread theThread;
 private object key;
 private string name;
 public Worker(object key)
 {
 this.key= key;
 }
 public void run()
 {
 String name;
 name=Thread.CurrentThread.Name;
 Console.WriteLine("Wait:" + name);
 try
 {
 lock(key)
 {
 Monitor.Wait(key);
 }
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.WriteLine("Exit:" + name);
 }
 public void start()
 {
 theThread = new Thread(new ThreadStart(run));
 theThread.Name=name;
 theThread.Start();
 }
 public void setName(string name)
 {
 this.name = name;
 }
 }
}

Notice that the C# version of the Worker class contains the start and setName
functions. Since C# doesn’t allow subclassing the Thread class we must provide a
means for starting a thread in the Worker class. These methods could have been
named anything, but for consistency with the J# version of the Worker class the
names start and setName were chosen. Listing 18.22 contains the C# version of
the Main class.
326 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 327 Thursday, October 31, 2002 4:04 PM
using System;
using System.Threading;

namespace WaitNotify
{
 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {
 object key= new object();
 Worker one = new Worker(key);
 one.setName("one");
 one.start();

 Worker two = new Worker(key);
 two.setName("two");
 two.start();

 Worker three= new Worker(key);
 three.setName("three");
 three.start();
 try
 {
 Console.WriteLine("Waiting one second\r\n");
 Thread.Sleep(1000);
 Console.WriteLine("");
 lock(key)
 {
 Console.WriteLine("Calling Pulse");
 Monitor.Pulse(key);
 }

 Console.WriteLine("Waiting one second\r\n");
 Thread.Sleep(1000);
 Console.WriteLine("");
 lock(key)
 {
 Console.WriteLine("Calling PulseAll");
 Monitor.PulseAll(key);
 }
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.ReadLine();
 }
 }
}

Listing 18.22 The Main class is virtually identical to that of listing 18.21 (C#).
CONCURRENCY CONTROL IN J# 327

Net_Dennis.book Page 328 Thursday, October 31, 2002 4:04 PM
The output produced by the C# version of the program is virtually identical to that
produced by the J# version.

18.4 SUMMARY

J# is a .NET implementation of the Java language. It is based on the Java Development
Kit (JDK) version 1.1.4. The J# language supports multithreaded development. J#
allows two means of creating threads: implementing the Runnable interface and
subclassing the Thread class. This is a departure from the ThreadStart delegate-
based approach used by C# and VB.NET.

J# provides a means to leverage existing code, while taking advantage of functionality
available under the .NET runtime. This allows applications to be ported to the envi-
ronment without requiring a total rewrite. This includes multithreaded applications.

In this chapter we’ve seen that the majority of J# methods have a framework equiv-
alent. The methods do not behave the same, but are similar enough to make the tran-
sition from J# to other framework languages relatively easy.
328 CHAPTER 18 MULTITHREADING IN J#

Net_Dennis.book Page 329 Thursday, October 31, 2002 4:04 PM
index
Symbols

__declspec 196

A

Abort 65, 85, 214, 224, 228–229, 302, 305
called on thread 85, 214
defined 56

Aborted 85
AbortRequested 65
AboveNormal 88, 307
AcquireReaderLock 163–164
AcquireReadLock 162, 167
AcquireWriteLock 167, 172
AcquireWriterLock 172, 178
AddHandler 237–238
AddMessageFilter 236
AddressOf 46, 52–53, 207–208

defined 53
AllocateDataSlot 197
AllocateNamedDataSlot 199, 202
AnyWritersSince 177–179, 181
apartment 246, 267–268
apartment conflict 271
ApartmentState 246, 270–271
AppDomain 37, 232, 264–265

CreateDomain 38
CurrentDomain 37
GetData 37
SetData 37

AppDomain.GetCurrentThreadId 92

Application 214, 236, 264
Application Closing 81
application domain 36, 73–74
application program interface 25
Application.DoEvents 11, 288
ApplicationException 164, 168
ApplicationExit 265
ArgumentException 128, 199
ArgumentNullException 128
ArrayIndexOutOfBoundsException 322
ArrayList 12, 116, 321
ASP .NET 26
assemblies 2
AsyncCallback 217–218, 281
asynchronous 192
asynchronous delegates 192, 204, 216
asynchronous design pattern 275, 289
asynchronous execution 275, 285
AsyncResult 219
ATL 272
atomic operations 110, 120
AutoResetEvent 142–147, 150–151, 153, 187

compared to ManualResetEvent 155
AutoResetObject 146

B

Background 85
background thread 311–312
begin 276
BeginInvoke 46, 192, 204, 217–218
BeginRead 275
329

Net_Dennis.book Page 330 Thursday, October 31, 2002 4:04 PM
BeginReceive 292–293
BelowNormal 307
bitmasked 63
blocking 61
Brush 261
bubble sort 50

C

C++
ATL-based COM object 272
delete statement removing leak 28
leaking program 27

C# 1, 43
asynchronous delegate execution 192
creating thread-safe queue 116
context switches 19–20
deadlock examples 171–172, 256–257
defining thread’s entry point 50
delegates, using 206
exiting current context 148
Finalize example 31
FreeNamedDataSlot example 201–202
GetAvailableThreads example 187
GetMaxThreads example 187
Hello World with a loop 4
ideal processor, setting 92
Interrupt method example 77
leaking program 28
modeling a cat 6
multitasking controlling class 11
naming a thread example 72
preemptive multitasking 15
read lock, improved way to acquire 164
read lock, releasing 172
RegisterWaitForSingleObject 212
ReleaseLock 179, 180
RestoreLock 179, 180
retrieving a Graphics object 261
sending SMTP mail using queue example 103
sharing example 14
single message, adding to queue 290
SMTP mail notification thread 96
testing COM object threading model 273
ThreadAbortException flow 225
ThreadPool example 183

tracking down a problem 129
unnamed data slot example 197–198
using Mutex to guard shared text file 156
volatile keyword 137–139
Windows Forms execution 246
write lock, acquiring after read lock release 172

CallbackMethod 198
callbacks 7, 208
CanPauseAndContinue 243
catch 57
Change 244
circular references 29
class libraries 25
ClassParaMatrix 189
ClassTestStatic 195
ClassVariable 195
clean shutdown 81
COM 246, 267–268, 270–272, 274, 279
COM interoperability 268
COM+ 111, 139, 148
concurrency 127, 194, 299
context switch 18

detecting 21
ContextBoundObject 139, 149
CreateDelegate 219–220
CreateDomain example 38
critical section 126, 130

D

daemon 311
data inconsistancy 254
data slots 197, 199
deadlock 107–109, 111, 172, 256–257

avoidance 109
defined 108
minimizing 109

debugging 74
Declare 253
DeclaringType 212
delegate 7, 43, 45, 53, 204–205, 208, 219,

221, 258
asynchronous execution 46

deprecated 313
design 275
design patterns 275, 300
330 INDEX

Net_Dennis.book Page 331 Thursday, October 31, 2002 4:04 PM
Diagnostics.Process.GetCurrentProcess 92
Diagnostics.ProcessThread 92
Dispose 261
DoEvents 236
DowngradeFromWriterLock 172–174
DownloadData 193
DrawString 260
dynamic delegates 219
dynamic link library 2, 34
DynamicInvoke 220

E

Elapsed 239
ElapsedEventHandler 239
email 97
encapsulation 95
EndInvoke 204, 217–219
enqueue 116
EnterCriticalSection 130
entry point 2, 39, 50, 301
entrypoint directive 4
error code 223
error handling 223–224, 234
error logging 234
event 232

handler 10, 238
evidence 191
exception 57, 222, 225, 227

ExceptionState 58, 226
exception conditions 223
exitContext 148
ExitCriticalSection 130

F

file handle 9
Finalize 31
finally 57–58, 60
Font 260
foreground threads 311
free threaded 268
FreeNamedDataSlot 201–202
freeze tag 82
Friend 276, 279
FromHwnd 261
function pointers 7, 205

G

garbage collector 27–34, 262
GC.Collect() 31
GDI+ 260
GetAvailableThreads 187–188
GetCurrentProcess 43
GetData 199, 202
GetHashCode 74
GetInvocationList 211
GetMaxThreads 187–189
GetNamedDataSlot 199, 202
Graphical Device Interface 9
graphics 260–261

H

Hashtable 116, 213, 200–201
Hwnd 261

I

I/O bound 188
IAsyncResult 217–219, 281
ideal processor 91
IdealProcessor 93
ILDASM 121–122
IMessageFilter 236
InfoCallbackMethod 210
InitializeComponent 242
InitializeCriticalSection 130
initiallyOwned 158
InstallUtil.exe 241
instance variables 194
Interlocked 33, 121–122

CompareExchange 125
Decrement 122
Exchange 123
Increment 122

internal 276
interoperability 267
interrupt 74, 227–229, 308
Invoke 78, 209, 217, 239, 258–259
InvokeRequired 259
IOException 157
isAlive 308, 310
IsBackground 252
INDEX 331

Net_Dennis.book Page 332 Thursday, October 31, 2002 4:04 PM
isDaemon 311
isInterrupted 308, 310
IsReaderLockHeld 163–164
IsThreadPoolThread 189–190
IsWriterLockHeld 168, 178–179
ISynchronizeInvoke 239
Items 253

J

J# 301–328
Threaded class example 302
instances sharing a key 324
outputting asterisks 306
priorities 308
setting a thread’s name 303
WebSiteMonitor version 303

Java 305
Join 60

defined 61
join 227, 305–307, 316

L

late binding 204, 220
LB_GETCOUNT 253
library

custom 26
LocalDataStoreSlot 197
lock 110, 126–128, 317
LockCookie 172, 179–180
lowest 307

M

MailMessage 102
managed applications 26
ManualResetEvent 142–144,

154–155, 298
compared to AutoResetEvent 155
Reset 144
Set 144
VB.NET example 154

matrix multiplication 143
MAX_PRIORITY 307
memory

management 27

message filter 236
message pump 10
MessageLoop 265
MessageQueue 291–292, 294
method 208, 212
MethodInfo 208, 212
Microsoft Intermediate Language. See MSIL
Microsoft Internet Information Server 24
Microsoft Message Queue 290
Microsoft Visual Basic 1, 46

circular reference example 29
Microsoft Windows 24, 118, 235–236,

240, 245
Microsoft Windows 2000 21
Microsoft Windows 3 x 10
Microsoft Windows Task Manager 9
Microsoft Word 26
MIN_PRIORITY 307
Monitor 142, 195, 325

Compared to Mutex 158
Enter 110, 128, 134, 136, 230
Exit 110, 128–129, 134, 136, 231
Pulse 133–134, 136, 232
PulseAll 134, 136–137, 144
TryEnter 131, 134, 230
Wait 133–134, 136, 324

MSIL 3, 100–102, 120, 128
calling STAThreadAttribute constructor 247
Hello World example 3
TimeToSendNotification examples

100, 101
MSMQ 290
MTA 246, 268, 270–272
MulticastDelegate 211
multiple processors 91, 300
multiple-processor machine 256
multiplication, matrix 143
multitasking 10

cooperative 10, 12–15
preemptive 15–16

multithreaded apartment 268
multithreaded application

debugging 54
Mutex 142–144, 157, 162

compared to Monitor 158
332 INDEX

Net_Dennis.book Page 333 Thursday, October 31, 2002 4:04 PM
N

Name 72, 189
named data slots 199
namespace 25
network socket 192
New 112, 124, 279
nondeterministic environment 201
nondeterministic finalization 30
Normal 87, 307
notify 323, 325
notifyAll 323, 325

O

object-oriented 45, 49
OnContinue 243
OnPaint 260
OnPause 243
OnStart 242
OnStop 242–243

P

PaintEventArgs 260
Performance Monitoring 21
polling 204
PreFilterMessage 236
priority 9
priority level 87
PriorityClass 88
process 2, 9, 36

class 43
priority 9, 88
termination 79

processor affinity 72, 89
processor bound 87, 188
ProcessThread 43, 92
program 2
progress bar 262
properties 78, 100
proxy 140, 272
public field 96
public field communication 98
Public Properties 99
PublicNotCreatable 279
Pulse 323, 325
PulseAll 323, 325

Q

quantum 16
queue 102, 105, 112–113, 115, 117, 152,

193, 231
sending SMTP mail example (C#) 103
using with threads 105
why use? 102

QueueUserWorkItem 182–183, 190–191

R

race condition 107, 110–111, 156, 254
defined 105

ReaderWriterLock 160–162, 167, 177, 179–181
Receive 291
ReceiveCompleted 292
ReceiveCompletedEventHandler 292
ReceivedSignal 148
reference 268
RegisterWaitForSingleObject 184–186, 212–213
ReleaseLock 179–180
ReleaseMutex 144
ReleaseReaderLock 172, 179
ReleaseReadLock 162
ReleaseWriterLock 177
RemoveHandler 233
Reset 144, 154
ResetAbort 59, 225–226, 305
ResetIdealProcessor 93
RestoreLock 179–180
resume 70, 215, 228–230, 313
run 301, 305, 307, 314–316
runnable 314–315, 317
running 65, 83, 85

S

safe point 57, 82
scheduler 89
scheduling 16
sealed 301
security 34, 190

evidence-based 34, 38
Send 291
SendMessageA 253
server-based timers 192–193
ServiceBase 242
INDEX 333

Net_Dennis.book Page 334 Thursday, October 31, 2002 4:04 PM
Set 146
setDaemon 311
SetData 199
setName 305, 326
SetTimer 235
shutdown, clean 81
signaled 186
single-processor machine 256
single-threaded apartment 246, 268
single-threaded application (VB.NET) 3
Sleep

defined 56
sleep 19, 77, 310
SleepWaitJoin 77
SmtpMail 96
STA 246, 268, 270–272
stability 256
stack 195
Start

defined 53
start 229, 305–306, 315–316, 326
STAThread 245–246, 323
stop 302, 305, 316
stopped 65
stub 272
suspend 70, 313
Suspended 70, 83–84
symmetric multiprocessing 91
synchronization 148–149, 267

management 106
mechanisms 317

Synchronization Attribute 140
SynchronizationLockException 129, 230–231
synchronized 116–117, 126
synchronized methods 321
SynchronizingObject 239
SyncLock 110, 126–128, 227, 317
System.Collections.Queue 102
System.Drawing 260
System.Reflection.MethodInfo 208
System.Text.Encoding.ASCII 71
System.Threading 40

namespace classes 40–41
System.Threading.ApartmentState 246
System.Threading.Thread 251, 301, 303

System.Threading.Thread Join 307
System.Threading.Timer 243
System.Timers.Timer 239, 242
System.Web.Mail 96, 102

T

Target 208, 212
thrashing 19
Thread 189, 208, 197, 199, 224–225, 252,

301, 314–315
Abort 55–56, 60, 77–78, 81, 84–85
class 41, 45, 51

creating instance of class 51
properties and methods 42–43

Interrupt 72, 77–79, 82
IsAlive 63–66
IsBackground 65, 79
Join 60–61, 77, 81
Name 72, 74, 100, 303
Priority 73
ResetAbort 62
Resume 72, 82–84
Sleep 56, 69, 71, 73–75, 77, 82, 111
Start 53, 63, 82
Suspend 72–73, 82–84
ThreadState 64, 83

thread 2
background 54, 80
defined 39
ending 55
foreground 54, 80
logical 25, 38–39
main 3, 54
physical 24, 39, 43
priority 87
scheduling 87–88
stopping 54

thread boundaries 100, 119
thread local storage 194
thread local storage and multicast delegates 213
thread pool 16, 47, 193
Thread.Sleep 76
ThreadAbortException 57, 68, 214,

224–226, 305
VB.NET example 55
334 INDEX

Net_Dennis.book Page 335 Thursday, October 31, 2002 4:04 PM
ThreadException 214–216, 264–265
ThreadExceptionEventArgs 215
ThreadExceptionEventHandler 214–

215, 230
ThreadExit 265
Threading

classes in namespace 40–41
threading timer 243
Threading.Timer 244
ThreadInterruptedException 77, 79,

227–228
ThreadLocal 203
ThreadMethod 227, 259
ThreadPool 150, 183–184, 187–190, 192–193,

209–210, 197–198, 243, 251
ThreadPriority 88, 307
thread-safe 26, 110–111, 117–118, 121,

210, 260
ThreadStart 43, 51–52, 68, 207–208, 210

defined 51
ThreadState 66–67
ThreadStateException 84, 229–230, 312
ThreadStatic 194, 196–197, 199–200
tick 76, 237
time slice 16, 76
Timeout.Infinite 77, 162, 210, 244
Timer 41, 209, 243
timer 252, 265. See also Windows Forms
TimerCallback 209–210
timers 193
TimeSpan 62, 76, 131, 148, 164
Trace 225, 259
transactions 106
try 57, 60

U

UnhandledException 222, 232–234,
264–265

unknown 246, 271
unnamed data slots 197
UnsafeQueueUserWorkItem 190–191
UnsafeRegisterWaitForSingleObject 190
unstarted 65, 83, 229
UpgradeToWriterLock 169–170, 172
using 270

V

VB.NET
adding elements to a list box

250–251
ApartmentState 270
assigning a variable in thread-safe way 124
asynchronous processing 280
asynchronous sorting 288
avoiding deadlocks using Invoke 258
bidding examples 166, 168–169
circular reference 30
cooperative greeter 13
creating reading thread 113
creating two writing threads 113
delete-related methods and delegates 249
detecting threads sharing processor 17
ending a thread 55
list box, adding elements to

250–251
logger initialization code 294
ManualResetEvent 154
named slot example 200
populating queue 112
progress bar 262
read lock, acquiring and releasing 163
RegisterWaitForSingleObject example

185, 186
releasing locks, importance of 131
single-threaded application 3
Sleep examples 75
Sorter delegates and events 279
synchronous processing 282
ThreadAbort Exception 57
ThreadInterruptedException 226
ThreatStatic example 196
ThreadStart delegate 207
updating a display with WaitOne and Set 146
UnsafeQueueUserWorkItem 190
using CompareExchange 124
using WebClient 70
utilizing BeginInvoke method 45
WaitAll 150
WorkUnit 278
WriterSeqNum 177

volatile 137
INDEX 335

Net_Dennis.book Page 336 Thursday, October 31, 2002 4:04 PM
W

wait 313, 323
WaitAll 142, 144, 147, 149–151, 155

restrictions 151
VB.NET example 150

WaitAny 144, 147, 152, 155
WaitCallback 211, 197
WaitHandle 142–143, 145, 147, 149,

184–186, 213
WaitOne 144–145, 147–148, 154–155
WaitOrTimerCallback 184–185, 213
WaitSleepJoin 65, 67, 74, 76–77, 82,

85, 126, 133–134, 146–147, 226–227,
229, 231

WaitTimeout 144, 152, 155
web pages 193

web site monitor 70, 96, 242
WebClient 71, 73, 79, 81, 193, 300, 305

DownloadData 71
WebSiteMonitor 303
Win32 258, 292
Windows. See Microsoft Windows
Windows Forms 78, 214–216, 245–266, 276, 286

not thread-safe 16, 118
deadlock example 256
timers 193, 235–240

WM_TIMER 209, 235–238
WorkItem 211
WriterSeqNum 177–179

X

XML Web Service 26
INDEX 336

filler page.fm Page 9 Friday, November 1, 2002 3:45 PM
MANNING PUBLICATIONS CO.
.NET Developer’s Library

Microsoft .NET for Programmers
BY FERGAL GRIMES

January 2002, Softbound, 386 pp.
ISBN 1930110-19-7

Price: $39.95 • Ebook $17.47

A programmer’s guide to .NET

For ordering information visit www.manning.com

filler page.fm Page 10 Friday, November 1, 2002 3:45 PM
MANNING PUBLICATIONS CO.
.NET Developer’s Library

Windows Forms Programming with C#
BY ERIK BROWN

April 2002, Softbound, 752 pp.
ISBN 1930110-28-6

Price: $49.95 • Ebook $24.97

A practical guide to creating Windows applications with .NET

For ordering information visit www.manning.com

filler page.fm Page 11 Friday, November 1, 2002 3:45 PM
MANNING PUBLICATIONS CO.
.NET Developer’s Library

ADO.NET Programming
BY ARLEN FELDMAN

July 2002, Softbound, 592 pages
ISBN 1930110-29-4

Price: $39.95 • Ebook $22.47

A practical guide to ADO.NET

For ordering information visit www.manning.com

filler page.fm Page 12 Friday, November 1, 2002 3:45 PM
MANNING PUBLICATIONS CO.
.NET Developer’s Library

NET Remoting
BY DON W. BROWNING

January 2003
Softbound, 350 pp.

ISBN 1930110-57-X
Price: $44.95 • Ebook $22.47

A guide to .NET’s powerful and elegant distributed applications framework.

For ordering information visit www.manning.com

	preface
	about this book
	acknowledgments
	about the cover illustration
	Process and thread basics
	1.1 Background
	1.1.1 What is a process?
	1.1.2 What are threads and why should we care?
	1.1.3 The cat project
	1.1.4 Task Manager

	1.2 Multitasking
	1.2.1 Cooperative multitasking
	1.2.2 Preemptive

	1.3 Preemptive multitasking
	1.3.1 Time slice, or quantum
	1.3.2 Context and context switching
	1.3.3 Detecting context switching

	1.4 Summary

	.NET from a threading�perspective
	2.1 .NET architecture overview
	2.1.1 Framework runtime
	2.1.2 .NET class libraries
	2.1.3 ASP .NET
	2.1.4 Developing custom libraries
	2.1.5 Managed applications

	2.2 Garbage collection
	2.2.1 Finalization

	2.3 Security
	2.4 Summary

	Multithreading in .NET
	3.1 Application domain
	3.1.1 An application domain vs. a process
	3.1.2 The AppDomain class
	3.1.3 CreateDomain

	3.2 Threads
	3.2.1 Logical threads
	3.2.2 Physical threads

	3.3 Benefits of .NET to multithreading
	3.3.1 Advantages of objects
	3.3.2 Asynchronous execution of delegates

	3.4 Summary

	Thread life cycle
	4.1 Creating a thread
	4.1.1 Defining the thread’s entry point
	4.1.2 Creating an instance of the ThreadStart delegate
	4.1.3 Creating an instance of the Thread class

	4.2 Starting threads
	4.3 Ending threads
	4.3.1 Introducing the ThreadAbortException exception
	4.3.2 The ResetAbort method
	4.3.3 The Join method

	4.4 Determining a thread’s status
	4.4.1 The IsAlive property
	4.4.2 The ThreadState property

	4.5 Summary

	Controlling threads
	5.1 Example: web site monitoring
	5.2 Naming threads
	5.3 Using Sleep and Interrupt
	5.3.1 The Sleep method
	5.3.2 The Interrupt method

	5.4 Using background and foreground�threads
	5.5 Using Suspend and Resume
	5.5.1 The Suspend method
	5.5.2 The Resume method

	5.6 Exploring thread states
	5.7 Digging deeper into thread control
	5.7.1 Controlling thread priority
	5.7.2 Setting processor affinity
	5.7.3 Specifying an ideal processor

	5.8 Summary

	Communicating with�threads
	6.1 Using data to communicate
	6.1.1 Public fields
	6.1.2 Public properties
	6.1.3 Queues and threads

	6.2 When things go badly
	6.2.1 Race conditions
	6.2.2 Deadlock

	6.3 Summary

	Concurrency control
	7.1 What does thread-safe mean?
	7.1.1 Race conditions in collections
	7.1.2 Making collections thread-safe using Synchronized
	7.1.3 Thread safety in libraries
	7.1.4 Understanding and detecting thread boundaries

	7.2 Atomic operations
	7.2.1 The Interlocked class

	7.3 The Lock and SyncLock keywords
	7.4 The Monitor class
	7.4.1 The Enter and Exit methods
	7.4.2 The TryEnter method
	7.4.3 Wait and Pulse
	7.4.4 The PulseAll method

	7.5 Digging deeper into concurrency�control
	7.5.1 C#’s volatile keyword
	7.5.2 COM+-based synchronization

	7.6 Summary

	WaitHandle classes
	8.1 The WaitHandle class
	8.2 The AutoResetEvent class
	8.2.1 Using the Set method
	8.2.2 Using the Reset method

	8.3 WaitHandle
	8.3.1 WaitOne
	8.3.2 WaitAll
	8.3.3 WaitAny

	8.4 ManualResetEvent
	8.5 Mutex class: WaitOne and ReleaseMutex
	8.6 Summary

	Reader/Writer lock
	9.1 Acquiring a read lock from a�ReaderWriterLock
	9.1.1 Acquiring and releasing a reader lock
	9.1.2 IsReaderLockHeld

	9.2 Acquiring a writer lock from a�ReaderWriterLock
	9.2.1 Acquire, release, and IsLockHeld
	9.2.2 UpgradeToWriterLock
	9.2.3 DowngradeFromWriterLock
	9.2.4 WriterSeqNum and AnyWritersSince

	9.3 ReleaseLock and RestoreLock
	9.4 Summary

	The ThreadPool class
	10.1 ThreadPool class and QueueUserWorkItem
	10.2 The RegisterWaitForSingleObject method
	10.3 Informational methods and properties
	10.3.1 GetMaxThreads and GetAvailableThreads
	10.3.2 The IsThreadPoolThread property

	10.4 Two unsafe methods
	10.5 The use of ThreadPools in .NET
	10.6 Summary

	ThreadStatic and thread�local storage
	11.1 Using ThreadStatic variables
	11.2 Using unnamed data slots
	11.3 Using named data slots
	11.4 Freeing named data slots
	11.5 Summary

	Delegates
	12.1 Delegates revisited
	12.2 The ThreadStart delegate
	12.3 Callbacks
	12.3.1 TimerCallback
	12.3.2 WaitCallback
	12.3.3 WaitOrTimerCallback

	12.4 Handling thread exceptions in Windows�Forms
	12.5 Asynchronous delegates
	12.5.1 EndInvoke
	12.5.2 AsyncCallback

	12.6 Creating and invoking dynamic�delegates
	12.7 Summary

	Exceptions
	13.1 Exceptions revisited
	13.2 Thread-related exceptions
	13.2.1 The ThreadAbortException class
	13.2.2 The ThreadInterruptedException class
	13.2.3 The ThreadStateException class
	13.2.4 The SynchronizationLockException class

	13.3 The AppDomain UnhandledException event
	13.4 Summary

	Timers
	14.1 Using Windows Forms timers
	14.1.1 How Windows Forms timers are implemented
	14.1.2 Controlling Windows Forms timers

	14.2 System.Timers.Timer
	14.2.1 Using System.Timers.Timer in Windows Forms
	14.2.2 System.Timers.Timer in Windows system services

	14.3 System.Threading.Timer
	14.4 Summary

	Windows Forms and multiple�threads
	15.1 Multithreaded-related issues
	15.1.1 Introduction to the STAThread attribute
	15.1.2 Threading-related issues
	15.1.3 Race conditions
	15.1.4 Event-related deadlocks
	15.1.5 Making Windows Forms thread-safe

	15.2 Using the Graphics object with threads
	15.2.1 Introduction to the Graphics object
	15.2.2 Acquiring by overriding the OnPaint method
	15.2.3 Acquiring by using the FromHwnd method

	15.3 Thread-related application events�and�properties
	15.3.1 The ThreadException event
	15.3.2 The ThreadExit event
	15.3.3 The MessageLoop property

	15.4 Summary

	Unmanaged code and managed threads
	16.1 What is an apartment?
	16.1.1 Single-threaded apartment model (STA)
	16.1.2 MTA

	16.2 COM interoperability
	16.2.1 The ApartmentState property
	16.2.2 Apartment conflicts
	16.2.3 Discussion of the example

	16.3 Summary

	Designing with threads
	17.1 Using the asynchronous design pattern
	17.1.1 A file-sorting example
	17.1.2 The Sorter class library
	17.1.3 Using the Sorter class library
	17.1.4 Steps to implement the asynchronous design pattern

	17.2 Message Queue example
	17.2.1 The message producer
	17.2.2 The message consumer

	17.3 One Class One Thread
	17.4 Performance issues
	17.4.1 Multithreading overhead
	17.4.2 Increasing concurrency
	17.4.3 Implications of multiple processors

	17.5 Summary

	Multithreading in J#
	18.1 J#’s Thread class
	18.1.1 Extending the Thread class
	18.1.2 Comparing the Thread class to System.Threading.Thread

	18.2 The Runnable interface
	18.3 Concurrency control in J#
	18.3.1 Synchronized regions
	18.3.2 Synchronized methods
	18.3.3 The wait, notify, and notifyAll methods

	18.4 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

